Advertisement

Non-analytic Spin-Density Functionals

  • Martín A. Mosquera
  • Adam Wasserman
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 365)

Abstract

We examine the integer discontinuity (or derivative discontinuity) of the exact energy functionals of Kohn–Sham density-functional theory for the spin-polarized case. The integer discontinuity and its cause, the piecewise linearity of the energy in the grand canonical ensemble, are required to improve the predictive power of density-functional approximations to the exchange-correlation energy. We show how any spin-polarized DFA can be adapted to display the proper integer discontinuity. The formalism we present here can be used to improve functionals further within spin density-functional theory and fragment-based formulations of DFT.

Keywords

Derivative discontinuity Electronic spin Ensemble Magnetic field Molecular dissociation 

Notes

Acknowledgements

We thankfully acknowledge support by the National Science Foundation CAREER program under Grant No. CHE-1149968. A.W. also acknowledges support from an Alfred P. Sloan Foundation Research Fellowship and a Camille-Dreyfus Teacher Scholar award.

References

  1. 1.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133CrossRefGoogle Scholar
  2. 2.
    Perdew J, Kurth S (2003) Density functionals for non-relativistic Coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory, volume 620 of lecture notes in physics, chapter 1. Springer, Berlin, pp 1–55. ISBN 978-3-540-03083-6CrossRefGoogle Scholar
  3. 3.
    Elliott P, Lee D, Cangi A, Burke K (2008) Semiclassical origins of density functionals. Phys Rev Lett 100:256406CrossRefGoogle Scholar
  4. 4.
    Lee D, Furche F, Burke K (2010) Accuracy of electron affinities of atoms in approximate density functional theory. J Phys Chem Lett 1(14):2124–2129CrossRefGoogle Scholar
  5. 5.
    Csonka GI, Perdew JP, Ruzsinszky A (2010) Global hybrid functionals: a look at the engine under the hood. J Chem Theory Comput 6(12):3688–3703CrossRefGoogle Scholar
  6. 6.
    Ruzsinszky A, Perdew JP (2011) Twelve outstanding problems in ground-state density functional theory: a bouquet of puzzles. Comput Theor Chem 963(1):2–6CrossRefGoogle Scholar
  7. 7.
    Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13(10):4274CrossRefGoogle Scholar
  8. 8.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691CrossRefGoogle Scholar
  9. 9.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320CrossRefGoogle Scholar
  10. 10.
    Perdew J (1985) What do the Kohn-Sham orbital energies mean? How do atoms dissociate? In: Dreizler RM, da Providência J (eds) Density functional methods in physics. Plenum, New YorkGoogle Scholar
  11. 11.
    Tempel DG, Martinez TJ, Maitra NT (2009) Revisiting molecular dissociation in density functional theory: a simple model. J Chem Theory Comput 5(4):770–780CrossRefGoogle Scholar
  12. 12.
    Miller JS, Epstein AJ, Reiff WM (1988) Ferromagnetic molecular charge-transfer complexes. Chem Rev 88(1):201–220CrossRefGoogle Scholar
  13. 13.
    Kollmar C, Kahn O (1993) Ferromagnetic spin alignment in molecular systems: an orbital approach. Acc Chem Res 26(5):259–265CrossRefGoogle Scholar
  14. 14.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186CrossRefGoogle Scholar
  15. 15.
    Mosquera MA, Wasserman A (2014) Integer discontinuity of density functional theory. Phys Rev A 89(5):052506CrossRefGoogle Scholar
  16. 16.
    Mosquera MA, Wasserman A (2013) Partition density functional theory and its extension to the spin-polarized case. Mol Phys 111(4):505–515CrossRefGoogle Scholar
  17. 17.
    Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28(S19):497–523CrossRefGoogle Scholar
  18. 18.
    Harriman JE (1981) Orthonormal orbitals for the representation of an arbitrary density. Phys Rev A 24(2):680CrossRefGoogle Scholar
  19. 19.
    Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062–6065CrossRefGoogle Scholar
  20. 20.
    Lieb EH (1983) Density functionals for coulomb systems. Int J of Quantum Chem 24:243–277CrossRefGoogle Scholar
  21. 21.
    Valone SM (1980) Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349CrossRefGoogle Scholar
