Non-analytic Spin-Density Functionals

  • Martín A. Mosquera
  • Adam Wasserman
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 365)


We examine the integer discontinuity (or derivative discontinuity) of the exact energy functionals of Kohn–Sham density-functional theory for the spin-polarized case. The integer discontinuity and its cause, the piecewise linearity of the energy in the grand canonical ensemble, are required to improve the predictive power of density-functional approximations to the exchange-correlation energy. We show how any spin-polarized DFA can be adapted to display the proper integer discontinuity. The formalism we present here can be used to improve functionals further within spin density-functional theory and fragment-based formulations of DFT.


Derivative discontinuity Electronic spin Ensemble Magnetic field Molecular dissociation 



We thankfully acknowledge support by the National Science Foundation CAREER program under Grant No. CHE-1149968. A.W. also acknowledges support from an Alfred P. Sloan Foundation Research Fellowship and a Camille-Dreyfus Teacher Scholar award.


  1. 1.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133CrossRefGoogle Scholar
  2. 2.
    Perdew J, Kurth S (2003) Density functionals for non-relativistic Coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory, volume 620 of lecture notes in physics, chapter 1. Springer, Berlin, pp 1–55. ISBN 978-3-540-03083-6CrossRefGoogle Scholar
  3. 3.
    Elliott P, Lee D, Cangi A, Burke K (2008) Semiclassical origins of density functionals. Phys Rev Lett 100:256406CrossRefGoogle Scholar
  4. 4.
    Lee D, Furche F, Burke K (2010) Accuracy of electron affinities of atoms in approximate density functional theory. J Phys Chem Lett 1(14):2124–2129CrossRefGoogle Scholar
  5. 5.
    Csonka GI, Perdew JP, Ruzsinszky A (2010) Global hybrid functionals: a look at the engine under the hood. J Chem Theory Comput 6(12):3688–3703CrossRefGoogle Scholar
  6. 6.
    Ruzsinszky A, Perdew JP (2011) Twelve outstanding problems in ground-state density functional theory: a bouquet of puzzles. Comput Theor Chem 963(1):2–6CrossRefGoogle Scholar
  7. 7.
    Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13(10):4274CrossRefGoogle Scholar
  8. 8.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691CrossRefGoogle Scholar
  9. 9.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320CrossRefGoogle Scholar
  10. 10.
    Perdew J (1985) What do the Kohn-Sham orbital energies mean? How do atoms dissociate? In: Dreizler RM, da Providência J (eds) Density functional methods in physics. Plenum, New YorkGoogle Scholar
  11. 11.
    Tempel DG, Martinez TJ, Maitra NT (2009) Revisiting molecular dissociation in density functional theory: a simple model. J Chem Theory Comput 5(4):770–780CrossRefGoogle Scholar
  12. 12.
    Miller JS, Epstein AJ, Reiff WM (1988) Ferromagnetic molecular charge-transfer complexes. Chem Rev 88(1):201–220CrossRefGoogle Scholar
  13. 13.
    Kollmar C, Kahn O (1993) Ferromagnetic spin alignment in molecular systems: an orbital approach. Acc Chem Res 26(5):259–265CrossRefGoogle Scholar
  14. 14.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186CrossRefGoogle Scholar
  15. 15.
    Mosquera MA, Wasserman A (2014) Integer discontinuity of density functional theory. Phys Rev A 89(5):052506CrossRefGoogle Scholar
  16. 16.
    Mosquera MA, Wasserman A (2013) Partition density functional theory and its extension to the spin-polarized case. Mol Phys 111(4):505–515CrossRefGoogle Scholar
  17. 17.
    Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28(S19):497–523CrossRefGoogle Scholar
  18. 18.
    Harriman JE (1981) Orthonormal orbitals for the representation of an arbitrary density. Phys Rev A 24(2):680CrossRefGoogle Scholar
  19. 19.
    Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062–6065CrossRefGoogle Scholar
  20. 20.
    Lieb EH (1983) Density functionals for coulomb systems. Int J of Quantum Chem 24:243–277CrossRefGoogle Scholar
  21. 21.
    Valone SM (1980) Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349CrossRefGoogle Scholar
  22. 22.
