Skip to main content

Isolated Neutral Peptides

Part of the Topics in Current Chemistry book series (TOPCURRCHEM,volume 364)

Abstract

This chapter examines the structural characterisation of isolated neutral amino-acids and peptides. After a presentation of the experimental and theoretical state-of-the-art in the field, a review of the major structures and shaping interactions is presented. Special focus is made on conformationally-resolved studies which enable one to go beyond simple structural characterisation; probing flexibility and excited-state photophysics are given as examples of promising future directions.

Keywords

  • Amide
  • Amino-acid
  • Backbone-side chain interactions
  • Conformation-selective IR spectroscopy
  • Gas phase laser spectroscopy
  • Hydrates
  • Secondary structures
  • Supersonic expansion

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/128_2014_580
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19204-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

Ac:

Acetyl

Aib:

Aminoisobutyric acid

BB:

Backbone

Bn:

Benzyl

CI:

Conical intersection

CT:

Charge transfer

DFT:

Density functional theory

FC:

Franck–Condon

FEL:

Free electron laser

FTIR:

Fourier transform infrared

IR:

Infrared

LE:

Locally excited

Me:

Methyl

NCI:

Non-covalent interactions

OPO:

Optical parametric oscillator

PES:

Potential energy surface

SC:

Side-chain

SEP:

Stimulated emission pumping

UV:

Ultraviolet

VUV:

Vacuum ultraviolet

Z:

Benzyloxycarbonyl

References

  1. Tzeng SR, Kalodimos CG (2012) Protein activity regulation by conformational entropy. Nature 488:236

    CAS  Google Scholar 

  2. Perczel A, Angyán JG, Kajtar M, Viviani W, Rivail JL, Marcoccia JF, Csizmadia IG (1991) Peptide models. 1. Topology of selected peptide conformational potential-energy surfaces (glycine and alanine derivatives). J Am Chem Soc 113:6256

    CAS  Google Scholar 

  3. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W.H. Freeman, New York

    Google Scholar 

  4. Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57

    CAS  Google Scholar 

  5. Shea JE, Brooks CL (2001) From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem 52:499

    CAS  Google Scholar 

  6. Chen YW, Ding F, Nie HF, Serohijos AW, Sharma S, Wilcox KC, Yin SY, Dokholyan NV (2008) Protein folding: then and now. Arch Biochem Biophys 469:4

    CAS  Google Scholar 

  7. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646

    CAS  Google Scholar 

  8. Gordon MS, Slipchenko L, Li H, Jensen JH (2007) The effective fragment potential: a general method for predicting intermolecular interactions. Annu Rep Comp Chem 3:177

    CAS  Google Scholar 

  9. Gresh N (2006) Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. Curr Pharm Design 12:2121

    CAS  Google Scholar 

  10. Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand-macromolecule complexes. A bottom-up strategy. J Chem Theory Comput 3:1960

    Google Scholar 

  11. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198

    Google Scholar 

  12. Zwier TS (2001) Laser spectrosocpy of jet-cooled biomolecules and their water-containing clusters: water bridges and molecular conformation. J Phys Chem A 105:8827

    CAS  Google Scholar 

  13. Weinkauf R, Schermann JP, de Vries MS, Kleinermanns K (2002) Molecular physics of building blocks of life under isolated or defined conditions. Eur Phys J D 20:309

    CAS  Google Scholar 

  14. Robertson EG, Hockridge MR, Jelfs PD, Simons JP (2000) IR-UV ion-dip spectroscopy of N-benzylformamide clusters: stepwise hydration of a model peptide. J Phys Chem A 104:11714

    CAS  Google Scholar 

  15. Robertson EG (2000) IR-UV ion-dip spectroscopy of N-phenyl formamide, and its hydrated clusters. Chem Phys Lett 325:299

    CAS  Google Scholar 

  16. Snoek LC, Robertson EG, Kroemer RT, Simons JP (2000) Conformational landscapes in amino acids: infrared and ultraviolet ion-dip spectroscopy of phenylalanine in the gas phase. Chem Phys Lett 321:49

    CAS  Google Scholar 

  17. Mons M, Dimicoli I, Tardivel B, Piuzzi F, Robertson EG, Simons JP (2001) Energetics of the gas phase hydrates of trans-formanilide: a microscopic approach to the hydration sites of the peptide bond. J Phys Chem A 105:969

    CAS  Google Scholar 

  18. Robertson EG, Hockridge MR, Jelfs PD, Simons JP (2001) IR-UV ion-depletion and fluorescence spectroscopy of 2-phenylacetamide clusters: hydration of a primary amide. Phys Chem Chem Phys 3:786

    CAS  Google Scholar 

  19. Robertson EG, Simons JP (2001) Getting into shape: conformational and supramolecular landscapes in small biomolecules and their hydrated clusters. Phys Chem Chem Phys 3:1

    CAS  Google Scholar 

  20. Snoek LC, Kroemer RT, Hockridge MR, Simons JP (2001) Conformational landscapes of aromatic amino acids in the gas phase: infrared and ultraviolet ion dip spectroscopy of tryptophan. Phys Chem Chem Phys 3:1819

    CAS  Google Scholar 

  21. Alonso JL, López JC (2014) Microwave spectroscopy of biomolecular building blocks. Top Curr Chem. doi:10.1007/128_2014_601

    Google Scholar 

  22. Balabin RM (2010) Conformational equilibrium in glycine: experimental jet-cooled Raman spectrum. J Phys Chem Lett 1:20

    CAS  Google Scholar 

  23. Balabin RM (2010) The identification of the two missing conformers of gas-phase alanine: a jet-cooled Raman spectroscopy study. Phys Chem Chem Phys 12:5980

    CAS  Google Scholar 

  24. Balabin RM (2010) The first step in glycine solvation: the glycine-water complex. J Phys Chem B 114:15075

    CAS  Google Scholar 

  25. Balabin RM (2012) Experimental thermodynamics of free glycine conformations: the first Raman experiment after twenty years of calculations. Phys Chem Chem Phys 14:99

    CAS  Google Scholar 

  26. Linder R, Nispel M, Häber T, Kleinermanns K (2005) Gas-phase FT-IR-spectra of natural amino acids. Chem Phys Lett 409:260

    CAS  Google Scholar 

  27. Albrecht M, Rice CA, Suhm MA (2008) Elementary peptide motifs in the gas phase: FTIR aggregation study of formamide, acetamide, N-methylformamide, and N-methylacetamide. J Phys Chem A 112:7530

    CAS  Google Scholar 

  28. Linder R, Seefeld K, Vavra A, Kleinermanns K (2008) Gas phase infrared spectra of nonaromatic amino acids. Chem Phys Lett 453:1

    CAS  Google Scholar 

  29. Hesse S, Suhm MA (2009) Conformation and aggregation of proline esters and their aromatic homologs: pyramidal vs. planar RR' N-H in hydrogen bonds. Z Phys Chem 223:579

    CAS  Google Scholar 

  30. Otto KE, Hesse S, Wassermann TN, Rice CA, Suhm MA, Stafforstz T, Diederichsen U (2011) Temperature-dependent intensity anomalies in amino acid esters: weak hydrogen bonds in protected glycine, alanine and valine. Phys Chem Chem Phys 13:14119

    CAS  Google Scholar 

  31. Lee JJ, Albrecht M, Rice CA, Suhm MA (2013) Adaptive aggregation of peptide model systems. J Phys Chem A 117:7050

    CAS  Google Scholar 

  32. Hu YJ, Bernstein ER (2009) Vibrational and photoionization spectroscopy of neutral valine clusters. J Phys Chem A 113:8454

    CAS  Google Scholar 

  33. Hu Y, Bernstein ER (2008) Vibrational and photoionization spectroscopy of biomolecules: aliphatic amino acid structures. J Chem Phys 128:164311

    Google Scholar 

  34. Chin W, Piuzzi F, Dimicoli I, Mons M (2006) Probing the competition between secondary structures and local preferences in gas phase isolated peptide backbones. Phys Chem Chem Phys 8:1033

    CAS  Google Scholar 

  35. Zwier TS (2006) Laser probes of conformational isomerization in flexible molecules and complexes. J Phys Chem A 110:4133

    CAS  Google Scholar 

  36. Gerhards M (2006) In: Laskin J, Lifshitz C (eds) Principles of mass spectrometry applied to biomolecules. Wiley, Hoboken, p. 3

    Google Scholar 

  37. de Vries MS, Hobza P (2007) Gas-phase spectroscopy of biomolecular building blocks. Annu Rev Phys Chem 58:585

    Google Scholar 

  38. Schermann JP (2008) Spectroscopy and modelling of biomolecular building blocks. Elsevier, Amsterdam

    Google Scholar 

  39. Simons JP (2009) Good vibrations: probing biomolecular structure and interactions through spectroscopy in the gas phase. Mol Phys 107:2435

    CAS  Google Scholar 

  40. Patrick AL, Polfer NC (2014) Peptide fragmentation products in mass spectrometry probed by infrared spectroscopy. Top Curr Chem. doi:10.1007/128_2014_576

  41. Dunbar RC (2014) Spectroscopy of metal-ion complexes with peptide-related ligands. Top Curr Chem. doi:10.1007/128_2014_578

    Google Scholar 

  42. Filsinger F, Erlekam U, von Helden G, Küpper J, Meijer G (2008) Selector for structural isomers of neutral molecules. Phys Rev Lett 100:133003

    Google Scholar 

  43. Page RH, Shen YR, Lee YT (1988) Infrared–ultraviolet double resonance studies of benzene molecules in a supersonic beam. J Chem Phys 88:5362

    CAS  Google Scholar 

  44. Rijs AM, Oomens J (2014) IR spectroscopic techniques to study isolated biomolecules. Top Curr Chem. doi:10.1007/128_2014_621

    Google Scholar 

  45. Pribble RN, Zwier TS (1994) Size-specific infrared-spectra of benzene-(H2O)n clusters (n = 1 through 7): evidence for noncyclic (H2O)n structures. Science 265:75

    CAS  Google Scholar 

  46. Gerhards M, Unterberg C (2002) Structures of the protected amino acid Ac-Phe-OMe and its dimer: a β-sheet model system in the gas phase. Phys Chem Chem Phys 4:1760

    CAS  Google Scholar 

  47. Dian BC, Longarte A, Zwier TS (2002) Conformational dynamics in a dipeptide after single-mode vibrational excitation. Science 296:2369

    CAS  Google Scholar 

  48. Cable JR, Tubergen MJ, Levy DH (1987) Laser desorption molecular beam spectroscopy: the electronic spectra of tryptophan peptides in the gas phase. J Am Chem Soc 109:6198

    CAS  Google Scholar 

  49. Meijer G, de Vries M, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic-molecules – cooling characteristics and detection sensitivity. Appl Phys B 51:395

    Google Scholar 

  50. Piuzzi F, Dimicoli I, Mons M, Tardivel B, Zhao Q (2000) A simple laser vaporization source for thermally fragile molecules coupled to a supersonic expansion: application to the spectroscopy of tryptophan. Chem Phys Lett 320:282

    CAS  Google Scholar 

  51. Cirtog M, Rijs AM, Loquais Y, Brenner V, Tardivel B, Gloaguen E, Mons M (2012) Far/mid-infrared signatures of solvent solute interactions in a microhydrated model peptide chain. J Phys Chem Lett 3:3307

    CAS  Google Scholar 

  52. Buchanan EG, James WH, Choi SH, Guo L, Gellman SH, Muller CW, Zwier TS (2012) Single-conformation infrared spectra of model peptides in the amide I and amide II regions: experiment-based determination of local mode frequencies and inter-mode coupling. J Chem Phys 137:094301

    Google Scholar 

  53. Biswal HS, Loquais Y, Tardivel B, Gloaguen E, Mons M (2011) Isolated monohydrates of a model peptide chain: effect of a first water molecule on the secondary structure of a capped phenylalanine. J Am Chem Soc 133:3931

    CAS  Google Scholar 

  54. Abo-Riziq A, Crews BO, Callahan MP, Grace L, de Vries MS (2006) Spectroscopy of isolated gramicidin peptides. Angew Chem Int Ed 45:5166

    Google Scholar 

  55. Blom MN, Compagnon I, Polfer NC, von Helden G, Meijer G, Suhai S, Paizs B, Oomens J (2007) Stepwise solvation of an amino acid: the appearance of zwitterionic structures. J Phys Chem A 111:7309

    CAS  Google Scholar 

  56. Inokuchi Y, Kobayashi Y, Ito T, Ebata T (2007) Conformation of L-tyrosine studied by fluorescence-detected UV-UV and IR-UV double-resonance spectroscopy. J Phys Chem A 111:3209

    CAS  Google Scholar 

  57. Snoek LC, Kroemer RT, Simons JP (2002) A spectroscopic and computational exploration of tryptophan-water cluster structures in the gas phase. Phys Chem Chem Phys 4:2130

    CAS  Google Scholar 

  58. Ebata T, Hashimoto T, Ito T, Inokuchi Y, Altunsu F, Brutschy B, Tarakeshwar P (2006) Hydration profiles of aromatic amino acids: conformations and vibrations of L-phenylalanine-(H2O)n clusters. Phys Chem Chem Phys 8:4783

    CAS  Google Scholar 

  59. Cable JR, Tubergen MJ, Levy DH (1988) The electronic-spectra of small peptides in the gas-phase. Faraday Discuss 86:143

    CAS  Google Scholar 

  60. Sipior J, Sulkes M (1988) Spectroscopy of tryptophan derivatives in supersonic expansions – addition of solvent molecules. J Chem Phys 88:6146

    CAS  Google Scholar 

  61. Cable JR, Tubergen MJ, Levy DH (1989) Fluorescence spectroscopy of jet cooled tryptophan peptides. J Am Chem Soc 111:9032

    CAS  Google Scholar 

  62. Martinez SJ III, Alfano JC, Levy DH (1992) The electronic spectroscopy of the amino acids tyrosine and phenylalanine in a supersonic jet. J Mol Spectrosc 156:421

    CAS  Google Scholar 

  63. Dian BC, Longarte A, Mercier S, Evans DA, Wales DJ, Zwier TS (2002) The infrared and ultraviolet spectra of single conformations of methyl-capped dipeptides: N-acetyl tryptophan amide and N-acetyl tryptophan methyl amide. J Chem Phys 117:10688

    CAS  Google Scholar 

  64. Gerhards M, Unterberg C, Gerlach A (2002) Structure of a β-sheet model system in the gas phase: analysis of the C = O stretching vibrations. Phys Chem Chem Phys 4:5563

    CAS  Google Scholar 

  65. Unterberg C, Gerlach A, Schrader T, Gerhards M (2002) Clusters of a protected amino acid with pyrazole derivatives: β-sheet model systems in the gas phase. Eur Phys J D 20:543

    CAS  Google Scholar 

  66. Bakker JM, Aleese LM, Meijer G, von Helden G (2003) Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase. Phys Rev Lett 91:203003

    Google Scholar 

  67. Hünig I, Seefeld KA, Kleinermanns K (2003) REMPI and UV–UV double resonance spectroscopy of tryptophan ethylester and the dipeptides tryptophan-serine, glycine- tryptophan and proline-tryptophan. Chem Phys Lett 369:173

    Google Scholar 

  68. Unterberg C, Gerlach A, Schrader T, Gerhards M (2003) Structure of the protected dipeptide Ac-Val-Phe-OMe in the gas phase: towards a β-sheet model system. J Chem Phys 118:8296

    CAS  Google Scholar 

  69. Çarçabal P, Kroemer RT, Snoek LC, Simons JP, Bakker JM, Compagnon I, Meijer G, von Helden G (2004) Hydrated complexes of tryptophan: ion dip infrared spectroscopy in the “molecular fingerprint” region, 100–2,000 cm−1. Phys Chem Chem Phys 6:4546

    Google Scholar 

  70. Chin W, Mons M, Dognon J-P, Piuzzi F, Tardivel B, Dimicoli I (2004) Competition between local conformational preferences and secondary structures in gas-phase model tripeptides as revealed by laser spectroscopy and theoretical chemistry. Phys Chem Chem Phys 6:2700

    CAS  Google Scholar 

  71. Dian BC, Longarte A, Winter PR, Zwier TS (2004) The dynamics of conformational isomerization in flexible biomolecules. I. Hole-filling spectroscopy of N-acetyl tryptophan methyl amide and N-acetyl tryptophan amide. J Chem Phys 120:133

    CAS  Google Scholar 

  72. Evans DA, Wales DJ, Dian BC, Zwier TS (2004) The dynamics of conformational isomerization in flexible biomolecules. II. Simulating isomerizations in a supersonic free jet with master equation dynamics. J Chem Phys 120:148

    CAS  Google Scholar 

  73. Gerhards M, Unterberg C, Gerlach A, Jansen A (2004) β-Sheet model systems in the gas phase: structures and vibrations of Ac-Phe-NHMe and its dimer (Ac-Phe-NHMe)2. Phys Chem Chem Phys. 6:2682

    Google Scholar 

  74. Hünig I, Kleinermanns K (2004) Conformers of the peptides glycine-tryptophan, tryptophan-glycine and tryptophan-glycine-glycine as revealed by double resonance laser spectroscopy. Phys Chem Chem Phys 6:2650

    Google Scholar 

  75. Lee YH, Jung JW, Kim B, Butz P, Snoek LC, Kroemer RT, Simons JP (2004) Alanyl side chain folding in phenylalanine: conformational assignments through ultraviolet rotational band contour analysis. J Phys Chem A 108:69

    CAS  Google Scholar 

  76. Wiedemann S, Metsala A, Nolting D, Weinkauf R (2004) The dipeptide cyclic(glycyltryptophanyl) in the gas phase: a concerted action of density functional calculations, S0-S1 two-photon ionization, spectral UV/UV hole burning and laser photoelectron spectroscopy. Phys Chem Chem Phys 6:2641

    CAS  Google Scholar 

  77. Abo-Riziq AG, Bushnell JE, Crews B, Callahan MP, Grace L, De Vries MS (2005) Discrimination between diastereoisomeric dipeptides by IR-UV double resonance spectroscopy and ab initio calculations. Int J Quantum Chem 105:437

    CAS  Google Scholar 

  78. Abo-Riziq AG, Crews B, Bushnell JE, Callahan MP, De Vries MS (2005) Conformational analysis of cyclo(Phe-Ser) by UV-UV and IR-UV double resonance spectroscopy and ab initio calculations. Mol Phys 103:1491

    CAS  Google Scholar 

  79. Bakker JM, Plützer C, Hünig I, Häber T, Compagnon I, von Helden G, Meijer G, Kleinermanns K (2005) Folding structures of isolated peptides as revealed by gas-phase mid-infrared spectroscopy. ChemPhysChem 6:120

    CAS  Google Scholar 

  80. Chin W, Compagnon I, Dognon JP, Canuel C, Piuzzi F, Dimicoli I, von Helden G, Meijer G, Mons M (2005) Spectroscopic evidence for gas-phase formation of successive β-turns in a three-residue peptide chain. J Am Chem Soc 127:1388

    CAS  Google Scholar 

  81. Chin W, Dognon JP, Piuzzi F, Tardivel B, Dimicoli I, Mons M (2005) Intrinsic folding of small peptide chains: spectroscopic evidence for the formation of beta-turns in the gas phase. J Am Chem Soc 127:707

    CAS  Google Scholar 

  82. Chin W, Dognon J-P, Canuel C, Piuzzi F, Dimicoli I, Mons M, Compagnon I, von Helden G, Meijer G (2005) Secondary structures of short peptide chains in the gas phase: double resonance spectroscopy of protected dipeptides. J Chem Phys 122:054317

    Google Scholar 

  83. Chin W, Mons M, Dognon J-P, Mirasol R, Chass G, Dimicoli I, Piuzzi F, Butz P, Tardivel B, Compagnon I, von Helden G, Meijer G (2005) The gas-phase dipeptide analogue acetyl-phenylalanyl-amide: a model for the study of side chain/backbone interactions in proteins. J Phys Chem A 109:5281

    CAS  Google Scholar 

  84. Chin W, Piuzzi F, Dognon J-P, Dimicoli I, Mons M (2005) Gas phase models of γ-turns: effects of side-chain/backbone interactions investigated by IR/UV spectroscopy and quantum chemistry. J Chem Phys 123:084301

    Google Scholar 

  85. Chin W, Piuzzi F, Dognon J-P, Dimicoli I, Tardivel B, Mons M (2005) Gas phase formation of a 310-helix in a three-residue peptide chain: role of side chain-backbone interactions as evidenced by IR-UV double resonance experiments. J Am Chem Soc 127:11900

    CAS  Google Scholar 

  86. Chin W, Dognon JP, Piuzzi F, Dimicoli I, Mons M (2005) Secondary structures of Val-Phe and Val-Tyr( Me) peptide chains in the gas phase: effect of the nature of the protecting groups. Mol Phys 103:1579

    CAS  Google Scholar 

  87. Gerlach A, Unterberg C, Fricke H, Gerhards M (2005) Structures of Ac-Trp-OMe and its dimer (Ac-Trp-OMe)2 in the gas phase: influence of a polar group in the side-chain. Mol Phys 103:1521

    CAS  Google Scholar 

  88. Řeha D, Valdés H, Vondrášek J, Hobza P, Abu-Riziq A, Crews B, de Vries MS (2005) Structure and IR spectrum of phenylalanyl-glycyl-glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations. Chem-Eur J 11:6803

    Google Scholar 

  89. Abo-Riziq A, Bushnell JE, Crews B, Callahan M, Grace L, De Vries MS (2006) Gas phase spectroscopy of the pentapeptide FDASV. Chem Phys Lett 431:227

    CAS  Google Scholar 

  90. Fricke H, Gerlach A, Gerhards M (2006) Structure of a β-sheet model system in the gas phase: analysis of the fingerprint region up to 10 μm. Phys Chem Chem Phys 8:1660

    CAS  Google Scholar 

  91. Hashimoto T, Takasu Y, Yamada Y, Ebata T (2006) Anomalous conformer dependent S1 lifetime of L-phenylalanine. Chem Phys Lett 421:227

    CAS  Google Scholar 

  92. Brenner V, Piuzzi F, Dimicoli I, Tardivel B, Mons M (2007) Chirality-controlled formation of β-turn secondary structures in short peptide chains: gas-phase experiment versus quantum chemistry. Angew Chem Int Ed 46:2463

    Google Scholar 

  93. Brenner V, Piuzzi F, Dimicoli I, Tardivel B, Mons M (2007) Spectroscopic evidence for the formation of helical structures in gas-phase short peptide chains. J Phys Chem A 111:7347

    CAS  Google Scholar 

  94. Gloaguen E, Pagliarulo F, Brenner V, Chin W, Piuzzi F, Tardivel B, Mons M (2007) Intramolecular recognition in a jet-cooled short peptide chain: γ-turn helicity probed by a neighbouring residue. Phys Chem Chem Phys 9:4491

    CAS  Google Scholar 

  95. Häber T, Seefeld K, Kleinermanns K (2007) Mid- and near-infrared spectra of conformers of H-Pro-Trp-OH. J Phys Chem A 111:3038

    Google Scholar 

  96. Häber T, Seefeld K, Engler G, Grimme S, Kleinermanns K (2008) IR/UV spectra and quantum chemical calculations of Trp-Ser: stacking interactions between backbone and indole side-chain. Phys Chem Chem Phys 10:2844

    Google Scholar 

  97. von Helden G, Compagnon I, Blom MN, Frankowski M, Erlekam U, Oomens J, Brauer B, Gerber RB, Meijer G (2008) Mid-IR spectra of different conformers of phenylalanine in the gas phase. Phys Chem Chem Phys 10:1248

    Google Scholar 

  98. Vaden TD, Gowers SAN, de Boer T, Steill JD, Oomens J, Snoek LC (2008) Conformational preferences of an amyloidogenic peptide: IR spectroscopy of Ac-VQIVYK-NHMe. J Am Chem Soc 130:14640

    CAS  Google Scholar 

  99. Valdés H, Spirko V, Rezac J, Řeha D, Abo-Riziq AG, de Vries MS, Hobza P (2008) Potential-energy and free-energy surfaces of glycyl-phenylalanyl-alanine (GFA) tripeptide: experiment and theory. Chem-Eur J 14:4886

    Google Scholar 

  100. Fricke H, Gerlach A, Unterberg C, Wehner M, Schrader T, Gerhards M (2009) Interactions of small protected peptides with aminopyrazole derivatives: the efficiency of blocking a beta-sheet model in the gas phase. Angew Chem Int Ed 48:900

    Google Scholar 

  101. Vaden TD, Gowers SAN, Snoek LC (2009) Infrared spectroscopy of ‘forbidden’ peptide sequences. Phys Chem Chem Phys 11:5843

    CAS  Google Scholar 

  102. Fricke H, Schwing K, Gerlach A, Unterberg C, Gerhards M (2010) Investigations of the water clusters of the protected amino acid Ac-Phe-OMe by applying IR/UV double resonance spectroscopy: microsolvation of the backbone. Phys Chem Chem Phys 12:3511

    CAS  Google Scholar 

  103. Gloaguen E, Valdes H, Pagliarulo F, Pollet R, Tardivel B, Hobza P, Piuzzi F, Mons M (2010) Experimental and theoretical investigation of the aromatic-aromatic interaction in isolated capped dipeptides. J Phys Chem A 114:2973

    CAS  Google Scholar 

  104. James WH, Baquero EE, Choi SH, Gellman SH, Zwier TS (2010) Laser spectroscopy of conformationally constrained alpha/beta-peptides: Ac-ACPC-Phe-NHMe and Ac-Phe-ACPC-NHMe. J Phys Chem A 114:1581

    CAS  Google Scholar 

  105. Rijs AM, Ohanessian G, Oomens J, Meijer G, von Helden G, Compagnon I (2010) Internal proton transfer leading to stable zwitterionic structures in a neutral isolated peptide. Angew Chem Int Ed 49:2332

    Google Scholar 

  106. Abo-Riziq A, Grace L, Crews B, Callahan MP, van Mourik T, de Vries MS (2011) Conformational structure of tyrosine, tyrosyl-glycine, and tyrosyl-glycyl-glycine by double resonance spectroscopy. J Phys Chem A 115:6077

    CAS  Google Scholar 

  107. Plowright RJ, Gloaguen E, Mons M (2011) Compact folding of isolated four-residue neutral peptide chains: H-bonding patterns and entropy effects. ChemPhysChem 12:1889

    CAS  Google Scholar 

  108. Rijs AM, Kabeláč M, Abo-Riziq A, Hobza P, de Vries MS (2011) Isolated gramicidin peptides probed by IR spectroscopy. ChemPhysChem 12:1816

    CAS  Google Scholar 

  109. Biswal HS, Gloaguen E, Loquais Y, Tardivel B, Mons M (2012) Strength of NH···S hydrogen bonds in methionine residues revealed by gas-phase IR/UV spectroscopy. J Phys Chem Lett 3:755

    CAS  Google Scholar 

  110. Mališ M, Loquais Y, Gloaguen E, Biswal HS, Piuzzi F, Tardivel B, Brenner V, Broquier M, Jouvet C, Mons M, Došlić N, Ljubić I (2012) Unraveling the mechanisms of nonradiative deactivation in model peptides following photoexcitation of a phenylalanine residue. J Am Chem Soc 134:20340

    Google Scholar 

  111. Schwing K, Fricke H, Bartl K, Polkowska J, Schrader T, Gerhards M (2012) Isolated β-turn model systems investigated by combined IR/UV spectroscopy. ChemPhysChem 13:1576

    CAS  Google Scholar 

  112. Gloaguen E, Loquais Y, Thomas JA, Pratt DW, Mons M (2013) Spontaneous formation of hydrophobic domains in isolated peptides. J Phys Chem B 117:4945

    CAS  Google Scholar 

  113. Shimozono Y, Yamada K, S-i I, Tsukiyama K, Fujii M (2013) Revised conformational assignments and conformational evolution of tyrosine by laser desorption supersonic jet laser spectroscopy. Phys Chem Chem Phys 15:5163

    CAS  Google Scholar 

  114. Stanca-Kaposta EC, Çarçabal P, Cocinero EJ, Hurtado P, Simons JP (2013) Carbohydrate-aromatic interactions: vibrational spectroscopy and structural assignment of isolated monosaccharide complexes with p-hydroxy toluene and N-acetyl L-tyrosine Methylamide. J Phys Chem B 117:8135

    CAS  Google Scholar 

  115. Mališ M, Loquais Y, Gloaguen E, Jouvet C, Brenner V, Mons M, Ljubić I, Došlić N (2014) Non-radiative deactivation of electronically excited phenylalanine in model peptides: quenching properties of a primary amide group. Phys Chem Chem Phys 16:2285

    Google Scholar 

  116. Yan B, Jaeqx S, van der Zande WJ, Rijs AM (2014) A conformation-selective IR-UV study of the dipeptides Ac-Phe-Ser-NH2 and Ac-Phe-Cys-NH2: probing the SH∙∙∙O and OH∙∙∙O hydrogen bond interactions. Phys Chem Chem Phys 16:10770

    CAS  Google Scholar 

  117. Jaeqx S, Oomens J, Cimas A, Gaigeot MP, Rijs AM (2014) Gas-phase peptide structures unraveled by far-IR spectroscopy: combining IR-UV ion-dip experiments with Born-Oppenheimer molecular dynamics simulations. Angew Chem Int Ed 53:3663

    Google Scholar 

  118. Alauddin M, Biswal HS, Gloaguen E, Mons M (2014) Intra-residue interactions in proteins: interplay between serine or cysteine side chains and backbone conformations, revealed by laser spectroscopy of isolated model peptides. Phys Chem Chem Phys. doi:10.1039/c4cp04449e

    Google Scholar 

  119. Dian BC, Florio GM, Clarkson JR, Longarte A, Zwier TS (2004) Infrared-induced conformational isomerization and vibrational relaxation dynamics in melatonin and 5-methoxy-N-acetyl tryptophan methyl amide. J Chem Phys 120:9033

    CAS  Google Scholar 

  120. Fricke H, Gerlach A, Unterberg C, Rzepecki P, Schrader T, Gerhards M (2004) Structure of the tripeptide model Ac-Val-Tyr(Me)-NHMe and its cluster with water investigated by IR/UV double resonance spectroscopy. Phys Chem Chem Phys 6:4636

    CAS  Google Scholar 

  121. Fricke H, Schäfer G, Schrader T, Gerhards M (2007) Secondary structure binding motifs of the jet cooled tetrapeptide model Ac-Leu-Val-Tyr(Me)-NHMe. Phys Chem Chem Phys 9:4592

    CAS  Google Scholar 

  122. Baquero EE, James WH, Choi SH, Gellman SH, Zwier TS (2008) Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: β-peptides Ac-β3-hPhe-NHMe and Ac-β3-hTyr-NHMe. J Am Chem Soc 130:4784

    CAS  Google Scholar 

  123. Baquero EE, James WH, Choi SH, Gellman SH, Zwier TS (2008) Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: β-peptides Ac-β3-hPhe-β3-hAla-NHMe and Ac-β3-hAla-β3-hPhe-NHMe. J Am Chem Soc 130:4795

    CAS  Google Scholar 

  124. Fricke H, Funk A, Schrader T, Gerhards M (2008) Investigation of secondary structure elements by IR/UV double resonance spectroscopy: analysis of an isolated β-sheet model system. J Am Chem Soc 130:4692

    CAS  Google Scholar 

  125. James WH, Müller CW, Buchanan EG, Nix MGD, Guo L, Roskop L, Gordon MS, Slipchenko LV, Gellman SH, Zwier TS (2009) Intramolecular amide stacking and its competition with hydrogen bonding in a small foldamer. J Am Chem Soc 131:14243

    CAS  Google Scholar 

  126. Buchanan EG, James WH, Gutberlet A, Dean JC, Guo L, Gellman SH, Zwier TS (2011) Single-conformation spectroscopy and population analysis of model gamma-peptides: new tests of amide stacking. Faraday Discuss 150:209

    CAS  Google Scholar 

  127. James WH, Buchanan EG, Guo L, Geman SH, Zwier TS (2011) Competition between amide stacking and intramolecular H bonds in γ-peptide derivatives: controlling nearest-neighbor preferences. J Phys Chem A 115:11960

    CAS  Google Scholar 

  128. James WH, Buchanan EG, Muller CW, Dean JC, Kosenkov D, Slipchenko LV, Guo L, Reidenbach AG, Gellman SH, Zwier TS (2011) Evolution of amide stacking in larger gamma-peptides: triamide H-bonded cycles. J Phys Chem A 115:13783

    CAS  Google Scholar 

  129. Schwing K, Reyheller C, Schaly A, Kubik S, Gerhards M (2011) Structural analysis of an isolated cyclic tetrapeptide and its monohydrate by combined IR/UV spectroscopy. ChemPhysChem 12:1981

    CAS  Google Scholar 

  130. Shubert VA, Zwier TS (2007) IR-IR-UV hole-burning: conformation specific IR spectra in the face of UV spectral overlap. J Phys Chem A 111:13283

    CAS  Google Scholar 

  131. Compagnon I, Oomens J, Bakker J, Meijer G, von Helden G (2005) Vibrational spectroscopy of a non-aromatic amino acid-based model peptide: identification of the gamma-turn motif of the peptide backbone. Phys Chem Chem Phys 7:13

    CAS  Google Scholar 

  132. Compagnon I, Oomens J, Meijer G, von Helden G (2006) Mid-infrared spectroscopy of protected peptides in the gas phase: a probe of the backbone conformation. J Am Chem Soc 128:3592

    CAS  Google Scholar 

  133. Cocinero EJ, Stanca-Kaposta EC, Gamblin DP, Davis BG, Simons JP (2009) Peptide secondary structures in the gas phase: consensus motif of N-linked glycoproteins. J Am Chem Soc 131:1282

    CAS  Google Scholar 

  134. Gloaguen E, Pollet R, Piuzzi F, Tardivel B, Mons M (2009) Gas phase folding of an (Ala)4 neutral peptide chain: spectroscopic evidence for the formation of a β-hairpin H-bonding pattern. Phys Chem Chem Phys 11:11385

    CAS  Google Scholar 

  135. Gloaguen E, de Courcy B, Piquemal JP, Pilmé J, Parisel O, Pollet R, Biswal HS, Piuzzi F, Tardivel B, Broquier M, Mons M (2010) Gas-phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory. J Am Chem Soc 132:11860

    CAS  Google Scholar 

  136. Zhu H, Blom M, Compagnon I, Rijs AM, Roy S, von Helden G, Schmidt B (2010) Conformations and vibrational spectra of a model tripeptide: change of secondary structure upon micro-solvation. Phys Chem Chem Phys 12:3415

    CAS  Google Scholar 

  137. Miyazaki M, Makara K, Ishiuchi S, Fujii M (2011) Gas-phase infrared spectroscopy of monopeptides from 10 to 3 μm. Chem Lett 40:1157

    CAS  Google Scholar 

  138. Chakraborty S, Yamada K, Ishiuchi S, Fujii M (2012) Gas phase IR spectra of tri-peptide Z-Pro-Leu-Gly: effect of C-terminal amide capping on secondary structure. Chem Phys Lett 531:41

    CAS  Google Scholar 

  139. Dean JC, Buchanan EG, Zwier TS (2012) Mixed 14/16 helices in the gas phase: conformation-specific spectroscopy of Z-(Gly)n, n = 1, 3, 5. J Am Chem Soc 134:17186

    CAS  Google Scholar 

  140. Ishiuchi S, Yamada K, Chakraborty S, Yagi K, Fujii M (2013) Gas-phase spectroscopy and anharmonic vibrational analysis of the 3-residue peptide Z-Pro-Leu-Gly-NH2 by the laser desorption supersonic jet technique. Chem Phys 419:145

    CAS  Google Scholar 

  141. Jaeqx S, Oomens J, Rijs AM (2013) Gas-phase salt bridge interactions between glutamic acid and arginine. Phys Chem Chem Phys 15:16341

    CAS  Google Scholar 

  142. Jaeqx S, Du WN, Meijer EJ, Oomens J, Rijs AM (2013) Conformational study of Z-Glu-OH and Z-Arg-OH: dispersion interactions versus conventional hydrogen bonding. J Phys Chem A 117:1216

    CAS  Google Scholar 

  143. Kusaka R, Zhang D, Walsh PS, Gord JR, Fisher BF, Gellman SH, Zwier TS (2013) Role of ring-constrained γ-amino acid residues in α/γ-peptide folding: single-conformation UV and IR spectroscopy. J Phys Chem A 117:10847

    CAS  Google Scholar 

  144. Walsh PS, Kusaka R, Buchanan EG, James WH III, Fisher BF, Gellman SH, Zwier TS (2013) Cyclic constraints on conformational flexibility in γ-peptides: conformation specific IR and UV spectroscopy. J Phys Chem A 117:12350

    CAS  Google Scholar 

  145. Gord JR, Walsh PS, Fisher BF, Gellman SH, Zwier TS (2014) Mimicking the first turn of an α-helix with an unnatural backbone: conformation-specific IR and UV spectroscopy of cyclically constrained β/γ-peptides. J Phys Chem B 118:8246

    CAS  Google Scholar 

  146. Gloaguen E, Brenner V, Alauddin M, Tardivel B, Mons M, Zehnacker-Rentien A, Declerck V, Aitken DJ (2014) Direct spectroscopic evidence of hyperconjugation unveils the conformational landscape of hydrazides. Angew Ch Int Ed. doi:10.1002/anie.201407801

    Google Scholar 

  147. Buchanan EG, Sibert EL, Zwier TS (2013) Ground state conformational preferences and CH stretch-bend coupling in a model alkoxy chain: 1,2-diphenoxyethane. J Phys Chem A 117:2800

    CAS  Google Scholar 

  148. Buchanan EG, Dean JC, Zwier TS, Sibert EL (2013) Towards a first-principles model of Fermi resonance in the alkyl CH stretch region: application to 1,2-diphenylethane and 2,2,2-paracyclophane. J Chem Phys 138:064308

    Google Scholar 

  149. Dian BC, Clarkson JR, Zwier TS (2004) Direct measurement of energy thresholds to conformational isomerization in tryptamine. Science 303:1169

    CAS  Google Scholar 

  150. Wilson KR, Belau L, Nicolas C, Jimenez-Cruz M, Leone SR, Ahmed M (2006) Direct determination of the ionization energy of histidine with VUV synchrotron radiation. Int J Mass Spectrom 249:155

    Google Scholar 

  151. Wilson KR, Jimenez-Cruz M, Nicolas C, Belau L, Leone SR, Ahmed M (2006) Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and, beta-carotene. J Phys Chem A 110:2106

    CAS  Google Scholar 

  152. Lee KT, Sung J, Lee KJ, Park YD, Kim SK (2002) Conformation-dependent ionization energies of L-phenylalanine. Angew Chem Int Ed 41:4114

    Google Scholar 

  153. Jochims HW, Schwell M, Chotin JL, Clemino M, Dulieu F, Baumgärtel H, Leach S (2004) Photoion mass spectrometry of five amino acids in the 6–22 eV photon energy range. Chem Phys 298:279

    CAS  Google Scholar 

  154. Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince KC, Carravetta V (2007) Investigation of the amino acids glycine, proline, and methionine by photoemission spectroscopy. J Phys Chem A 111:10998

    CAS  Google Scholar 

  155. Tia M, de Miranda BC, Daly S, Gaie-Levrel F, Garcia GA, Powis I, Nahon L (2013) Chiral asymmetry in the photoionization of gas-phase amino-acid alanine at Lyman-alpha radiation wavelength. J Phys Chem Lett 4:2698

    CAS  Google Scholar 

  156. Powis I, Rennie EE, Hergenhahn U, Kugeler O, Bussy-Socrate R (2003) Investigation of the gas-phase amino acid alanine by synchrotron radiation photoelectron spectroscopy. J Phys Chem A 107:25

    CAS  Google Scholar 

  157. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701

    Google Scholar 

  158. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668

    CAS  Google Scholar 

  159. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545

    CAS  Google Scholar 

  160. Valdés H, Řeha D, Hobza P (2006) Structure of isolated tryptophyl-glycine dipeptide and tryptophyl-glycyl-glycine tripeptide: ab initio SCC-DFTB-D molecular dynamics simulations and high-level correlated ab initio quantum chemical calculations. J Phys Chem B 110:6385

    Google Scholar 

  161. Toroz D, Van Mourik T (2006) The structure of the gas-phase tyrosine-glycine dipeptide. Mol Phys 104:559

    CAS  Google Scholar 

  162. Černý J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9:5291

    Google Scholar 

  163. Holroyd LF, van Mourik T (2007) Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers. Chem Phys Lett 442:42

    CAS  Google Scholar 

  164. Shields AE, van Mourik T (2007) Comparison of ab initio and DFT electronic structure methods for peptides containing an aromatic ring: effect of dispersion and BSSE. J Phys Chem A 111:13272

    CAS  Google Scholar 

  165. van Mourik T (2008) Assessment of density functionals for intramolecular dispersion-rich interactions. J Chem Theory Comput 4:1610

    Google Scholar 

  166. Toroz D, van Mourik T (2010) Structure of the gas-phase glycine tripeptide. Phys Chem Chem Phys 12:3463

    CAS  Google Scholar 

  167. Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3:289

    CAS  Google Scholar 

  168. Zhao Y, Truhlar DG (2006) Assessment of model chemistries for noncovalent interactions. J Chem Theory Comput 2:1009

    CAS  Google Scholar 

  169. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157

    CAS  Google Scholar 

  170. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463

    CAS  Google Scholar 

  171. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787

    CAS  Google Scholar 

  172. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Google Scholar 

  173. Mackie ID, DiLabio GA (2008) Interactions in large, polyaromatic hydrocarbon dimers: application of density functional theory with dispersion corrections. J Phys Chem A 112:10968

    CAS  Google Scholar 

  174. Lill SON (2010) Evaluation of dispersion-corrected density functional theory (B3LYP-DCP) for compounds of biochemical interest. J Mol Graph 29:178

    Google Scholar 

  175. Bouteiller Y, Poully JC, Desfrançois C, Grégoire G (2009) Evaluation of MP2, DFT, and DFT-D methods for the prediction of infrared spectra of peptides. J Phys Chem A 113:6301

    CAS  Google Scholar 

  176. Bouteiller Y, Gillet JC, Grégoire G, Schermann JP (2008) Transferable specific scaling factors for interpretation of infrared spectra of biomolecules from density functional theory. J Phys Chem A 112:11656

    CAS  Google Scholar 

  177. Došlić N, Kovačević G, Ljubić I (2007) Signature of the conformational preferences of small peptides: a theoretical investigation. J Phys Chem A 111:8650

    Google Scholar 

  178. Neff M, Rauhut G (2009) Toward large scale vibrational configuration interaction calculations. J Chem Phys 131:124129

    Google Scholar 

  179. Scribano Y, Lauvergnat DM, Benoit DM (2010) Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis. J Chem Phys 133:094103

    Google Scholar 

  180. Clarkson JR, Baquero E, Shubert VA, Myshakin EM, Jordan KD, Zwier TS (2005) Laser-initiated shuttling of a water molecule between H-bonding sites. Science 307:1443

    CAS  Google Scholar 

  181. LeGreve TA, Clarkson JR, Zwier TS (2008) Experimental determination of conformational isomerization energy thresholds in serotonin. J Phys Chem A 112:3911

    CAS  Google Scholar 

  182. Sohn WY, Cho K-J, Lee SY, Kang SS, Park YD, Kang H (2012) Solvent-assisted conformational isomerization (SACI) of meta-substituted phenols: tuning relative stability, isomerization barrier, and IVR rate. Chem Phys Lett 525–26:37

    Google Scholar 

  183. Sohn WY, Kim M, Kim S-S, Park YD, Kang H (2011) Solvent-assisted conformational isomerization and the conformationally-pure REMPI spectrum of 3-aminophenol. Phys Chem Chem Phys 13:7006

    Google Scholar 

  184. Miller RD (1988) In: Scoles G (ed) Atomic and molecular beam methods, vol 1. Oxford University Press, New York, p 14

    Google Scholar 

  185. Handschuh M, Nettesheim S, Zenobi R (1999) Is infrared laser-induced desorption a thermal process? The case of aniline. J Phys Chem B 103:1719

    CAS  Google Scholar 

  186. Godfrey PD, Brown RD (1998) Proportions of species observed in jet spectroscopy vibrational energy effects: histamine tautomers and conformers. J Am Chem Soc 120:10724

    CAS  Google Scholar 

  187. Shubert VA, Baquero EE, Clarkson JR, James WH, Turk JA, Hare AA, Worrel K, Lipton MA, Schofield DP, Jordan KD, Zwier TS (2007) Entropy-driven population distributions in a prototypical molecule with two flexible side chains: O-(2-acetamidoethyl)-N-acetyltyramine. J Chem Phys 127:234315

    Google Scholar 

  188. Cabezas C, Varela M, Cortijo V, Jiménez AI, Peña I, Daly AM, López JC, Cativiela C, Alonso JL (2013) The alanine model dipeptide Ac-Ala-NH2 exists as a mixture of C7 eq and C5 conformers. Phys Chem Chem Phys 15:2580

    CAS  Google Scholar 

  189. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110:10921

    CAS  Google Scholar 

  190. Mons M, Dimicoli I, Piuzzi F (2002) Gas phase hydrogen-bonded complexes of aromatic molecules: photoionization and energetics. Int Rev Phys Chem 21:101

    CAS  Google Scholar 

  191. Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks CL, Pople JA (1991) Theoretical-study of blocked glycine and alanine peptide analogs. J Am Chem Soc 113:5989

    CAS  Google Scholar 

  192. Vass E, Hollósi M, Besson F, Buchet R (2003) Vibrational spectroscopic detection of beta- and gamma-turns in synthetic and natural peptides and proteins. Chem Rev 103:1917

    Google Scholar 

  193. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498

    CAS  Google Scholar 

  194. Chaudret R, de Courcy B, Contreras-García J, Gloaguen E, Zehnacker-Rentien A, Mons M, Piquemal J-P (2014) Unraveling non covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy. Phys Chem Chem Phys 16:2285

    Google Scholar 

  195. Zhou P, Tian F, Lv F, Shang Z (2009) Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct Funct Bioinf 76:151

    CAS  Google Scholar 

  196. Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) Theoretical study of aqueous N-acetyl-L-alanine N′-methylamide: structures and Raman, VCD, and ROA spectra. J Phys Chem B 102:2587

    CAS  Google Scholar 

  197. Cocinero EJ, Çarçabal P, Vaden TD, Davis BG, Simons JP (2011) Exploring carbohydrate-peptide interactions in the gas phase: structure and selectivity in complexes of pyranosides with N-acetylphenylalanine methylamide. J Am Chem Soc 133:4548

    CAS  Google Scholar 

  198. Cocinero EJ, Çarçabal P, Vaden TD, Simons JP, Davis BG (2011) Sensing the anomeric effect in a solvent-free environment. Nature 469:76

    CAS  Google Scholar 

  199. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103:321

    CAS  Google Scholar 

  200. Loquais Y, Gloaguen E, Habka S, Vaquero-Vara V, Brenner V, Tardivel B, Mons M (2014) Secondary structures in phe-containing isolated dipeptide chains: laser spectroscopy vs quantum chemistry. J Phys Chem A. doi:10.1021/jp509494c

    Google Scholar 

  201. Christiansen O, Koch H, Jorgensen P (1995) The 2nd-order approximate coupled-cluster singles and doubles model CC2. Chem Phys Lett 243:409

    CAS  Google Scholar 

  202. Shemesh D, Domcke W (2011) Effect of the chirality of residues and gamma-turns on the electronic excitation spectra, excited-state reaction paths and conical intersections of capped phenylalanine-alanine dipeptides. ChemPhysChem 12:1833

    CAS  Google Scholar 

  203. Shemesh D, Hättig C, Domcke W (2009) Photophysics of the Trp-Gly dipeptide: role of electron and proton transfer processes for efficient excited-state deactivation. Chem Phys Lett 482:38

    CAS  Google Scholar 

  204. Shemesh D, Sobolewski AL, Domcke W (2009) Efficient excited-state deactivation of the Gly-Phe-Ala tripeptide via an electron-driven proton-transfer process. J Am Chem Soc 131:1374

    CAS  Google Scholar 

  205. Shemesh D, Sobolewski AL, Domcke W (2010) Role of excited-state hydrogen detachment and hydrogen-transfer processes for the excited-state deactivation of an aromatic dipeptide: N-acetyl tryptophan methyl amide. Phys Chem Chem Phys 12:4899

    CAS  Google Scholar 

  206. Sobolewski AL, Domcke W (2006) Relevance of electron-driven proton-transfer processes for the photostability of proteins. ChemPhysChem 7:561

    CAS  Google Scholar 

  207. Sobolewski AL, Shemesh D, Domcke W (2009) Computational studies of the photophysics of neutral and zwitterionic amino acids in an aqueous environment: tyrosine-(H2O)2 and tryptophan-(H2O)2 clusters. J Phys Chem A 113:542

    CAS  Google Scholar 

  208. Clavaguéra C, Piuzzi F, Dognon JP (2009) Electronic spectrum of tryptophan-phenylalanine. A correlated ab initio and time-dependent density functional theory study. J Phys Chem B 113:16443

    Google Scholar 

  209. Pollet R, Brenner V (2008) Assessment of time-dependent density functional theory for predicting excitation energies of bichromophoric peptides: case of tryptophan-phenylalanine. Theor Chem Acc 121:307

    CAS  Google Scholar 

  210. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: a new paradigm for nonradiative decay in aromatic biomolecules. Phys Chem Chem Phys 4:1093

    CAS  Google Scholar 

  211. Tubergen MJ, Cable JR, Levy DH (1990) Substituent effects on the electronic spectroscopy of tryptophan derivatives in jet expansions. J Chem Phys 92:51

    CAS  Google Scholar 

  212. Ovejas V, Fernández-Fernández M, Montero R, Castaño F, Longarte A (2013) Ultrafast nonradiative relaxation channels of tryptophan. J Phys Chem Lett 4:1928

    CAS  Google Scholar 

  213. Nosenko Y, Kunitski M, Riehn C, Harbach PHP, Dreuw A, Brutschy B (2010) The structure of adenine monohydrates studied by femtosecond multiphoton ionization detected IR spectroscopy and quantum chemical calculations. Phys Chem Chem Phys 12:863

    CAS  Google Scholar 

  214. León I, Montero R, Castaño F, Longarte A, Fernández JA (2012) Mass-resolved infrared spectroscopy of complexes without chromophore by nonresonant femtosecond ionization detection. J Phys Chem A 116:6798

    Google Scholar 

  215. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128:7320

    CAS  Google Scholar 

  216. Seurre N, Le Barbu-Debus K, Lahmani F, Zehnacker-Rentien A, Sepiol J (2003) Electronic and vibrational spectroscopy of jet-cooled m-cyanophenol and its dimer: laser-induced fluorescence and fluorescence-dip IR spectra in the S0 and S1 states. Chem Phys 295:21

    CAS  Google Scholar 

  217. Dian BC, Longarte A, Zwier TS (2003) Hydride stretch infrared spectra in the excited electronic states of indole and its derivatives: direct evidence for the 1πσ* state. J Chem Phys 118:2696

    CAS  Google Scholar 

  218. Bartl K, Funk A, Gerhards M (2008) IR/UV spectroscopy on jet cooled 3-hydroxyflavone (H2O)n (n = 1,2) clusters along proton transfer coordinates in the electronic ground and excited states. J Chem Phys 129:234306

    CAS  Google Scholar 

  219. Weiler M, Bartl K, Gerhards M (2012) Infrared/ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states. J Chem Phys 136:114202

    CAS  Google Scholar 

  220. Asplund MC, Zanni MT, Hochstrasser RM (2000) Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc Natl Acad Sci U S A 97:8219

    CAS  Google Scholar 

  221. Xie YM, Schaefer HF, Silaghi-Dumitrescu R, Peng B, Li QS, Stearns JA, Rizzo TR (2012) Conformational preferences of gas-phase helices: experiment and theory struggle to agree: the seven-residue peptide Ac-Phe-(Ala)5-Lys-H+. Chem Eur J 18:12941

    Google Scholar 

  222. Stearns JA, Seaiby C, Boyarkin OV, Rizzo TR (2009) Spectroscopy and conformational preferences of gas-phase helices. Phys Chem Chem Phys 11:125

    CAS  Google Scholar 

  223. Altmayer-Henzien A, Declerck V, Merlet D, Baltaze JP, Farjon J, Guillot R, Aitken DJ (2013) Solution state conformational preferences of dipeptides derived from n-aminoazetidinecarboxylic acid: an assessment of the hydrazino turn. J Org Chem 78:6031

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Gloaguen or Michel Mons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gloaguen, E., Mons, M. (2014). Isolated Neutral Peptides. In: Rijs, A., Oomens, J. (eds) Gas-Phase IR Spectroscopy and Structure of Biological Molecules. Topics in Current Chemistry, vol 364. Springer, Cham. https://doi.org/10.1007/128_2014_580

Download citation