  22. 22.
    Hille E, Phillips RS (1957) Functional analysis and semi-groups, vol 31. American Mathematical Society, ProvidenceGoogle Scholar
  23. 23.
    Hormander L (1994) Notions of convexity, vol 12. Springer, Birkhäuser, BostonGoogle Scholar
  24. 24.
    Lammert PE (2007) Differentiability of Lieb functional in electronic density functional theory. Int J Quantum Chem 107(10):1943–1953CrossRefGoogle Scholar
  25. 25.
    Englisch H, Englisch R (1984) Exact density functionals for ground-state energies. I. General results. Phys Status Solidi B 123(2):711–721CrossRefGoogle Scholar
  26. 26.
    Englisch H, Englisch R (1984) Exact density functionals for ground-state energies II. Details and remarks. Phys Status Solidi B 124(1):373–379CrossRefGoogle Scholar
  27. 27.
    Chayes JT, Chayes L, Ruskai MB (1985) Density functional approach to quantum lattice systems. J Stat Phys 38(3–4):497–518CrossRefGoogle Scholar
  28. 28.
    Ayers PW (2006) Axiomatic formulations of the Hohenberg-Kohn functional. Phys Rev A 73(1):012513CrossRefGoogle Scholar
  29. 29.
    Kvaal S, Ekström U, Teale AM, Helgaker T (2014) Differentiable but exact formulation of density-functional theory. J Chem Phys 140(18):18A518CrossRefGoogle Scholar
  30. 30.
    van Leeuwen R (1998) Phys Rev Lett 80(6):1280CrossRefGoogle Scholar
  31. 31.
    Vignale G (2008) Phys Rev A 77:062511CrossRefGoogle Scholar
  32. 32.
    Mosquera MA (2013) Action formalism of time-dependent density-functional theory. Phys Rev A 88:022515CrossRefGoogle Scholar
  33. 33.
    Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110(2):695–700CrossRefGoogle Scholar
  34. 34.
    Cancès E (2001) Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers. J Chem Phys 114(24):10616–10622CrossRefGoogle Scholar
  35. 35.
    Capelle K, Vignale G (2001) Nonuniqueness of the potentials of spin-density-functional theory. Phys Rev Lett 86(24):5546CrossRefGoogle Scholar
  36. 36.
    Gidopoulos NI (2007) Potential in spin-density-functional theory of noncollinear magnetism determined by the many-electron ground state. Phys Rev B 75:134408CrossRefGoogle Scholar
  37. 37.
    Kutzelnigg W, Morgan JD III (1996) Hund’s rules. Z Phys D Atom Mol Cl 36(3–4):197–214CrossRefGoogle Scholar
  38. 38.
    Boyd RJ (1984) A quantum mechanical explanation for Hund’s multiplicity rule. Nature 310:480–481CrossRefGoogle Scholar
  39. 39.
    Kollmar H, Staemmler V (1978) Violation of Hund’s rule by spin polarization in molecules. Theor Chim Acta 48(3):223–239CrossRefGoogle Scholar
  40. 40.
    Botch BH, Dunning TH Jr (1982) Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine. J Chem Phys 76(12):6046–6056CrossRefGoogle Scholar
  41. 41.
    Feller D, Davidson ER (1985) Ab initio multireference CI determinations of the electron affinity of carbon and oxygen. J Chem Phys 82(9):4135–4141CrossRefGoogle Scholar
  42. 42.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816CrossRefGoogle Scholar
  43. 43.
    Balawender R (2012) Thermodynamic extension of density-functional theory. III. Zero-temperature limit of the ensemble spin-density functional theory. arXiv preprint arXiv:1212.1367Google Scholar
  44. 44.
    Malek AM, Balawender R (2013) Discontinuities of energy derivatives in spin-density functional theory. arXiv preprint arXiv:1310.6918Google Scholar
  45. 45.
    von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C Solid State Phys 5(13):1629CrossRefGoogle Scholar
  46. 46.
    Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9):093001CrossRefGoogle Scholar
  47. 47.
    Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126(15):154109CrossRefGoogle Scholar
  48. 48.
    Almbladh C-O, Von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B 31(6):3231CrossRefGoogle Scholar
  49. 49.
    Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111(11):2229–2242CrossRefGoogle Scholar
  50. 50.
    Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501CrossRefGoogle Scholar
  51. 51.
    Nafziger J, Wasserman A (2012) Delocalization and static correlation in partition density-functional theory. arXiv preprint arXiv:1305.4966Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations