Skip to main content

Chemical Synthesis of Proteins Using N-Sulfanylethylanilide Peptides, Based on N−S Acyl Transfer Chemistry

  • Chapter
  • First Online:
Book cover Protein Ligation and Total Synthesis II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 363))

Abstract

Native chemical ligation (NCL), which features the use of peptide thioesters, is among the most reliable ligation protocols in chemical protein synthesis. Thioesters have conventionally been synthesized using tert-butyloxycarbonyl (Boc)-based solid-phase peptide synthesis (SPPS); however, the increasing use of 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS requires an efficient preparative protocol for thioesters which is fully compatible with Fmoc chemistry. We have addressed this issue by mimicking the naturally occurring thioester-forming step seen in intein-mediated protein splicing of the intein−extein system, using an appropriate chemical device to induce N−S acyl transfer reaction, avoiding the problems associated with Fmoc strategies. We have developed N-sulfanylethylanilide (SEAlide) peptides, which can be synthesized by standard Fmoc SPPS and converted to the corresponding thioesters through treatment under acidic conditions. Extensive examination of SEAlide peptides showed that the amide-type SEAlide peptides can be directly and efficiently involved in NCL via thioester species in the presence of phosphate salts, even under neutral conditions. The presence or absence of phosphate salts provided kinetically controllable chemoselectivity in NCL for SEAlide peptides. This allowed SEAlide peptides to be used in both one-pot/N−to−C-directed sequential NCL under kinetically controlled conditions, and the convergent coupling of large peptide fragments, which facilitated the chemical synthesis of proteins over about 100 residues. The use of SEAlide peptides, enabling sequential NCL operated under kinetically controlled conditions, and the convergent coupling, were used for the total chemical synthesis of a 162-residue monoglycosylated GM2-activator protein (GM2AP) analog.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

Acm:

Acetamidemethyl

Ar:

Aryl

Boc:

tert-Butoxycarbonyl

Bu:

Butyl

DMF:

Dimethylformamide

Fmoc:

9-Fluorenylmethyloxycarbonyl

GM2:

Ganglioside GM2

GM2AP:

GM2-activator protein

GM3:

Ganglioside GM3

Gn:

Guanidine

hANP:

Human atrial natriuretic peptide

HEPPS:

3-[4-(2-Hydroxyethyl)piperazin-1-yl]propane-1-sulfonic acid

HexA:

β-Hexosaminidase A

HSPro:

Sulfanylproline

KCL:

Kinetically controlled NCL

MBom:

4 Methoxybenzyloxymethyl

Me:

Methyl

MPAA:

(4-Carboxymethyl)thiophenol

NCL:

Native chemical ligation

OTf:

Trifluoromethanesulfonate

Ph:

Phenyl

rt:

Room temperature

SEAlide:

N-Acyl-N-sulfanylethylaniline

SPPS:

Solid-phase peptide synthesis

t-Bu:

tert-Butyl

TCEP:

Tris(2-carboxyethyl)phosphine (TCEP)

TFA:

Trifluoroacetic acid

Thz:

1,3-Thiazolidine-4-carbonyl

Tr:

Triphenylmethyl (trityl)

A (Ala):

Alanine

C (Cys):

Cysteine

D (Asp):

Aspartic acid

E (Glu):

Glutamic acid

F (Phe):

Phenylalanine

G (Gly):

Glycine

H (His):

Histidine

I (Ile):

Isoleucine

K (Lys):

Lysine

L (Leu):

Leucine

M (Met):

Methionine

N (Asn):

Asparagine

P (Pro):

Proline

Q (Gln):

Glutamine

R (Arg):

Arginine

S (Ser):

Serine

T (Thr):

Threonine

V (Val):

Valine

W (Trp):

Tryptophan

Y (Tyr):

Tyrosine

References

  1. Dawson P, Muir T, Clark-Lewis I, Kent S (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779. doi:10.1126/science.7973629

    CAS  Google Scholar 

  2. Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960. doi:10.1146/annurev.biochem.69.1.923

    CAS  Google Scholar 

  3. Kent S (2004) Novel forms of chemical protein diversity – in nature and in the laboratory. Curr Opin Biotech 15(6):607–614. doi:10.1016/j.copbio.2004.10.003

    CAS  Google Scholar 

  4. Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47(52):10030–10074. doi:10.1002/anie.200801313

    CAS  Google Scholar 

  5. Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38(2):338–351. doi:10.1039/b700141j

    CAS  Google Scholar 

  6. Hojo H, Aimoto S (1991) Polypeptide synthesis using the S-alkyl thioester of a partially protected peptide segment. Synthesis of the DNA-binding domain of c-Mybprotein (142–193)–NH2. Bull Chem Soc Jpn 64(1):111–117

    CAS  Google Scholar 

  7. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96(18):10068–10073. doi:10.1073/pnas.96.18.10068

    CAS  Google Scholar 

  8. Aimoto S (1999) Polypeptide synthesis by the thioester method. Peptide Sci 51(4):247–265. doi:10.1002/(sici)1097-0282(1999)51:4<247::aid-bip2>3.0.co;2-w

  9. Bang D, Pentelute BL, Gates ZP, Kent SB (2006) Directon-resin synthesis of peptide-α-thiophenylesters for use in native chemical ligation. Org Lett 8(6):1049–1052. doi:10.1021/ol052811j

    CAS  Google Scholar 

  10. Izumi M, Murakami M, Okamoto R, Kajihara Y (2014) Safe and efficient Boc-SPPS for the synthesis of glycopeptide-α-thioesters. J Pept Sci 20(2):98–101. doi:10.1002/psc.2608

    CAS  Google Scholar 

  11. Mende F, Seitz O (2011) 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide alpha-thioesters. Angew Chem Int Ed 50(6):1232–1240. doi:10.1002/anie.201005180

    CAS  Google Scholar 

  12. Backes BJ, Virgilio AA, Ellman JA (1996) Activation method to prepare a highly reactive acylsulfonamide “safety-catch” linker for solid-phase synthesis. J Am Chem Soc 118(12):3055–3056. doi:10.1021/ja9535165

    CAS  Google Scholar 

  13. Backes BJ, Ellman JA (1999) Analkane sulfonamide “safety-catch” linker for solid-phase synthesis. J Org Chem 64(7):2322–2330. doi:10.1021/jo981990y

    CAS  Google Scholar 

  14. Ingenito R, Bianchi E, Fattori D, Pessi A (1999) Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J Am Chem Soc 121(49):11369–11374. doi:10.1021/ja992668n

    CAS  Google Scholar 

  15. Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR (1999) Fmoc-based synthesis of peptide-(alpha)thioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J Am Chem Soc 121(50):11684–11689. doi:10.1021/ja992881j

    CAS  Google Scholar 

  16. Quaderer R, Hilvert D (2001) Improved synthesis of C-terminal peptide thioesters on “safety-catch” resins using LiBr/THF. Org Lett 3(20):3181–3184. doi:10.1021/ol016492h

    CAS  Google Scholar 

  17. Flavell RR, Huse M, Goger M, Trester-Zedlitz M, Kuriyan J, Muir TW (2002) Efficient semisynthesis of a tetraphosphorylated analogue of the type I TGF beta receptor. Org Lett 4(2):165–168. doi:10.1021/ol016859i

    CAS  Google Scholar 

  18. Wehofsky N, Koglin N, Thust S, Bordusa F (2003) Reverse proteolysis promoted by in situ generated peptide ester fragments. J Am Chem Soc 125(20):6126–6133. doi:10.1021/ja0344213

    CAS  Google Scholar 

  19. Mezzato S, Schaffrath M, Unverzagt C (2005) An orthogonal double-linker resin facilitates the efficient solid-phase synthesis of complex-type N-glycopeptide thioesters suitable for native chemical ligation. Angew Chem Int Ed 44(11):1650–1654. doi:10.1002/anie.200461125

    CAS  Google Scholar 

  20. Mende F, Seitz O (2007) Solid-phase synthesis of peptide thioesters with self-purification. Angew Chem Int Ed 46(24):4577–4580. doi:10.1002/anie.200700356

    CAS  Google Scholar 

  21. Alsina J, Yokum TS, Albericio F, Barany G (1999) Backbone amide linker (BAL) strategy for N-alpha-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of unprotected peptide p-nitroanilides and thioesters. J Org Chem 64(24):8761–8769. doi:10.1021/jo990629o

    CAS  Google Scholar 

  22. Brask J, Albericio F, Jensen KJ (2003) Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org Lett 5(16):2951–2953. doi:10.1021/ol0351044

    CAS  Google Scholar 

  23. Botti P, Villain M, Manganiello S, Gaertner H (2004) Native chemical ligation through in situ O to S acyl shift. Org Lett 6(26):4861–4864. doi:10.1021/ol0481028

    CAS  Google Scholar 

  24. Warren JD, Miller JS, Keding SJ, Danishefsky SJ (2004) Toward fully synthetic glycoproteins by ultimately convergent routes: a solution to a long-standing problem. J Am Chem Soc 126(21):6576–6578. doi:10.1021/ja0491836

    CAS  Google Scholar 

  25. Zheng J-S, Cui H-K, Fang G-M, Xi W-X, Liu L (2010) Chemical protein synthesis by kinetically controlled ligation of peptide O-esters. Chem Biochem 11(4):511–515

    CAS  Google Scholar 

  26. Zheng J-S, Xi W-X, Wang F-L, Li J, Guo Q-X (2011) Fmoc-SPPS chemistry compatible approach for the generation of (glyco)peptide aryl thioesters. Tetrahedron Lett 52(21):2655–2660. doi:10.1016/j.tetlet.2011.03.064

    CAS  Google Scholar 

  27. Liu F, Mayer JP (2013) An Fmoc compatible, O to S shift-mediated procedure for the preparation of C-terminal thioester peptides. J Org Chem 78(19):9848–9856. doi:10.1021/jo4015112

    CAS  Google Scholar 

  28. Camarero JA, Hackel BJ, de Yoreo JJ, Mitchell AR (2004) Fmoc-based synthesis of peptide alpha-thioesters using an aryl hydrazine support. J Org Chem 69(12):4145–4151. doi:10.1021/jo040140h

    CAS  Google Scholar 

  29. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed 47(36):6851–6855. doi:10.1002/anie.200705471

    CAS  Google Scholar 

  30. Raz R, Rademann J (2011) Fmoc-based synthesis of peptide thioesters for native chemical ligation employing a tert-butyl thiol linker. Org Lett 13(7):1606–1609. doi:10.1021/ol1029723

    CAS  Google Scholar 

  31. Sharma I, Crich D (2011) Direct Fmoc-chemistry-based solid-phase synthesis of peptidyl thioesters. J Org Chem 76(16):6518–6524. doi:10.1021/jo200497j

    CAS  Google Scholar 

  32. Mahto SK, Howard CJ, Shimko JC, Ottesen JJ (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. Chem Biochem 12(16):2488–2494. doi:10.1002/cbic.201100472

    CAS  Google Scholar 

  33. Okamoto R, Morooka K, Kajihara Y (2012) A synthetic approach to a peptide alpha-thioester from an unprotected peptide through cleavage and activation of a specific peptide bond by N-acetylguanidine. Angew Chem Int Ed 51(1):191–196. doi:10.1002/anie.201105601

    CAS  Google Scholar 

  34. Anraku Y, Mizutani R, Satow Y (2005) Protein splicing: its discovery and structural insight into novel chemical mechanisms. Iubmb Life 57(8):563–574. doi:10.1080/15216540500215499

    CAS  Google Scholar 

  35. Camarero JA (2008) Recent developments in the site-specific immobilization of proteins onto solid supports. Peptide Sci 90(3):450–458. doi:10.1002/bip.20803

    CAS  Google Scholar 

  36. Flavell RR, Muir TW (2008) Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc Chem Res 42(1):107–116. doi:10.1021/ar800129c

    Google Scholar 

  37. Chattopadhaya S, Abu-Bakar FB, Yao SQ (2009) Use of intein-mediated protein ligation strategies for the fabrication of functional protein arrays. Methods in Enzymol Non-natural Amino Acids 462:195. doi:10.1016/S0076-6879(09)62010-3

    CAS  Google Scholar 

  38. Vila-Perello M, Muir TW (2010) Biological applications of protein splicing. Cell 143(2):191–200. doi:10.1016/j.cell.2010.09.031

    CAS  Google Scholar 

  39. Binschik J, Mootz HD (2013) Chemical bypass of intein-catalyzed N–S acyl shift in protein splicing. Angew Chem Int Ed 52(15):4260–4264. doi:10.1002/anie.201208863

    CAS  Google Scholar 

  40. Kawakami T, Sumida M, Nakamura K, Vorherr T, Aimoto S (2005) Peptide thioester preparation based on an N–S acyl shift reaction mediated by a thiol ligation auxiliary. Tetrahedron Lett 46(50):8805–8807. doi:10.1016/j.tetlet.2005.09.184

    CAS  Google Scholar 

  41. Ollivier N, Behr JB, El-Mahdi O, Blanpain A, Melnyk O (2005) Fmoc solid-phase synthesis of peptide thioesters using an intramolecular N, S-acyl shift. Org Lett 7(13):2647–2650. doi:10.1021/ol050776a

    CAS  Google Scholar 

  42. Ohta Y, Itoh S, Shigenaga A, Shintaku S, Fujii N, Otaka A (2006) Cysteine-derived S-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters. Org Lett 8(3):467–470. doi:10.1021/ol052755m

    CAS  Google Scholar 

  43. Nagaike F, Onuma Y, Kanazawa C, Hojo H, Ueki A, Nakahara Y, Nakahara Y (2006) Efficient microwave-assisted tandem N- to S-acyl transfer and thioester exchange for the preparation of a glycosylated peptide thioester. Org Lett 8(20):4465–4468. doi:10.1021/ol0616034

    CAS  Google Scholar 

  44. Nakamura KI, Sumida M, Kawakami T, Vorherr T, Aimoto S (2006) Generation of an S-peptide via an N–S acyl shift reaction in a TFA solution. Bull Chem Soc Jpn 79(11):1773–1780. doi:10.1246/bcsj.79.1773

    CAS  Google Scholar 

  45. Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y (2007) N-Alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett 48(1):25–28. doi:10.1016/j.tetlet.2006.11.034

    CAS  Google Scholar 

  46. Kawakami T, Aimoto S (2007) Sequential peptide ligation by using a controlled cysteinyl prolyl ester (CPE) autoactivating unit. Tetrahedron Lett 48(11):1903–1905. doi:10.1016/j.tetlet.2007.01.086

    CAS  Google Scholar 

  47. Ki N, Mori H, Kawakami T, Hojo H, Nakahara Y, Aimoto S (2007) Peptide thioester synthesis via an auxiliary-mediated N–S acyl shift reaction in solution. Int J Pept Res Ther 13(1–2):191–202. doi:10.1007/s10989-006-9065-9

    Google Scholar 

  48. Hojo H, Murasawa Y, Katayama H, Ohira T, Nakaharaa Y, Nakahara Y (2008) Application of a novel thioesterification reaction to the synthesis of chemokine CCL27 by the modified thioester method. Org Biomol Chem 6(10):1808–1813. doi:10.1039/b800884a

    CAS  Google Scholar 

  49. Ozawa C, Katayama H, Hojo H, Nakahara Y, Nakahara Y (2008) Efficient sequential segment coupling using N-alkylcysteine-assisted thioesterification for glycopeptide dendrimer synthesis. Org Lett 10(16):3531–3533. doi:10.1021/ol801340m

    CAS  Google Scholar 

  50. Kang J, Reynolds NL, Tyrrell C, Dorin JR, Macmillan D (2009) Peptide thioester synthesis through N≥S acyl-transfer: application to the synthesis of a beta-defensin. Org Biomol Chem 7(23):4918–4923. doi:10.1039/b913886b

    CAS  Google Scholar 

  51. Kang J, Richardson JP, Macmillan D (2009) 3-Mercaptopropionic acid-mediated synthesis of peptide and protein thioesters. Chem Commun 4:407–409. doi:10.1039/b815888f

    Google Scholar 

  52. Kawakami T, Aimoto S (2009) The use of a cysteinyl prolyl ester (CPE) autoactivating unit in peptide ligation reactions. Tetrahedron 65(19):3871–3877. doi:10.1016/j.tet.2009.03.008

    CAS  Google Scholar 

  53. Nakamura KI, Kanao T, Uesugi T, Hara T, Sato T, Kawakami T, Aimoto S (2009) Synthesis of peptide thioesters via an N–S acyl shift reaction under mild acidic conditions on an N-4,5-dimethoxy-2-mercaptobenzyl auxiliary group. J Pept Sci 15(11):731–737. doi:10.1002/psc.1164

    CAS  Google Scholar 

  54. Erlich LA, Kumar KSA, Haj-Yahya M, Dawson PE, Brik A (2010) N-Methylcysteine-mediated total chemical synthesis of ubiquitin thioester. Org Biomol Chem 8(10):2392–2396. doi:10.1039/c000332h

    CAS  Google Scholar 

  55. Katayama H, Hojo H, Shimizu I, Nakahara Y, Nakahara Y (2010) Chemical synthesis of mouse pro-opiomelanocortin(1-74) by azido-protected glycopeptide ligation via the thioester method. Org Biomol Chem 8(8):1966–1972. doi:10.1039/b927270d

    CAS  Google Scholar 

  56. Richardson JP, Chan C-H, Blanc J, Saadi M, Macmillan D (2010) Exploring neoglycoprotein assembly through native chemical ligation using neoglycopeptide thioesters prepared via N - > S acyl transfer. Org Biomol Chem 8(6):1351–1360. doi:10.1039/b920535g

    CAS  Google Scholar 

  57. Eom KD, Tam JP (2011) Acid-catalyzed tandem thiol switch for preparing peptide thioesters from mercaptoethyl esters. Org Lett 13(10):2610–2613. doi:10.1021/ol2007204

    CAS  Google Scholar 

  58. Hojo H, Kobayashi H, Ubagai R, Asahina Y, Nakahara Y, Katayama H, Ito Y, Nakahara Y (2011) Efficient preparation of Fmoc-aminoacyl-N-ethylcysteine unit, a key device for the synthesis of peptide thioesters. Org Biomol Chem 9(19):6807–6813. doi:10.1039/c1ob05831b

    CAS  Google Scholar 

  59. Macmillan D, De Cecco M, Reynolds NL, Santos LFA, Barran PE, Dorin JR (2011) Synthesis of cyclic peptides through an intramolecular amide bond rearrangement. Chem Biochem 12(14):2133–2136. doi:10.1002/cbic.201100364

    CAS  Google Scholar 

  60. Zheng J-S, Chang H-N, Wang F-L, Liu L (2011) Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation. J Am Chem Soc 133(29):11080–11083. doi:10.1021/ja204088a

    CAS  Google Scholar 

  61. Adams AL, Cowper B, Morgan RE, Premdjee B, Caddick S, Macmillan D (2013) Cysteine promoted C-terminal hydrazinolysis of native peptides and proteins. Angew Chem Int Ed 52(49):13062–13066. doi:10.1002/anie.201304997

    CAS  Google Scholar 

  62. Adams AL, Macmillan D (2013) Investigation of peptide thioester formation via N → Se acyl transfer. J Pept Sci 19(2):65–73. doi:10.1002/psc.2469

    CAS  Google Scholar 

  63. Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci USA 101(17):6397–6402. doi:10.1073/pnas.0306616101

    CAS  Google Scholar 

  64. Tsuda S, Shigenaga A, Bando K, Otaka A (2009) N - > S acyl-transfer-mediated synthesis of peptide thioesters using anilide derivatives. Org Lett 11(4):823–826. doi:10.1021/ol8028093

    CAS  Google Scholar 

  65. Sakamoto K, Sato K, Shigenaga A, Tsuji K, Tsuda S, Hibino H, Nishiuchi Y, Otaka A (2012) Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation. J Org Chem 77(16):6948–6958. doi:10.1021/jo3011107

    CAS  Google Scholar 

  66. Hibino H, Nishiuchi Y (2011) 4-Methoxybenzyloxymethyl group as an Nπ-protecting group for histidine to eliminate side-chain-induced racemization in the Fmoc strategy. Tetrahedron Lett 52(38):4947–4949. doi:10.1016/j.tetlet.2011.07.065

    CAS  Google Scholar 

  67. Villain M, Vizzavona J, Rose K (2001) Covalent capture: a new tool for the purification of synthetic and recombinant polypeptides. Chem Biol 8(7):673–679. doi:10.1016/s1074-5521(01)00044-8

    CAS  Google Scholar 

  68. Bang D, Kent SBH (2004) A one-pot total synthesis of crambin. Angew Chem Int Ed 43(19):2534–2538. doi:10.1002/anie.200353540

    CAS  Google Scholar 

  69. Ueda S, Fujita M, Tamamura H, Fujii N, Otaka A (2005) Photolabile protection for one-pot sequential native chemical ligation. Chem Biochem 6(11):1983–1986. doi:10.1002/cbic.200500272

    CAS  Google Scholar 

  70. Boerema DJ, Tereshko VA, Kent SBH (2008) Total synthesis by modern chemical ligation methods and high resolution (1.1 Å) X-ray structure of ribonuclease A. Peptide Sci 90(3):278–286. doi:10.1002/bip.20800

    CAS  Google Scholar 

  71. Shigenaga A, Sumikawa Y, Tsuda S, Sato K, Otaka A (2010) Sequential native chemical ligation utilizing peptide thioacids derived from newly developed Fmoc-based synthetic method. Tetrahedron 66(18):3290–3296. doi:10.1016/j.tet.2010.03.016

    CAS  Google Scholar 

  72. Tsuji K, Shigenaga A, Sumikawa Y, Tanegashima K, Sato K, Aihara K, Hara T, Otaka A (2011) Application of N-C- or C-N- directed sequential native chemical ligation to the preparation of CXCL14 analogs and their biological evaluation. Bioorg Med Chem 19(13):4014–4020. doi:10.1016/j.bmc.2011.05.018

    CAS  Google Scholar 

  73. Bang D, Pentelute BL, Kent SBH (2006) Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew Chem Int Ed 45(24):3985–3988. doi:10.1002/anie.200600702

    CAS  Google Scholar 

  74. Durek T, Torbeev VY, Kent SBH (2007) Convergent chemical synthesis and high-resolution X-ray structure of human lysozyme. Proc Natl Acad Sci USA 104(12):4846–4851. doi:10.1073/pnas.0610630104

    CAS  Google Scholar 

  75. Torbeev VY, Kent SBH (2007) Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV-1 protease enzyme molecule. Angew Chem Int Ed 46(10):1667–1670. doi:10.1002/anie.200604087

    CAS  Google Scholar 

  76. Sato K, Shigenaga A, Tsuji K, Tsuda S, Sumikawa Y, Sakamoto K, Otaka A (2011) N-Sulfanylethylanilide peptide as a crypto-thioester peptide. Chem Biochem 12(12):1840–1844. doi:10.1002/cbic.201100241

    CAS  Google Scholar 

  77. Otaka A, Sato K, Ding H, Shigenaga A (2012) One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide. Chem Rec 12(5):479–490. doi:10.1002/tcr.201200007

    CAS  Google Scholar 

  78. Bang D, Lee J, Kwon Y, Pentelute BL (2011) Use of model peptide reactions for the characterization of kinetically controlled ligation. Bioconjugate Chem 22(8):1645–1649. doi:10.1021/Bc2002242

    Google Scholar 

  79. Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128(20):6640–6646. doi:10.1021/ja058344i

    CAS  Google Scholar 

  80. Ding H, Shigenaga A, Sato K, Morishita K, Otaka A (2011) Dual kinetically controlled native chemical ligation using a combination of sulfanylproline and sulfanylethylanilide peptide. Org Lett 13(20):5588–5591. doi:10.1021/ol202316v

    CAS  Google Scholar 

  81. Shang S, Tan Z, Dong S, Danishefsky SJ (2011) Anadvance in proline ligation. J Am Chem Soc 133(28):10784–10786. doi:10.1021/ja204277b

    CAS  Google Scholar 

  82. Townsend SD, Tan Z, Dong S, Shang S, Brailsford JA, Danishefsky SJ (2012) Advances in proline ligation. J Am Chem Soc 134(8):3912–3916. doi:10.1021/ja212182q

    CAS  Google Scholar 

  83. Raibaut L, Seeberger P, Melnyk O (2013) Bis(2-sulfanylethyl)amidopeptides enable native chemical ligation at proline and minimize deletion side-product formation. Org Lett 15(21):5516–5519. doi:10.1021/ol402678a

    CAS  Google Scholar 

  84. Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A (2014) Examination of native chemical ligation using peptidyl prolyl thioesters. Chem Commun 50(1):58–60. doi:10.1039/c3cc47228k

    CAS  Google Scholar 

  85. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46(48):9248–9252. doi:10.1002/anie.200704195

    CAS  Google Scholar 

  86. Fang G-M, Wang J-X, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed 51(41):10347–10350. doi:10.1002/anie.201203843

    CAS  Google Scholar 

  87. Sakamoto I, Tezuka K, Fukae K, Ishii K, Taduru K, Maeda M, Ouchi M, Yoshida K, Nambu Y, Igarashi J, Hayashi N, Tsuji T, Kajihara Y (2012) Chemical synthesis of homogeneous human glycosyl-interferon-beta that exhibits potent antitumor activity in vivo. J Am Chem Soc 134(12):5428–5431. doi:10.1021/ja2109079

    CAS  Google Scholar 

  88. Murakami M, Okamoto R, Izumi M, Kajihara Y (2012) Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed 51(15):3567–3572. doi:10.1002/anie.201109034

    CAS  Google Scholar 

  89. Hojo H, Tanaka H, Hagiwara M, Asahina Y, Ueki A, Katayama H, Nakahara Y, Yoneshige A, Matsuda J, Ito Y, Nakahara Y (2012) Chemoenzymatic synthesis of hydrophobic glycoprotein: synthesis of saposin C carrying complex-type carbohydrate. J Org Chem 77:9437–9446. doi:10.1021/jo3010155

    CAS  Google Scholar 

  90. Boutureira O, Bernardes GJL, Fernandez-Gonzalez M, Anthony DC, Davis BG (2012) Selenenylsulfide-linked homogeneous glycopeptides and glycoproteins: synthesis of human “hepatic Se metabolite A”. Angew Chem Int Ed 51(6):1432–1436. doi:10.1002/anie.201106658

    CAS  Google Scholar 

  91. Ullmann V, Rädisch M, Boos I, Freund J, Pöhner C, Schwarzinger S, Unverzagt C (2012) Convergent solid-phase synthesis of n-glycopeptides facilitated by pseudoprolines at consensus-sequence Ser/Thr residues. Angew Chem Int Ed 51(46):11566–11570. doi:10.1002/anie.201204272

    CAS  Google Scholar 

  92. Siman P, Karthikeyan SV, Nikolov M, Fischle W, Brik A (2013) Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew Chem Int Ed 52(31):8059–8063. doi:10.1002/anie.201303844

    CAS  Google Scholar 

  93. Wilson RM, Dong S, Wang P, Danishefsky SJ (2013) The winding pathway to erythropoietin along the chemistry–biology frontier: a success at last. Angew Chem Int Ed 52(30):7646–7665. doi:10.1002/anie.201301666

    CAS  Google Scholar 

  94. Kawakami T, Akai Y, Fujimoto H, Kita C, Aoki Y, Konishi T, Waseda M, Takemura L, Aimoto S (2013) Sequential peptide ligation by combining the Cys-Pro ester (CPE) and thioester methods and its application to the synthesis of histone H3 containing a trimethyllysine residue. Bull Chem Soc Jpn 86(6):690–697. doi:10.1246/bcsj.20130026

    CAS  Google Scholar 

  95. Deng F-K, Zhang L, Wang Y-T, Schneewind O, Kent SBH (2014) Total chemical synthesis of the enzyme sortase AΔN59 with full catalytic activity. Angew Chem Int Ed 53(18):4662–4666. doi:10.1002/anie.201310900

    CAS  Google Scholar 

  96. Okamoto R, Mandal K, Ling M, Luster AD, Kajihara Y, Kent SBH (2014) Total chemical synthesis and biological activities of glycosylated and non-glycosylated forms of the chemokines CCL1 and Ser-CCL1. Angew Chem Int Ed 53(20):5188–5193. doi:10.1002/anie.201310574

    CAS  Google Scholar 

  97. Sato K, Shigenaga A, Kitakaze K, Sakamoto K, Tsuji D, Itoh K, Otaka A (2013) Chemical synthesis of biologically active monoglycosylated GM2-activator protein analogue using N-sulfanylethylanilide peptide. Angew Chem Int Ed 52(30):7855–7859. doi:10.1002/anie.201303390

    CAS  Google Scholar 

  98. Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Ann Rev Cell Develop Biol 21:81–103. doi:10.1146/annurev.cellbio.21.122303.120013

    CAS  Google Scholar 

  99. Mhidia R, Beziere N, Blanpain A, Pommery N, Melnyk O (2010) Assembly/disassembly of drug conjugates using imide ligation. Org Lett 12(18):3982–3985. doi:10.1021/ol101049g

    CAS  Google Scholar 

  100. Ollivier N, Dheur J, Mhidia R, Blanpain A, Melnyk O (2010) Bis(2-sulfanylethyl)amino native peptide ligation. Org Lett 12(22):5238–5241. doi:10.1021/ol102273u

    CAS  Google Scholar 

  101. Dheur J, Ollivier N, Vallin A, Melnyk O (2011) Synthesis of peptide alkylthioesters using the intramolecular N, S-acyl shift properties of bis(2-sulfanylethyl)amido peptides. J Org Chem 76(9):3194–3202. doi:10.1021/jo200029e

    CAS  Google Scholar 

  102. Ollivier N, Vicogne J, Vallin A, Drobecq H, Desmet R, El Mahdi O, Leclercq B, Goormachtigh G, Fafeur V, Melnyk O (2012) A one-pot three-segment ligation strategy for protein chemical synthesis. Angew Chem Int Ed 51(1):209–213. doi:10.1002/anie.201105837

    CAS  Google Scholar 

  103. Raibaut L, Ollivier N, Melnyk O (2012) Sequential native peptide ligation strategies for total chemical protein synthesis. Chem Soc Rev 41(21):7001–7015. doi:10.1039/c2cs35147a

    CAS  Google Scholar 

  104. Yang R, Hou W, Zhang X, Liu C-F (2012) N-to-C Sequential ligation using peptidyl N, N-bis(2-mercaptoethyl)amide building blocks. Org Lett 14(1):374–377. doi:10.1021/ol2031284

    CAS  Google Scholar 

  105. Taichi M, Hemu X, Qiu Y, Tam JP (2013) A thioethylalkylamido (TEA) thioester surrogate in the synthesis of a cyclic peptide via a tandem acyl shift. Org Lett 15(11):2620–2623. doi:10.1021/ol400801k

    CAS  Google Scholar 

  106. Burlina F, Papageorgiou G, Morris C, White PD, Offer J (2014) In situ thioester formation for protein ligation using α-methylcysteine. Chem Sci 5(2):766–770. doi:10.1039/C3SC52140K

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Otaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otaka, A., Sato, K., Shigenaga, A. (2014). Chemical Synthesis of Proteins Using N-Sulfanylethylanilide Peptides, Based on N−S Acyl Transfer Chemistry. In: Liu, L. (eds) Protein Ligation and Total Synthesis II. Topics in Current Chemistry, vol 363. Springer, Cham. https://doi.org/10.1007/128_2014_586

Download citation

Publish with us

Policies and ethics