Solar Energy for Fuels pp 73-103

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 371) | Cite as

Solar Water Splitting Using Semiconductor Photocatalyst Powders

Chapter

Abstract

Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H2 from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

Keywords

Electrocatalysis Hydrogen Overall water splitting Photocatalysis Semiconductor 

References

  1. 1.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103:15729CrossRefGoogle Scholar
  2. 2.
    International Energy Agency (2010) World Energy Outlook 2010. International Energy Agency, ParisGoogle Scholar
  3. 3.
    National Renewable Energy Laboratory (NREL) (1999) http://rredc.nrel.gov/solar/spectra/am1.5
  4. 4.
    Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Energy Environ Sci 6:1983CrossRefGoogle Scholar
  5. 5.
    Takanabe K, Domen K (2011) Green 1:313CrossRefGoogle Scholar
  6. 6.
    Turro NJ, Ramamurthy V, Scaiano JC (eds) (2010) Modern molecular photochemistry of organic molecules. University Science, SausalitoGoogle Scholar
  7. 7.
    Nozik AJ (1978) Annu Rev Phys Chem 29:189CrossRefGoogle Scholar
  8. 8.
    Nosaka Y, Ishizuka Y, Miyama H (1986) Ber Bunsenges Phys Chem 90:1199CrossRefGoogle Scholar
  9. 9.
    Memming R (1988) Top Curr Chem 143:79CrossRefGoogle Scholar
  10. 10.
    Hagfeldt A, Grätzel M (1995) Chem Rev 95:49CrossRefGoogle Scholar
  11. 11.
    Kaneko M, Okura I (eds) (2002) Photocatalysis science and technology. Kodansha/Springer, Tokyo/BerlinGoogle Scholar
  12. 12.
    Domen K (2003) In: Horvath IT (ed) Encyclopedia of catalysis. Wiley, HobokenGoogle Scholar
  13. 13.
    Maeda K, Domen K (2007) J Phys Chem C 111:7851CrossRefGoogle Scholar
  14. 14.
    Kamat PV (2007) J Phys Chem C 111:2834CrossRefGoogle Scholar
  15. 15.
    Osterloh FE (2008) Chem Mater 20:35CrossRefGoogle Scholar
  16. 16.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253CrossRefGoogle Scholar
  17. 17.
    Inoue Y (2009) Energy Environ 2:364CrossRefGoogle Scholar
  18. 18.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446CrossRefGoogle Scholar
  19. 19.
    Abe R (2010) J Photochem Photobiol C 11:179CrossRefGoogle Scholar
  20. 20.
    Maeda K, Domen K (2010) J Phys Chem Lett 1:2655CrossRefGoogle Scholar
  21. 21.
    Hisatomi T, Minegishi T, Domen K (2012) Bull Chem Soc Jpn 85:647CrossRefGoogle Scholar
  22. 22.
    Takanabe K, Domen K (2012) ChemCatChem 4:1485CrossRefGoogle Scholar
  23. 23.
    Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Adv Mater 24:229CrossRefGoogle Scholar
  24. 24.
    Tachibana Y, Vayssieres L, Durrant JR (2012) Nat Photonics 6:511CrossRefGoogle Scholar
  25. 25.
    Osterloh FE (2013) Chem Soc Rev 42:2294CrossRefGoogle Scholar
  26. 26.
    Hisatomi T, Takanabe K, Domen K (2015) Catal Lett 145:95CrossRefGoogle Scholar
  27. 27.
    Takanabe K, Domen K (2014) Photocatalysis in generation of hydrogen from water. In: Tao F, Schneider WF, Kamat PV (eds) Heterogeneous catalysis at nanoscale for energy applications. Wiley, Hoboken, pp 239–270Google Scholar
  28. 28.
    Bohren CF, Huffman DR (eds) (2004) Absorption and scattering of light by small particles. Wiley, WeinheimGoogle Scholar
  29. 29.
    Dahm DJ, Dahm KD (eds) (2007) Interpreting diffuse reflectance and transmittance. NIR, ChichesterGoogle Scholar
  30. 30.
    Braslavsky SE, Braun AM, Cassano AE, Emeline AV, Litter MI, Palmisano L, Parmon VN, Serpone N (2011) Pure Appl Chem 83:931CrossRefGoogle Scholar
  31. 31.
    Chen Z, Dinh HN, Miller E (eds) (2013) Photoelectrochemical water splitting, standards, experimental methods, and protocols. Springer, New YorkGoogle Scholar
  32. 32.
    Wemple SH, Seman JA (1973) Appl Opt 12:2947CrossRefGoogle Scholar
  33. 33.
    Di Giulio M, Micocci G, Rella R, Siciliano P, Tepore A (1993) Phys Status Solidi A 136:K101CrossRefGoogle Scholar
  34. 34.
    Lodenquai JF (1994) Sol Energy 53:209CrossRefGoogle Scholar
  35. 35.
    Swanepoel R (1983) J Phys E Sci Instrum 16:1214CrossRefGoogle Scholar
  36. 36.
    Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2005) Microwave electronics: measurement and materials characterization. Wiley, ChichesterGoogle Scholar
  37. 37.
    Le Bahers T, Rérat M, Sautet P (2014) J Phys Chem C 118:5997CrossRefGoogle Scholar
  38. 38.
    Green MA (2008) Sol Energy Mater Sol Cells 92:1305CrossRefGoogle Scholar
  39. 39.
    Džimbeg-Malčić V, Barbarić-Mikočević Ž, Itrić K (2011) Technical Gazette 18:117Google Scholar
  40. 40.
    Wood DL, Tauc J (1972) Phys Rev B 5:3144CrossRefGoogle Scholar
  41. 41.
    Schubert EF (ed) (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Bae D, Pedersen T, Seger B, Malizia M, Kuznetsov A, Hansen O, Chorkendorff I, Vesborg PCK (2015) Energy Environ Sci 8:650CrossRefGoogle Scholar
  43. 43.
    Sze SM, Ng KK (eds) (2006) Physics of semiconductor devices. Wiley, New YorkGoogle Scholar
  44. 44.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, HobokenGoogle Scholar
  45. 45.
    Kim DW, Leem YA, Yoo SD, Woo DH, Lee DH, Woo JC (1993) Phys Rev B 47:2042CrossRefGoogle Scholar
  46. 46.
    Liang WY (1970) Phys Educ 5:226CrossRefGoogle Scholar
  47. 47.
    Bastard G, Mendez EE, Chang LL, Esaki L (1982) Phys Rev B 26:1974CrossRefGoogle Scholar
  48. 48.
    Gerischer H (1984) J Phys Chem 88:6096CrossRefGoogle Scholar
  49. 49.
    van der Pauw LJ (1958) Philips Res Rep 13:1Google Scholar
  50. 50.
    Heaney MB (2000) Electrical conductivity and resistivity. In: The measurement, instrumentation and sensors handbook. CRC, Boca RatonGoogle Scholar
  51. 51.
    Nagel H, Berge C, Aberle AG (1999) J Appl Phys 86:6218CrossRefGoogle Scholar
  52. 52.
    Law ME, Solley E, Liang M, Burk DE (1991) IEEE Electron Device Lett 12:401CrossRefGoogle Scholar
  53. 53.
    Shockley W, Read WT Jr (1952) Phys Rev 87:835CrossRefGoogle Scholar
  54. 54.
    Hall RN (1952) Phys Rev 87:387CrossRefGoogle Scholar
  55. 55.
    Auger P (1952) C R A S 177:169Google Scholar
  56. 56.
    Zhang Z, Yates JT Jr (2012) Chem Rev 112:5520CrossRefGoogle Scholar
  57. 57.
    Yoneyama H (1993) Crit Rev Solid State Mater Sci 18:69CrossRefGoogle Scholar
  58. 58.
    Grätzel M (2001) Nature 414:338CrossRefGoogle Scholar
  59. 59.
    Gelderman K, Lee L, Donne SW (2007) J Chem Educ 84:685CrossRefGoogle Scholar
  60. 60.
    van de Krol R, Grätzel M (2012) Photoelectrochemical hydrogen production. Springer, New YorkCrossRefGoogle Scholar
  61. 61.
    Sato N (1998) Electrochemistry at metal and semiconductor electrodes. Elsevier, AmsterdamGoogle Scholar
  62. 62.
    Tung RT (2014) Appl Phys Rev 1:011304CrossRefGoogle Scholar
  63. 63.
    Cohen ML (1979) J Vac Sci Technol 16:1135CrossRefGoogle Scholar
  64. 64.
    Cendula P, Tilley SD, Gimenez S, Bisquert J, Schmid M, Grätzel M, Schumacher JO (2014) J Phys Chem C 118:29599CrossRefGoogle Scholar
  65. 65.
    Mills TJ, Lin F, Boettcher SW (2014) Phys Rev Lett 112:148304CrossRefGoogle Scholar
  66. 66.
    Lin F, Boettcher SW (2014) Nat Mater 13:81CrossRefGoogle Scholar
  67. 67.
    Kamat PV (2002) Pure Appl Chem 74:1693CrossRefGoogle Scholar
  68. 68.
    Jakob M, Levanon H, Kamat PV (2003) Nano Lett 3:353CrossRefGoogle Scholar
  69. 69.
    Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943CrossRefGoogle Scholar
  70. 70.
    Yoshida M, Yamakata A, Takanabe K, Kubota J, Osawa M, Domen K (2009) J Am Chem Soc 131:13218CrossRefGoogle Scholar
  71. 71.
    Lu X, Bandara A, Katayama M, Yamakata A, Kubota J, Domen K (2011) J Phys Chem C 115:23902CrossRefGoogle Scholar
  72. 72.
    Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) J Mater Res 25:3CrossRefGoogle Scholar
  73. 73.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, pp 736–768Google Scholar
  74. 74.
    Fukasawa Y, Takanabe K, Shimojima A, Antonietti M, Domen K, Okubo T (2011) Chem Asian J 6:103CrossRefGoogle Scholar
  75. 75.
    Albery WJ, Bartlett PN (1984) J Electrochem Soc 131:315CrossRefGoogle Scholar
  76. 76.
    Chamousis RL, Osterloh FE (2014) Energy Environ Sci 7:736CrossRefGoogle Scholar
  77. 77.
    Butler MA, Ginley DS (1978) J Electrochem Soc 125:228–232CrossRefGoogle Scholar
  78. 78.
    Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Nat Mater 10:456CrossRefGoogle Scholar
  79. 79.
    Esposito DV, Levin I, Moffat TP, Talin AA (2013) Nat Mater 12:562CrossRefGoogle Scholar
  80. 80.
    Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Science 344:1005CrossRefGoogle Scholar
  81. 81.
    Shinagawa T, Garcia-Esparza AT, Takanabe K (2014) ChemElectroChem 1:1497CrossRefGoogle Scholar
  82. 82.
    Hamann CH, Hamnett A, Vielstich W (eds) (2007) Electrochemistry, 2nd edn. Wiley, WeinheimGoogle Scholar
  83. 83.
    Trasatti S (1972) J Electroanal Chem 32:163CrossRefGoogle Scholar
  84. 84.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Nat Mater 5:909CrossRefGoogle Scholar
  85. 85.
    Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397CrossRefGoogle Scholar
  86. 86.
    Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159CrossRefGoogle Scholar
  87. 87.
    Grimaud A, May KJ, Carlton CE, Lee YL, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:3439CrossRefGoogle Scholar
  88. 88.
    Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Nat Mater 11:550CrossRefGoogle Scholar
  89. 89.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383CrossRefGoogle Scholar
  90. 90.
    Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu JMK, Trudel S, Berlinguette CP (2013) Science 340:60CrossRefGoogle Scholar
  91. 91.
    Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452CrossRefGoogle Scholar
  92. 92.
    Gong M, Zhou W, Tsai MC, Zhou J, Guan M, Lin MC, Zhang B, Hu Y, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai H (2014) Nat Commun 5:5695CrossRefGoogle Scholar
  93. 93.
    Muller BR, Majoni S, Memming R, Meissner D (1997) J Phys Chem B 101:2501CrossRefGoogle Scholar
  94. 94.
    Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K (2009) J Phys Chem C 113:10151CrossRefGoogle Scholar
  95. 95.
    Yoshida M, Maeda K, Lu D, Kubota J, Domen K (2013) J Phys Chem C 117:14000CrossRefGoogle Scholar
  96. 96.
    Townsend TK, Browning ND, Osterloh FE (2012) Environ Sci 5:9543Google Scholar
  97. 97.
    Jin J, Walczak K, Singh MR, Karp C, Lewis NS, Xiang C (2014) Energy Environ Sci 7:3371CrossRefGoogle Scholar
  98. 98.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) J Am Chem Soc 135:9267CrossRefGoogle Scholar
  99. 99.
    Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) Angew Chem Int Ed 53:12855CrossRefGoogle Scholar
  100. 100.
    Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Angew Chem Int Ed 53:5427CrossRefGoogle Scholar
  101. 101.
    Dionigi F, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2011) Energy Environ Sci 4:2937CrossRefGoogle Scholar
  102. 102.
    Kisch H (2010) Angew Chem Int Ed 49:9588CrossRefGoogle Scholar
  103. 103.
    Mills A, Wang J (1999) J Photochem Photobiol A 127:123CrossRefGoogle Scholar
  104. 104.
    Yang X, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Chem Phys Lett 429:606CrossRefGoogle Scholar
  105. 105.
    Mills A (2012) Appl Catal B 128:144CrossRefGoogle Scholar
  106. 106.
    Kato H, Asakura K, Kudo A (2003) J Am Chem Soc 125:3082CrossRefGoogle Scholar
  107. 107.
    Sakata Y, Matsuda Y, Nakagawa T, Yasunaga R, Imamura H, Teramura K (2011) ChemSusChem 4:181Google Scholar
  108. 108.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440:295CrossRefGoogle Scholar
  109. 109.
    Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T, Takashima M, Lu D, Kanehara M, Setoyama T, Teranishi T, Domen K (2010) Angew Chem Int Ed 49:4096CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations