Homogeneous Gold Catalysis pp 63-94

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 357) | Cite as

Gold-Catalyzed Transformation of Unsaturated Alcohols

Chapter

Abstract

The use of gold-complexes to activate carbon–carbon π-bonds has become a well-known and highly reliable mode of reactivity for applications in organic synthesis. This review covers the use of gold-catalysts for activation of unsaturated alcohols to effect substitution with concomitant loss of water and is mostly focused on reactions where the π-acidity appears to overcome the inherent Lewis acidity of the complexes for alcohol activation. Select examples from the literature which demonstrate advances made between 2011 and 2014 are presented.

Keywords

Allylic alcohols Benzyl alcohols Gold-catalysis Heterocycles Natural products Propargyl alcohols SN2′ 

References

  1. 1.
    Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  2. 2.
    Shapiro ND, Toste FD (2010) Synlett 5:675–691Google Scholar
  3. 3.
    Hashmi ASK (2014) Acc Chem Res 47:864–876CrossRefGoogle Scholar
  4. 4.
    Zhang L (2014) Acc Chem Res 47:877–888CrossRefGoogle Scholar
  5. 5.
    Wang Y-M, Lackner AD, Toste FD (2014) Acc Chem Res 47:889–901CrossRefGoogle Scholar
  6. 6.
    Obradors C, Echavarren AM (2014) Acc Chem Res 47:902–912CrossRefGoogle Scholar
  7. 7.
    Fensterbank L, Malacria M (2014) Acc Chem Res 47:953–965CrossRefGoogle Scholar
  8. 8.
    Hashmi ASK (2013) Top Organomet Chem 44:143–164Google Scholar
  9. 9.
    Corma A, Leyva-Pérez A, Sabater MJ (2011) Chem Rev 111:1657–1712CrossRefGoogle Scholar
  10. 10.
    Gorin DJ, Toste FD (2007) Nature 446:395–403CrossRefGoogle Scholar
  11. 11.
    Teles JH, Brode S, Chabanas M (1998) Angew Chem Int Ed 37:1415–1417CrossRefGoogle Scholar
  12. 12.
    Prati L, Rossi M (1998) J Catal 176:552–560CrossRefGoogle Scholar
  13. 13.
    Fürstner A, Davies PW (2007) Angew Chem Int Ed 46:3410–3449CrossRefGoogle Scholar
  14. 14.
    Fürstner A (2009) Chem Soc Rev 38:3208–3221CrossRefGoogle Scholar
  15. 15.
    Fürstner A (2014) Acc Chem Res 47:925–938CrossRefGoogle Scholar
  16. 16.
    Biannic B, Aponick A (2011) Eur J Org Chem 6605–6617Google Scholar
  17. 17.
    Muzart J (2008) Tetrahedron 64:5815–5849CrossRefGoogle Scholar
  18. 18.
    Bandini M (2011) Chem Soc Rev 40:1358–1367CrossRefGoogle Scholar
  19. 19.
    Rudolph M, Hashmi ASK (2012) Chem Soc Rev 41:2448–2462CrossRefGoogle Scholar
  20. 20.
    Winter C, Krause N (2011) Chem Rev 111:1994–2009CrossRefGoogle Scholar
  21. 21.
    Yang C-G, He C (2005) J Am Chem Soc 127:6966–6967CrossRefGoogle Scholar
  22. 22.
    Liu L-P, Hammond GB (2012) Chem Soc Rev 41:3129–3139CrossRefGoogle Scholar
  23. 23.
    Lalonde RL, Brenzovich WE Jr, Benitez D, Tkatchouk E, Keley K, Goddard WA III, Toste FD (2010) Chem Sci 1:226–233CrossRefGoogle Scholar
  24. 24.
    Ketcham JM, Biannic B, Aponick A (2013) Chem Commun 49:4157–4159CrossRefGoogle Scholar
  25. 25.
    Gómez-Suárez A, Gasperini D, Vummaleti SVC, Poater A, Cavallo L, Nolan SP (2014) ACS Catal 4:2701–2705CrossRefGoogle Scholar
  26. 26.
    Aponick A, Li C-Y, Biannic B (2008) Org Lett 10:669–671CrossRefGoogle Scholar
  27. 27.
    Ketcham JM, Aponick A (2013) Top Heterocycl Chem 32:157–186CrossRefGoogle Scholar
  28. 28.
    Hirai Y, Terada T, Amemiya Y, Momose T (1992) Tetrahedron Lett 33:7893–7894CrossRefGoogle Scholar
  29. 29.
    Debleds O, Gayon E, Vrancken E, Campagne J-M (2011) Beilstein J Org Chem 7:866–877CrossRefGoogle Scholar
  30. 30.
    Mukherjee P, Widenhoefer RA (2010) Org Lett 12:1184–1187CrossRefGoogle Scholar
  31. 31.
    Bandini M, Eichholzer A (2009) Angew Chem Int Ed 121:9697–9701CrossRefGoogle Scholar
  32. 32.
    Unsworth WP, Stevens K, Lamont SG, Robertson J (2011) Chem Commun 47:7659–7661CrossRefGoogle Scholar
  33. 33.
    Mukherjee P, Widenhoefer RA (2012) Angew Chem Int Ed 51:1405–1407CrossRefGoogle Scholar
  34. 34.
    Ghebreghiorgis T, Biannic B, Kirk BH, Ess DH, Aponick A (2012) J Am Chem Soc 134:16307–16318CrossRefGoogle Scholar
  35. 35.
    Mukherjee P, Widenhoefer RA (2011) Org Lett 13:1334–1337CrossRefGoogle Scholar
  36. 36.
    Bandini M, Bottoni A, Chiarucci M, Cera G, Miscione GP (2012) J Am Chem Soc 134:20690–20700CrossRefGoogle Scholar
  37. 37.
    Aponick A, Biannic B (2011) Org Lett 13:1330–1333CrossRefGoogle Scholar
  38. 38.
    Chiarucci M, Mocci R, Syntrivanis L-D, Cera G, Mazzanti A, Bandini M (2013) Angew Chem Int Ed 52:10850–10853CrossRefGoogle Scholar
  39. 39.
    Palmes JA, Paioti PHS, de Souza LP, Aponick A (2013) Chem Eur J 19:11613–11621CrossRefGoogle Scholar
  40. 40.
    Palmes JA, Aponick A (2012) Synthesis 44:3699–3721CrossRefGoogle Scholar
  41. 41.
    Brimble MA, Stubbing LA (2014) Top Heterocycl Chem 35:189–267CrossRefGoogle Scholar
  42. 42.
    Borrero N, Aponick A (2012) J Org Chem 77:8410–8416CrossRefGoogle Scholar
  43. 43.
    Thansandote P, Lautens M (2009) Chem Eur J 15:5874–5883CrossRefGoogle Scholar
  44. 44.
    Ketcham JM, Cardoso FSP, Biannic B, Piras H, Aponick A (2013) Isr J Chem 53:1–9CrossRefGoogle Scholar
  45. 45.
    Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471–5569CrossRefGoogle Scholar
  46. 46.
    Chiarucci M, di Lillo M, Romaniello A, Cozzi PG, Cera G, Bandini M (2012) Chem Sci 3:2859–2863CrossRefGoogle Scholar
  47. 47.
    Trost BM (2004) J Org Chem 69:5813–5837CrossRefGoogle Scholar
  48. 48.
    Evans PA, Leahy DK, Andrews JW, Uraguchi D (2004) Angew Chem Int Ed 43:4788–4791CrossRefGoogle Scholar
  49. 49.
    Onitsuka K, Okuda H, Sasai H (2008) Angew Chem Int Ed 47:1454–1457CrossRefGoogle Scholar
  50. 50.
    Ueno S, Hartwig JF (2008) Angew Chem Int Ed 47:1928–1931CrossRefGoogle Scholar
  51. 51.
    Roggen M, Carreira EM (2011) Angew Chem Int Ed 50:5568–5571CrossRefGoogle Scholar
  52. 52.
    Young PC, Schopf NA, Lee A-L (2013) Chem Commun 49:4262–4264CrossRefGoogle Scholar
  53. 53.
    Mukherjee P, Widenhoefer RA (2013) Chem Eur J 19:3437–3444CrossRefGoogle Scholar
  54. 54.
    Biannic B, Ghebreghiorgis T, Aponick A (2011) Beilstein J Org Chem 7:802–807CrossRefGoogle Scholar
  55. 55.
    Coutant E, Young PC, Barker G, Lee A-L (2013) Beilstein J Org Chem 9:1797–1806CrossRefGoogle Scholar
  56. 56.
    Wright JR, Young PC, Lucas NT, Lee A-L, Crowley JD (2013) Organometallics 32:7065–7076CrossRefGoogle Scholar
  57. 57.
    Valderas C, de la Torre MC, Fernandéz I, Muñoz MP, Sierra MA (2013) Organometallics 32:951–956CrossRefGoogle Scholar
  58. 58.
    Aponick A, Li C-Y, Malinge J, Marques EF (2009) Org Lett 11:4624–4627CrossRefGoogle Scholar
  59. 59.
    Egi M, Azechi K, Akai S (2009) Org Lett 11:5002–5005CrossRefGoogle Scholar
  60. 60.
    Aponick A, Li C-Y, Palmes JA (2009) Org Lett 11:121–124CrossRefGoogle Scholar
  61. 61.
    Chiarucci M, Matteucci E, Cera G, Fabrizi G, Bandini M (2013) Chem Asian J 8:1776–1779CrossRefGoogle Scholar
  62. 62.
    Minkler SRK, Isley NA, Lippincott DJ, Krause N, Lipshutz BH (2014) Org Lett 16:724–726CrossRefGoogle Scholar
  63. 63.
    Manabe K, Iimura S, Sun X-M, Kobayashi S (2002) J Am Chem Soc 124:11971–11978CrossRefGoogle Scholar
  64. 64.
    Krasovskiy A, Duplais C, Lipshutz BH (2009) J Am Chem Soc 131:15592–15593CrossRefGoogle Scholar
  65. 65.
    Spina R, Colacino E, Martinez G, Lamaty F (2013) Chem Eur J 19:3817–3821CrossRefGoogle Scholar
  66. 66.
    Zhu L, Luo J, Hong R (2014) Org Lett 16:2162–2165CrossRefGoogle Scholar
  67. 67.
    Fischbach MA, Clardy J (2007) Nat Chem Biol 3:353–355CrossRefGoogle Scholar
  68. 68.
    Teo WT, Rao W, Koh MJ, Chan PWH (2013) J Org Chem 78:7508–7517CrossRefGoogle Scholar
  69. 69.
    Teo WT, Rao W, Ng CJH, Koh SWY, Chan PWH (2014) Org Lett 16:1248–1351CrossRefGoogle Scholar
  70. 70.
    Frantz DE, Fassler R, Carreira EM (2000) J Am Chem Soc 122:1806–1807CrossRefGoogle Scholar
  71. 71.
    Xu C-F, Xu M, Yang L-Q, Li C-Y (2012) J Org Chem 77:3010–3016CrossRefGoogle Scholar
  72. 72.
    Georgy M, Boucard V, Campagne JM (2005) J Am Chem Soc 127:14180–14181CrossRefGoogle Scholar
  73. 73.
    Liu J, Muth E, Florke U, Henkel G, Merz K, Sauvageau J, Schwake E, Dyker G (2006) Adv Synth Catal 348:456–462CrossRefGoogle Scholar
  74. 74.
    Hikawa H, Suzuki H, Azumaya I (2013) J Org Chem 78:12128–12135CrossRefGoogle Scholar
  75. 75.
    Hikawa H, Suzuki H, Yokoyama Y, Azumaya I (2013) J Org Chem 78:6714–6720CrossRefGoogle Scholar
  76. 76.
    Chénard E, Hanessian S (2014) Org Lett 16:2668–2671CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Center for Heterocyclic CompoundsUniversity of FloridaGainesvilleUSA

Personalised recommendations