    Hille E, Phillips RS (1957) Functional analysis and semi-groups, vol 31. American Mathematical Society, ProvidenceGoogle Scholar
  23. 23.
    Hormander L (1994) Notions of convexity, vol 12. Springer, Birkhäuser, BostonGoogle Scholar
  24. 24.
    Lammert PE (2007) Differentiability of Lieb functional in electronic density functional theory. Int J Quantum Chem 107(10):1943–1953CrossRefGoogle Scholar
  25. 25.
    Englisch H, Englisch R (1984) Exact density functionals for ground-state energies. I. General results. Phys Status Solidi B 123(2):711–721CrossRefGoogle Scholar
  26. 26.
    Englisch H, Englisch R (1984) Exact density functionals for ground-state energies II. Details and remarks. Phys Status Solidi B 124(1):373–379CrossRefGoogle Scholar
  27. 27.
    Chayes JT, Chayes L, Ruskai MB (1985) Density functional approach to quantum lattice systems. J Stat Phys 38(3–4):497–518CrossRefGoogle Scholar
  28. 28.
    Ayers PW (2006) Axiomatic formulations of the Hohenberg-Kohn functional. Phys Rev A 73(1):012513CrossRefGoogle Scholar
  29. 29.
    Kvaal S, Ekström U, Teale AM, Helgaker T (2014) Differentiable but exact formulation of density-functional theory. J Chem Phys 140(18):18A518CrossRefGoogle Scholar
  30. 30.
    van Leeuwen R (1998) Phys Rev Lett 80(6):1280CrossRefGoogle Scholar
  31. 31.
    Vignale G (2008) Phys Rev A 77:062511CrossRefGoogle Scholar
  32. 32.
    Mosquera MA (2013) Action formalism of time-dependent density-functional theory. Phys Rev A 88:022515CrossRefGoogle Scholar
  33. 33.
    Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110(2):695–700CrossRefGoogle Scholar
  34. 34.
    Cancès E (2001) Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers. J Chem Phys 114(24):10616–10622CrossRefGoogle Scholar
  35. 35.
    Capelle K, Vignale G (2001) Nonuniqueness of the potentials of spin-density-functional theory. Phys Rev Lett 86(24):5546CrossRefGoogle Scholar
  36. 36.
    Gidopoulos NI (2007) Potential in spin-density-functional theory of noncollinear magnetism determined by the many-electron ground state. Phys Rev B 75:134408CrossRefGoogle Scholar
  37. 37.
    Kutzelnigg W, Morgan JD III (1996) Hund’s rules. Z Phys D Atom Mol Cl 36(3–4):197–214CrossRefGoogle Scholar
  38. 38.
    Boyd RJ (1984) A quantum mechanical explanation for Hund’s multiplicity rule. Nature 310:480–481CrossRefGoogle Scholar
  39. 39.
    Kollmar H, Staemmler V (1978) Violation of Hund’s rule by spin polarization in molecules. Theor Chim Acta 48(3):223–239CrossRefGoogle Scholar
  40. 40.
    Botch BH, Dunning TH Jr (1982) Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine. J Chem Phys 76(12):6046–6056CrossRefGoogle Scholar
  41. 41.
    Feller D, Davidson ER (1985) Ab initio multireference CI determinations of the electron affinity of carbon and oxygen. J Chem Phys 82(9):4135–4141CrossRefGoogle Scholar
  42. 42.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816CrossRefGoogle Scholar
  43. 43.
    Balawender R (2012) Thermodynamic extension of density-functional theory. III. Zero-temperature limit of the ensemble spin-density functional theory. arXiv preprint arXiv:1212.1367Google Scholar
  44. 44.
    Malek AM, Balawender R (2013) Discontinuities of energy derivatives in spin-density functional theory. arXiv preprint arXiv:1310.6918Google Scholar
  45. 45.
    von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C Solid State Phys 5(13):1629CrossRefGoogle Scholar
  46. 46.
    Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9):093001CrossRefGoogle Scholar
  47. 47.
    Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126(15):154109CrossRefGoogle Scholar
  48. 48.
    Almbladh C-O, Von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B 31(6):3231CrossRefGoogle Scholar
  49. 49.
    Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111(11):2229–2242CrossRefGoogle Scholar
  50. 50.
    Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501CrossRefGoogle Scholar
  51. 51.
    Nafziger J, Wasserman A (2012) Delocalization and static correlation in partition density-functional theory. arXiv preprint arXiv:1305.4966Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations