Skip to main content

Excited States in DNA Strands Investigated by Ultrafast Laser Spectroscopy

  • Chapter
  • First Online:
Photoinduced Phenomena in Nucleic Acids II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 356))

Abstract

Ultrafast laser experiments on carefully selected DNA model compounds probe the effects of base stacking, base pairing, and structural disorder on excited electronic states formed by UV absorption in single and double DNA strands. Direct π-orbital overlap between two stacked bases in a dinucleotide or in a longer single strand creates new excited states that decay orders of magnitude more slowly than the generally subpicosecond excited states of monomeric bases. Half or more of all excited states in single strands decay in this manner. Ultrafast mid-IR transient absorption experiments reveal that the long-lived excited states in a number of model compounds are charge transfer states formed by interbase electron transfer, which subsequently decay by charge recombination. The lifetimes of the charge transfer states are surprisingly independent of how the stacked bases are oriented, but disruption of π-stacking, either by elevating temperature or by adding a denaturing co-solvent, completely eliminates this decay channel. Time-resolved emission measurements support the conclusion that these states are populated very rapidly from initial excitons. These experiments also reveal the existence of populations of emissive excited states that decay on the nanosecond time scale. The quantum yield of these states is very small for UVB/UVC excitation, but increases at UVA wavelengths. In double strands, hydrogen bonding between bases perturbs, but does not quench, the long-lived excited states. Kinetic isotope effects on the excited-state dynamics suggest that intrastrand electron transfer may couple to interstrand proton transfer. By revealing how structure and non-covalent interactions affect excited-state dynamics, on-going experimental and theoretical studies of excited states in DNA strands can advance understanding of fundamental photophysics in other nanoscale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2AP:

2-Aminopurine

8-oxo-dGuo:

8-Oxo-7,8-dihydro-2′-deoxyguanosine

A:

Adenine

AMP:

Adenosine 5′-monophosphate

ATP:

Adenosine 5′-triphosphate

C:

Cytosine

CASPT2:

Complete active space with second-order perturbation theory

CD:

Circular dichroism

CI:

Conical intersection

CPD:

Cyclobutane pyrimidine dimer

CR:

Charge recombination

CT:

Charge transfer

dAMP:

2′-Deoxyadenosine 5′-monophosphate

DFT:

Density functional theory

ECCD:

Exciton-coupled circular dichroism

ESA:

Excited-state absorption

ESPT:

Excited-state proton transfer

ET:

Electron transfer

FC:

Franck–Condon

FTIR:

Fourier-transformed infrared spectroscopy

FU:

Fluorescence upconversion

G:

Guanine

GSB:

Ground-state bleaching

IC:

Internal conversion

IET:

Intermolecular energy transfer

KIE:

Kinetic isotope effect

MCT:

Mercury-cadmium-telluride

O:

8-Oxo-7,8-dihydro-2′-deoxyguanosine (in a DNA sequence)

PCET:

Proton-coupled electron transfer

PMT:

Photomultiplier tube

PT:

Proton transfer

QM/MM:

Quantum mechanical/molecular mechanical

RI-ADC(2):

Algebraic diagrammatic construction to second-order with resolution of the identity

T:

Thymine

TA:

Transient absorption

TCSPC:

Time-correlated single photon counting

TD-DFT:

Time-dependent density functional theory

TRIR:

Time-resolved infrared spectroscopy

U:

Uracil

UV:

Ultraviolet

VC:

Vibrational cooling

VUV:

Vacuum ultraviolet

WC:

Watson–Crick

References

  1. Kohler B (2010) J Phys Chem Lett 1:2047

    CAS  Google Scholar 

  2. Gustavsson T, Improta R, Markovitsi D (2010) J Phys Chem Lett 1:2025

    CAS  Google Scholar 

  3. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Chem Rev 104:1977

    Google Scholar 

  4. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) Annu Rev Phys Chem 60:217

    CAS  Google Scholar 

  5. Kleinermanns K, Nachtigallova D, de Vries MS (2013) Int Rev Phys Chem 32:308

    CAS  Google Scholar 

  6. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B (2008) Proc Natl Acad Sci USA 105:10285

    CAS  Google Scholar 

  7. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE, Swaminathan VN, Carell T, Zinth W, Kohler B (2007) Science 315:625

    CAS  Google Scholar 

  8. Schreier WJ, Kubon J, Regner N, Haiser K, Schrader TE, Zinth W, Clivio P, Gilch P (2009) J Am Chem Soc 131:5038

    CAS  Google Scholar 

  9. Su C, Middleton CT, Kohler B (2012) J Phys Chem B 116:10266

    CAS  Google Scholar 

  10. Ward DC, Reich E, Stryer L (1969) J Biol Chem 244:1228

    CAS  Google Scholar 

  11. Rist MJ, Marino JP (2002) Curr Org Chem 6:775

    CAS  Google Scholar 

  12. Thompson KC, Miyake N (2005) J Phys Chem B 109:6012

    CAS  Google Scholar 

  13. Crespo-Hernández CE, Cohen B, Kohler B (2005) Nature 436:1141

    Google Scholar 

  14. Kang H, Lee KT, Jung B, Ko YJ, Kim SK (2002) J Am Chem Soc 124:12958

    CAS  Google Scholar 

  15. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) J Am Chem Soc 126:2262

    CAS  Google Scholar 

  16. Smith VR, Samoylova E, Ritze HH, Radloff W, Schultz T (2010) Phys Chem Chem Phys 12:9632

    CAS  Google Scholar 

  17. Banyasz A, Vayá I, Changenet-Barret P, Gustavsson T, Douki T, Markovitsi D (2011) J Am Chem Soc 133:5163

    CAS  Google Scholar 

  18. Towrie M, Grills DC, Dyer J, Weinstein JA, Matousek P, Barton R, Bailey PD, Subramaniam N, Kwok WM, Ma CS, Phillips D, Parker AW, George MW (2003) Appl Spectrosc 57:367

    CAS  Google Scholar 

  19. Towrie M, Doorley GW, George MW, Parker AW, Quinn SJ, Kelly JM (2009) Analyst 134:1265

    CAS  Google Scholar 

  20. Oliver TAA, Zhang Y, Ashfold MNR, Bradforth SE (2011) Faraday Discuss 150:439

    CAS  Google Scholar 

  21. Zhang Y, Chen J, Kohler B (2013) J Phys Chem A 117:6771

    CAS  Google Scholar 

  22. Chen J, Thazhathveetil AK, Lewis FD, Kohler B (2013) J Am Chem Soc 135:10290

    CAS  Google Scholar 

  23. Kwok W-M, Ma C, Phillips DL (2006) J Am Chem Soc 128:11894

    CAS  Google Scholar 

  24. Karunakaran V, Kleinermanns K, Improta R, Kovalenko SA (2009) J Am Chem Soc 131:5839

    CAS  Google Scholar 

  25. Pecourt J-ML, Peon J, Kohler B (2000) J Am Chem Soc 122:9348

    CAS  Google Scholar 

  26. Pecourt J-ML, Peon J, Kohler B (2001) J Am Chem Soc 123:10370

    CAS  Google Scholar 

  27. Crespo-Hernández CE, Kohler B (2004) J Phys Chem B 108:11182

    Google Scholar 

  28. Jou F-Y, Freeman GR (1979) J Phys Chem 83:2383

    CAS  Google Scholar 

  29. Hare PM, Crespo-Hernández CE, Kohler B (2007) Proc Natl Acad Sci U S A 104:435

    CAS  Google Scholar 

  30. Middleton CT, Cohen B, Kohler B (2007) J Phys Chem A 111:10460

    CAS  Google Scholar 

  31. Elles CG, Rivera CA, Zhang Y, Pieniazek PA, Bradforth SE (2009) J Chem Phys 130:13

    Google Scholar 

  32. Kovalenko SA, Dobryakov AL, Ruthmann J, Ernsting NP (1999) Phys Rev A 59:2369

    CAS  Google Scholar 

  33. Jailaubekov AE, Bradforth SE (2005) Appl Phys Lett 87

    Google Scholar 

  34. Tauber MJ, Mathies RA, Chen XY, Bradforth SE (2003) Rev Sci Instrum 74:4958

    CAS  Google Scholar 

  35. Zhang Y, Improta R, Kohler B (2014) Phys Chem Chem Phys 16:1487

    CAS  Google Scholar 

  36. Gustavsson T, Sharonov A, Markovitsi D (2002) Chem Phys Lett 351:195

    CAS  Google Scholar 

  37. Peon J, Zewail AH (2001) Chem Phys Lett 348:255

    CAS  Google Scholar 

  38. Gustavsson T, Sharonov A, Onidas D, Markovitsi D (2002) Chem Phys Lett 356:49

    CAS  Google Scholar 

  39. Pancur T, Schwalb NK, Renth F, Temps F (2005) Chem Phys 313:199

    CAS  Google Scholar 

  40. Markovitsi D, Gustavsson T, Talbot F (2007) Photochem Photobiol Sci 6:717

    CAS  Google Scholar 

  41. Markovitsi D, Onidas D, Talbot F, Marguet S, Gustavsson T, Lazzarotto E (2006) J Photochem Photobiol. A 183:1

    CAS  Google Scholar 

  42. Schweizer MP, Broom AD, Ts'o POP, Hollis DP (1968) J Am Chem Soc 90:1042

    CAS  Google Scholar 

  43. Broom AD, Schweizer MP, Ts’o POP (1967) J Am Chem Soc 89:3612

    CAS  Google Scholar 

  44. Valdes-Aguilera O, Neckers DC (1989) Acc Chem Res 22:171

    CAS  Google Scholar 

  45. Bloomfield VA, Crothers DM, Tinoco I Jr (1974) Physical chemistry of nucleic acids. Harper & Row, New York

    Google Scholar 

  46. Gray DM, Ratliff RL, Vaughan MR (1992) Methods Enzymol 211:389

    CAS  Google Scholar 

  47. Woody RW (1995) Biochem Spectroscopy 246:34

    CAS  Google Scholar 

  48. Berova N, Di Bari L, Pescitelli G (2007) Chem Soc Rev 36:914

    CAS  Google Scholar 

  49. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Nucleic Acids Res 37:1713

    CAS  Google Scholar 

  50. Ke C, Humeniuk M, S-Gracz H, Marszalek PE (2007) Phys Rev Lett 99:018302

    Google Scholar 

  51. Seol Y, Skinner GM, Visscher K, Buhot A, Halperin A (2007) Phys Rev Lett 98:158103

    Google Scholar 

  52. Hatters DM, Wilson L, Atcliffe BW, Mulhern TD, Guzzo-Pernell N, Howlett GJ (2001) Biophys J 81:371

    CAS  Google Scholar 

  53. Mills JB, Vacano E, Hagerman PJ (1999) J Mol Biol 285:245

    CAS  Google Scholar 

  54. Banáš P, Mládek A, Otyepka M, Zgarbová M, Jurečka P, Svozil D, Lankaš F, Šponer J (2012) J Chem Theory Comput 8:2448

    Google Scholar 

  55. Chen AA, García AE (2013) Proc Natl Acad Sci U S A 110:16820

    CAS  Google Scholar 

  56. Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu X-J, Neidle S, Shakked Z, Sklenar H, Suzuki M, Tung C-S, Westhof E, Wolberger C, Berman HM (2001) J Mol Biol 313:229

    CAS  Google Scholar 

  57. Rose IA, Hanson KR, Wilkinson KD, Wimmer MJ (1980) Proc Natl Acad Sci U S A 77:2439

    CAS  Google Scholar 

  58. Chen J, Kohler B (2014) J Am Chem Soc 136:6362

    CAS  Google Scholar 

  59. Olaso-González G, Merchán M, Serrano-Andrés L (2009) J Am Chem Soc 131:4368

    Google Scholar 

  60. Hunter RS, van Mourik T (2012) J Comput Chem 33:2161

    CAS  Google Scholar 

  61. Florián J, Šponer J, Warshel A (1999) J Phys Chem B 103:884

    Google Scholar 

  62. Jafilan S, Klein L, Hyun C, Florián J (2012) J Phys Chem B 116:3613

    CAS  Google Scholar 

  63. Šponer J, Leszczyński J, Hobza P (1996) J Phys Chem 100:5590

    Google Scholar 

  64. Šponer J, Šponer JE, Mládek A, Jurečka P, Bánaš P, Otyepka M (2013) Biopolymers 99:978

    Google Scholar 

  65. Ts'o POP, Melvin IS, Olson AC (1963) J Am Chem Soc 85:1289

    Google Scholar 

  66. Ts'o POP, Chan SI (1964) J Am Chem Soc 86:4176

    Google Scholar 

  67. Eimer W, Dorfmuller T (1992) J Phys Chem 96:6790

    CAS  Google Scholar 

  68. Hamlin RM Jr, Lord RC, Rich A (1965) Science (Washington, DC, USA) 148:1734

    Google Scholar 

  69. Kyogoku Y, Lord RC, Rich A (1967) J Am Chem Soc 89:496

    CAS  Google Scholar 

  70. Schwalb NK, Temps F (2007) J Am Chem Soc 129:9272

    CAS  Google Scholar 

  71. Schwalb NK, Michalak T, Temps F (2009) J Phys Chem B 113:16365

    CAS  Google Scholar 

  72. Plützer C, Hunig I, Kleinermanns K (2003) Phys Chem Chem Phys 5:1158

    Google Scholar 

  73. Asami H, Yagi K, Ohba M, Urashima S, Saigusa H (2013) Chem Phys 419:84

    CAS  Google Scholar 

  74. Šponer J, Jurečka P, Marchan I, Luque FJ, Orozco M, Hobza P (2006) Chem Eur J 12:2854

    Google Scholar 

  75. Lowe MJ, Schellman JA (1972) J Mol Biol 65:91

    CAS  Google Scholar 

  76. Brahms J, Michelson AM, van Holde KE (1966) J Mol Biol 15:467

    CAS  Google Scholar 

  77. Powell JT, Richards EG, Gratzer WB (1972) Biopolymers 11:235

    CAS  Google Scholar 

  78. Olsthoorn CSM, Bostelaar LJ, De Rooij JFM, Van Boom JH, Altona C (1981) Eur J Biochem 115:309

    CAS  Google Scholar 

  79. Buhot A, Halperin A (2004) Phys Rev E 70:020902

    CAS  Google Scholar 

  80. Donohue J, Trueblood KN (1960) J Mol Biol 2:363

    CAS  Google Scholar 

  81. Cohen B, Larson MH, Kohler B (2008) Chem Phys 350:165

    CAS  Google Scholar 

  82. Schwalb NK, Temps F (2009) J Photochem Photobiol. A 208:164

    CAS  Google Scholar 

  83. Miannay FA, Banyasz A, Gustavsson T, Markovitsi D (2009) J Phys Chem C 113:11760

    CAS  Google Scholar 

  84. Nguyen Thuan D, Haselsberger R, Michel-Beyerle M-E, Anh Tuan P (2013) ChemPhysChem 14:2667

    Google Scholar 

  85. Hunger K, Buschhaus L, Biemann L, Braun M, Kovalenko S, Improta R, Kleinermanns K (2013) Chem Eur J 19:5425

    CAS  Google Scholar 

  86. Changenet-Barret P, Hua Y, Markovitsi D (2014) Electronic excitations in guanine quadruplexes. Springer, Berlin Heidelberg, p 1

    Google Scholar 

  87. Schwalb NK, Temps F (2008) Science 322:243

    CAS  Google Scholar 

  88. Brahms J, Mommaerts WFH (1964) J Mol Biol 10:73

    CAS  Google Scholar 

  89. Cassani GR, Bollum FJ (1969) Biochemistry 8:3928

    CAS  Google Scholar 

  90. Ke CH, Loksztejn A, Jiang Y, Kim M, Humeniuk M, Rabbi M, Marszalek PE (2009) Biophys J 96:2918

    CAS  Google Scholar 

  91. Applequist J, Damle V (1966) J Am Chem Soc 88:3895

    CAS  Google Scholar 

  92. Luzzati V, Mathis A, Masson F, Witz J (1964) J Mol Biol 10:28

    CAS  Google Scholar 

  93. Nonin S, Leroy J-L, Gueron M (1995) Biochemistry 34:10652

    CAS  Google Scholar 

  94. Davis JT (2004) Angew Chem Int Ed 43:668

    CAS  Google Scholar 

  95. Gehring K, Leroy JL, Guéron M (1993) Nature 363:561

    CAS  Google Scholar 

  96. Leroy JL, Gueron M, Mergny JL, Helene C (1994) Nucleic Acids Res 22:1600

    CAS  Google Scholar 

  97. Holm AIS, Kohler B, Hoffmann SV, Nielsen SB (2010) Biopolymers 93:429

    Google Scholar 

  98. Plasser F, Lischka H (2012) J Chem Theory Comput 8:2777

    CAS  Google Scholar 

  99. Blancafort L, Voityuk AA (2014) J Chem Phys 140:8

    Google Scholar 

  100. Kasha M (1963) Radiat Res 20:55

    CAS  Google Scholar 

  101. Bouvier B, Gustavsson T, Markovitsi D, Millié P (2002) Chem Phys 275:75

    CAS  Google Scholar 

  102. Czader A, Bittner ER (2008) J Chem Phys 128:035101

    Google Scholar 

  103. Scholes GD, Ghiggino KP (1994) J Phys Chem 98:4580

    CAS  Google Scholar 

  104. Gould IR, Young RH, Mueller LJ, Albrecht AC, Farid S (1994) J Am Chem Soc 116:8188

    CAS  Google Scholar 

  105. Wang YS, Haze O, Dinnocenzo JP, Farid S, Farid RS, Gould IR (2007) J Org Chem 72:6970

    CAS  Google Scholar 

  106. Wang YS, Haze O, Dinnocenzo JP, Farid S, Farid RS, Gould IR (2008) J Phys Chem A 112:13088

    CAS  Google Scholar 

  107. Spata VA, Matsika S (2013) J Phys Chem A 117:8718

    CAS  Google Scholar 

  108. Improta R, Barone V (2011) Angew Chem Int Ed 50:12016

    CAS  Google Scholar 

  109. Voityuk AA (2013) Photochem Photobiol Sci 12:1303

    CAS  Google Scholar 

  110. Bouvier B, Dognon J-P, Lavery R, Markovitsi D, Millié P, Onidas D, Zakrzewska K (2003) J Phys Chem B 107:13512

    CAS  Google Scholar 

  111. Emanuele E, Markovitsi D, Millie P, Zakrzewska K (2005) ChemPhysChem 6:1387

    CAS  Google Scholar 

  112. Plasser F, Aquino AJA, Hase WL, Lischka H (2012) J Phys Chem A 116:11151

    CAS  Google Scholar 

  113. Mouret S, Philippe C, Gracia-Chantegrel J, Banyasz A, Karpati S, Markovitsi D, Douki T (2010) Org Biomol Chem 8:1706

    CAS  Google Scholar 

  114. Ritze HH, Hobza P, Nachtigallova D (2007) Phys Chem Chem Phys 9:1672

    CAS  Google Scholar 

  115. Santoro F, Barone V, Improta R (2009) J Am Chem Soc 131:15232

    CAS  Google Scholar 

  116. Conti I, Altoè P, Stenta M, Garavelli M, Orlandi G (2010) Phys Chem Chem Phys 12:5016

    CAS  Google Scholar 

  117. Santoro F, Barone V, Lami A, Improta R (2010) Phys Chem Chem Phys 12:4934

    CAS  Google Scholar 

  118. de La Harpe K, Kohler B (2011) J Phys Chem Lett 2:133

    Google Scholar 

  119. Zeleny T, Ruckenbauer M, Aquino AJA, Muller T, Lankas F, Drsata T, Hase WL, Nachtigallova D, Lischka H (2012) J Am Chem Soc 134:13662

    CAS  Google Scholar 

  120. Plasser F, Lischka H (2013) Photochem Photobiol Sci 12:1440

    CAS  Google Scholar 

  121. Banyasz A, Gustavsson T, Onidas D, Changenet-Barret P, Markovitsi D, Improta R (2013) Chem Eur J 19:3762

    CAS  Google Scholar 

  122. Stuhldreier MC, Temps F (2013) Faraday Discuss 163:173

    CAS  Google Scholar 

  123. Doorley GW, Wojdyla M, Watson GW, Towrie M, Parker AW, Kelly JM, Quinn SJ (2013) J Phys Chem Lett 4:2739

    CAS  Google Scholar 

  124. Markovitsi D, Gustavsson T, Vaya I (2010) J Phys Chem Lett 1:3271

    CAS  Google Scholar 

  125. Holcomb DN, Tinoco I Jr (1965) Biopolymers 3:121

    CAS  Google Scholar 

  126. Eisenberg H, Felsenfeld G (1967) J Mol Biol 30:17

    CAS  Google Scholar 

  127. Warshaw MM, Tinoco I Jr (1965) J Mol Biol 13:54

    CAS  Google Scholar 

  128. Ogasawara N, Inoue Y (1976) J Am Chem Soc 98:7048

    CAS  Google Scholar 

  129. Dolinnaya NG, Fresco JR (1992) Proc Natl Acad Sci USA 89:9242

    CAS  Google Scholar 

  130. Stuhldreier MC, Schüler C, Kleber J, Temps F (2011) In: Chergui M, Jonas D, Riedle E, Schoenlein R, Taylor A (eds) Ultrafast phenomena XVII proceedings of the 17th international conference, Snowmass, Colorado, USA, July 18–23, 2010 Oxford University Press, New York, p 553

    Google Scholar 

  131. Eisinger J, Guéron M, Shulman RG, Yamane T (1966) Proc Natl Acad Sci U S A 55:1015

    CAS  Google Scholar 

  132. Buchvarov I, Wang Q, Raytchev M, Trifonov A, Fiebig T (2007) Proc Natl Acad Sci U S A 104:4794

    CAS  Google Scholar 

  133. Lu Y, Lan ZG, Thiel W (2011) Angew Chem Int Ed 50:6864

    CAS  Google Scholar 

  134. Lu Y, Lan ZG, Thiel W (2012) J Comput Chem 33:1225

    CAS  Google Scholar 

  135. Onidas D, Gustavsson T, Lazzarotto E, Markovitsi D (2007) J Phys Chem B 111:9644

    CAS  Google Scholar 

  136. Bucher DB, Pilles BM, Carell T, Zinth W (2014) Proc Natl Acad Sci U S A 111:4369

    CAS  Google Scholar 

  137. Zhang Y, Dood J, Beckstead AA, Li X-B, Nguyen KV, Burrows CJ, Improta R, Kohler B (2014) Proc Natl Acad Sci U S A 111:11612

    CAS  Google Scholar 

  138. Nguyen KV, Burrows CJ (2011) J Am Chem Soc 133:14586

    CAS  Google Scholar 

  139. Zhang Y, Dood J, Beckstead A, Chen J, Li X-B, Burrows CJ, Lu Z, Matsika S, Kohler B (2013) J Phys Chem A 117:12851

    CAS  Google Scholar 

  140. Pan ZZ, Chen JQ, Schreier WJ, Kohler B, Lewis FD (2012) J Phys Chem B 116:698

    CAS  Google Scholar 

  141. Onidas D, Markovitsi D, Marguet S, Sharonov A, Gustavsson T (2002) J Phys Chem B 106:11367

    CAS  Google Scholar 

  142. Improta R, Santoro F, Barone V, Lami A (2009) J Phys Chem A 113:15346

    CAS  Google Scholar 

  143. Santoro F, Improta R, Avila F, Segado M, Lami A (2013) Photochem Photobiol Sci 12:1527

    CAS  Google Scholar 

  144. Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943

    CAS  Google Scholar 

  145. Lange AW, Rohrdanz MA, Herbert JM (2008) J Phys Chem B 112:6304

    CAS  Google Scholar 

  146. Improta R (2008) Phys Chem Chem Phys 10:2656

    CAS  Google Scholar 

  147. Lange AW, Herbert JM (2009) J Am Chem Soc 131:3913

    CAS  Google Scholar 

  148. Szalay PG, Watson T, Perera A, Lotrich V, Bartlett RJ (2013) J Phys Chem A 117:3149

    CAS  Google Scholar 

  149. Markovitsi D, Talbot F, Gustavsson T, Onidas D, Lazzarotto E, Marguet S (2006) Nature 441:E7

    CAS  Google Scholar 

  150. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Nature 369:471

    CAS  Google Scholar 

  151. Andreatta D, Lustres JLP, Kovalenko SA, Ernsting NP, Murphy CJ, Coleman RS, Berg MA (2005) J Am Chem Soc 127:7270

    CAS  Google Scholar 

  152. Furse KE, Corcelli SA (2010) J Phys Chem Lett 1:1813

    CAS  Google Scholar 

  153. Tazawa S, Tazawa I, Tso POP, Alderfer JL (1972) Biochemistry 11:3544

    CAS  Google Scholar 

  154. Guckian KM, Schweitzer BA, Ren RXF, Sheils CJ, Tahmassebi DC, Kool ET (2000) J Am Chem Soc 122:2213

    CAS  Google Scholar 

  155. Johnson WC Jr, Itzkowitz MS, Tinoco I Jr (1972) Biopolymers 11:225

    CAS  Google Scholar 

  156. Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595

    Google Scholar 

  157. Norberg J, Nilsson L (1998) Biophys J 74:394

    CAS  Google Scholar 

  158. Murata K, Sugita Y, Okamoto Y (2004) Chem Phys Lett 385:1

    CAS  Google Scholar 

  159. Davis RC, Tinoco I Jr (1968) Biopolymers 6:223

    CAS  Google Scholar 

  160. Scott JF, Zamecnik PC (1969) Proc Natl Acad Sci U S A 64:1308

    CAS  Google Scholar 

  161. Stern N, Major DT, Gottlieb HE, Weizman D, Fischer B (2010) Org Biomol Chem 8:4637

    CAS  Google Scholar 

  162. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature 355:796

    CAS  Google Scholar 

  163. Zhang WY, Yuan SA, Wang ZJ, Qi ZM, Zhao JS, Dou YS, Lo GV (2011) Chem Phys Lett 506:303

    CAS  Google Scholar 

  164. Dou YS, Liu ZC, Yuan S, Zhang WY, Tang H, Zhao JS, Fang WH, Lo GV (2013) Int J Biol Macromol 52:358

    CAS  Google Scholar 

  165. Markovitsi D, Onidas D, Gustavsson T, Talbot F, Lazzarotto E (2005) J Am Chem Soc 127:17130

    CAS  Google Scholar 

  166. Wilson RW, Callis PR (1976) J Phys Chem 80:2280

    CAS  Google Scholar 

  167. Nielsen LM, Hoffmann SV, Nielsen SB (2013) Photochem Photobiol Sci 12:1273

    CAS  Google Scholar 

  168. Tonzani S, Schatz GC (2008) J Am Chem Soc 130:7607

    Google Scholar 

  169. Shao F, Augustyn K, Barton JK (2005) J Am Chem Soc 127:17445

    CAS  Google Scholar 

  170. Simpkins H, Richards EG (1967) J Mol Biol 29:349

    CAS  Google Scholar 

  171. Löwdin PO (1963) Rev Mod Phys 35:724

    Google Scholar 

  172. Cohen B, Hare PM, Kohler B (2003) J Am Chem Soc 125:13594

    CAS  Google Scholar 

  173. Gustavsson T, Sarkar N, Lazzarotto E, Markovitsi D, Improta R (2006) Chem Phys Lett 429:551

    CAS  Google Scholar 

  174. Gustavsson T, Banyasz A, Sarkar N, Markovitsi D, Improta R (2008) Chem Phys 350:186

    CAS  Google Scholar 

  175. Sobolewski AL, Domcke W (2004) Phys Chem Chem Phys 6:2763

    CAS  Google Scholar 

  176. Perun S, Sobolewski AL, Domcke W (2006) J Phys Chem A 110:9031

    CAS  Google Scholar 

  177. Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS (2005) Proc Natl Acad Sci U S A 102:20

    CAS  Google Scholar 

  178. Biemann L, Kovalenko SA, Kleinermanns K, Mahrwald R, Markert M, Improta R (2011) J Am Chem Soc 133:19664

    CAS  Google Scholar 

  179. Roettger K, Soennichsen FD, Temps F (2013) Photochem Photobiol Sci 12:1466

    CAS  Google Scholar 

  180. Crespo-Hernández CE, de La Harpe K, Kohler B (2008) J Am Chem Soc 130:10844

    Google Scholar 

  181. Brazard J, Thazhathveetil AK, Vaya I, Lewis FD, Gustavsson T, Markovitsi D (2013) Photochem Photobiol Sci 12:1453

    CAS  Google Scholar 

  182. Santoro F, Barone V, Improta R (2007) Proc Natl Acad Sci U S A 104:9931

    CAS  Google Scholar 

  183. Improta R (2012) J Phys Chem B 116:14261

    CAS  Google Scholar 

  184. de La Harpe K, Crespo-Hernández CE, Kohler B (2009) ChemPhysChem 10:1421

    Google Scholar 

  185. Doorley GW, McGovern DA, George MW, Towrie M, Parker AW, Kelly JM, Quinn SJ (2009) Angew Chem Int Ed 48:123

    CAS  Google Scholar 

  186. Vayá I, Gustavsson T, Miannay FA, Douki T, Markovitsi D (2010) J Am Chem Soc 132:11834

    Google Scholar 

  187. de La Harpe K, Crespo-Hernández CE, Kohler B (2009) J Am Chem Soc 131:17557

    Google Scholar 

  188. Kumar A, Sevilla MD (2013) Photochem Photobiol Sci 12:1328

    CAS  Google Scholar 

  189. Colson AO, Besler B, Sevilla MD (1992) J Phys Chem 96:9787

    CAS  Google Scholar 

  190. Colson A-O, Besler B, Close DM, Sevilla MD (1992) J Phys Chem 96:661

    CAS  Google Scholar 

  191. Bertran J, Oliva A, Rodríguez-Santiago L, Sodupe M (1998) J Am Chem Soc 120:8159

    CAS  Google Scholar 

  192. Li X, Cai Z, Sevilla MD (2001) J Phys Chem B 105:10115

    CAS  Google Scholar 

  193. Kumar A, Sevilla MD (2010) Chem Rev 110:7002

    CAS  Google Scholar 

  194. Guallar V, Douhal A, Moreno M, Lluch JM (1999) J Phys Chem A 103:6251

    CAS  Google Scholar 

  195. Kumar A, Sevilla MD (2009) J Phys Chem B 113:11359

    CAS  Google Scholar 

  196. Ko C, Hammes-Schiffer S (2013) J Phys Chem Lett 4:2540

    CAS  Google Scholar 

  197. Chinnapen DJF, Sen D (2004) Proc Natl Acad Sci U S A 101:65

    CAS  Google Scholar 

  198. Holman MR, Ito T, Rokita SE (2007) J Am Chem Soc 129:6

    CAS  Google Scholar 

  199. Law YK, Forties RA, Liu X, Poirier MG, Kohler B (2013) Photochem Photobiol Sci 12:1431

    CAS  Google Scholar 

  200. Kao YT, Saxena C, Wang LJ, Sancar A, Zhong DP (2005) Proc Natl Acad Sci U S A 102:16128

    CAS  Google Scholar 

  201. Jorns MS (1987) J Am Chem Soc 109:3133

    CAS  Google Scholar 

  202. Shafirovich V, Dourandin A, Geacintov NE (2001) J Phys Chem B 105:8431

    CAS  Google Scholar 

  203. Shafirovich V, Dourandin A, Luneva NP, Geacintov NE (2000) J Phys Chem B 104:137

    CAS  Google Scholar 

  204. Shafirovich V, Dourandin A, Huang W, Luneva NP, Geacintov NE (1999) J Phys Chem B 103:10924

    CAS  Google Scholar 

  205. Shafirovich VY, Courtney SH, Ya N, Geacintov NE (1995) J Am Chem Soc 117:4920

    CAS  Google Scholar 

  206. Spoerlein S, Carstens H, Satzger H, Renner C, Behrendt R, Morader L, Tavan P, Zinth W, Wachtveitl J (2002) Proc Natl Acad Sci U S A 99:7998

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Chemical Structure, Dynamics and Mechanisms Program of the National Science Foundation and from the NASA Astrobiology Program. Many current and former students, postdoctoral researchers, and collaborators have contributed to this work over the past 15 years. Their efforts, which are documented in the papers cited in this chapter, have been indispensible to the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bern Kohler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Zhang, Y., Kohler, B. (2014). Excited States in DNA Strands Investigated by Ultrafast Laser Spectroscopy. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids II. Topics in Current Chemistry, vol 356. Springer, Cham. https://doi.org/10.1007/128_2014_570

Download citation

Publish with us

Policies and ethics