Halogen Bonding I pp 19-42

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 358) | Cite as

σ-Hole Bonding: A Physical Interpretation



The anisotropic electronic densities of covalently-bonded Group IV–VII atoms frequently give rise to regions of positive electrostatic potential on the extensions of covalent bonds to these atoms. Through such positive “σ-holes,” the atoms can interact attractively and highly directionally with negative sites such as the lone pairs of Lewis bases, anions, π electrons, etc. In the case of Group VII this is called “halogen bonding.” Hydrogen bonding can be viewed as a less directional subset of σ-hole interactions. Since positive σ-holes often exist in conjunction with regions of negative potential, the atoms can also interact favorably with positive sites. In accordance with the Hellmann–Feynman theorem, all of these interactions are purely Coulombic in nature (which encompasses polarization and dispersion). The strength of σ-hole bonding increases with the magnitudes of the potentials of the positive σ-hole and the negative site; their polarizabilities must sometimes also be taken explicitly into account.


Coulombic interactions Halogen bonding σ-Hole bonding 


  1. 1.
    Born M, Oppenheimer JR (1927) Zur Quantentheorie der Molekeln. Ann Physik 389:457–484CrossRefGoogle Scholar
  2. 2.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, LeipzigGoogle Scholar
  4. 4.
    Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343CrossRefGoogle Scholar
  5. 5.
    Levine IN (1970) Quantum chemistry. Volume I: quantum mechanics and molecular electronic structure. Allyn and Bacon, Boston, p 449Google Scholar
  6. 6.
    Coulson CA, Bell RP (1945) Kinetic energy, potential energy and force in molecule formation. Trans Faraday Soc 41:141–149CrossRefGoogle Scholar
  7. 7.
    Berlin T (1951) Binding regions in diatomic molecules. J Chem Phys 19:208–213CrossRefGoogle Scholar
  8. 8.
    Bader RFW (2006) Pauli repulsions exist only in the eye of the beholder. Chem Eur J 12:2896–2901CrossRefGoogle Scholar
  9. 9.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  10. 10.
    Stewart RF (1979) On the mapping of electrostatic properties from Bragg diffraction data. Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  11. 11.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  12. 12.
    Klein CL, Stevens ED (1988) Charge density studies of drug molecules. In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, Ch 2, pp 25–64Google Scholar
  13. 13.
    Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142CrossRefGoogle Scholar
  14. 14.
    Ayers PW (2007) Using reactivity indicators instead of the electron density to describe Coulomb systems. Chem Phys Lett 438:148–152CrossRefGoogle Scholar
  15. 15.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163CrossRefGoogle Scholar
  16. 16.
    Murray JS, Politzer P (1998) Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J Mol Struct (Theochem) 425:107–114CrossRefGoogle Scholar
  17. 17.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  18. 18.
    Delgado-Barrio G, Prat RF (1975) Deformed Hartree–Fock solutions for atoms. III. Convergent iterative process and results for O– –. Phys Rev A 12:2288–2297CrossRefGoogle Scholar
  19. 19.
    Sen KD, Politzer P (1989) Characteristic features of the electrostatic potentials of singly-negative monoatomic ions. J Chem Phys 90:4370–4372CrossRefGoogle Scholar
  20. 20.
    Stevens ED (1979) Experimental electron density distribution of molecular chlorine. Mol Phys 37:27–45CrossRefGoogle Scholar
  21. 21.
    Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon. Acta Cryst B41:274–279CrossRefGoogle Scholar
  22. 22.
    Tsirelson VG, Zou PF, Tang T-H, Bader RFW (1995) Topological definition of crystal structure: determination of the bonded interactions in solid molecular chlorine. Acta Cryst A 51:143–153CrossRefGoogle Scholar
  23. 23.
    Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen···halogen synthons: crystallographic and theoretical studies. Chem Eur J 12:8952–8960CrossRefGoogle Scholar
  24. 24.
    Bilewicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone. J Mol Struct 829:208–211CrossRefGoogle Scholar
  25. 25.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comput Theoret Chem 998:2–8CrossRefGoogle Scholar
  26. 26.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  27. 27.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  28. 28.
    Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294CrossRefGoogle Scholar
  29. 29.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  30. 30.
    Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci. doi:10.1016/j.jocs.2014.01.002 Google Scholar
  31. 31.
    Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M=C, Si, Ge and X=F, Cl, Br, I). J Mol Model 19:2739–2746CrossRefGoogle Scholar
  32. 32.
    Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic chlorides, bromides and even fluorides as donors. J Mol Model 13:643–650CrossRefGoogle Scholar
  33. 33.
    Shields ZP, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonds. Int J Quantum Chem 110:2823–2832CrossRefGoogle Scholar
  34. 34.
    Clark T (2013) σ-Holes. WIREs Comput Mol Sci 3:13–20CrossRefGoogle Scholar
  35. 35.
    Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038CrossRefGoogle Scholar
  36. 36.
    Murray JS, Lane P, Politzer P (2007) A predicted new type of directional interaction. Int J Quant Chem 107:2286–2292CrossRefGoogle Scholar
  37. 37.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-Hole concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  38. 38.
    Guru Row TN, Parthasarathy R (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. S–S interactions and nonspherical shape of sulfur in crystals. J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  39. 39.
    Ramasubbu N, Parthasarathy R (1987) Stereochemistry of incipient electrophilic and nucleophilic reactions at divalent selenium center: electrophilic – nucleophilic pairing and anisotropic shape of Se in Se–Se Interactions. Phosphorus Sulfur 31:221–229CrossRefGoogle Scholar
  40. 40.
    Clark T, Murray JS, Lane P, Politzer P (2008) Why are dimethyl sulfoxide and dimethyl sulfone such good solvents? J Mol Model 14:689–697CrossRefGoogle Scholar
  41. 41.
    Politzer P, Murray JS, Janjić GV, Zarić SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31Google Scholar
  42. 42.
    Bent HA (1968) Structural chemistry of donor–acceptor interactions. Chem Rev 68:587–648CrossRefGoogle Scholar
  43. 43.
    Murray-Rust P, Motherwell WDS (1979) Computer retrieval and analysis of molecular geometry. 4. Intermolecular interactions. J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  44. 44.
    Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105:3206–3214CrossRefGoogle Scholar
  45. 45.
    Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bonds. J Am Chem Soc 108:4308–4314CrossRefGoogle Scholar
  46. 46.
    Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J Am Chem Soc 99:4860–4862CrossRefGoogle Scholar
  47. 47.
    Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44(Suppl 19):57–64CrossRefGoogle Scholar
  48. 48.
    Brinck T, Murray JS, Politzer P (1993) Molecular surface electrostatic potentials and local ionization energies of group V–VII hydrides and their anions: relationships for aqueous and gas-phase acidities. Int J Quantum Chem 48:73–88CrossRefGoogle Scholar
  49. 49.
    Burling FT, Goldstein BM (1992) Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J Am Chem Soc 114:2313–2320CrossRefGoogle Scholar
  50. 50.
    Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci 101:16789–16794CrossRefGoogle Scholar
  51. 51.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br–O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155–163CrossRefGoogle Scholar
  52. 52.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine and iodine. J Mol Model 17:3309–3318CrossRefGoogle Scholar
  53. 53.
    Chopra D, Guru Row TN (2011) Role of organic fluorine in crystal engineering. CrystEngComm 13:2175–2186CrossRefGoogle Scholar
  54. 54.
    Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246CrossRefGoogle Scholar
  55. 55.
    Politzer P, Murray JS, Concha MC (2008) σ-Hole bonding between like atoms: a fallacy of atomic charges. J Mol Model 14:659–665CrossRefGoogle Scholar
  56. 56.
    Politzer P, Murray JS (2013) Molecular electrostatic potentials: some observations. In: Ghosh K, Chattaraj P (eds) Concepts and methods in modern theoretical chemistry, vol. 1: electronic structure and reactivity. Taylor & Francis, New York, pp 181–199Google Scholar
  57. 57.
    Widhalm M, Kratky C (1992) Synthesis and X-ray structure of binaphthyl-based macrocyclic diphosphanes and their Ni(II) and Pd(II) complexes. Chem Ber 125:679–689CrossRefGoogle Scholar
  58. 58.
    Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P-P distances. Inorg Chem Comm 10:713–716CrossRefGoogle Scholar
  59. 59.
    Meister J, Schwarz WHE (1994) Principal components of ionicity. J Phys Chem 98:8245–8252CrossRefGoogle Scholar
  60. 60.
    Politzer P, Harris RR (1970) Properties of atoms in molecules. I. A proposed definition of the charge on an atom in a molecule. J Am Chem Soc 92:6451–6454CrossRefGoogle Scholar
  61. 61.
    Ibrahim MAA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32:2564–2574CrossRefGoogle Scholar
  62. 62.
    Kolař M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comput 8:1325–1333CrossRefGoogle Scholar
  63. 63.
    Carter M, Rappé AK, Shing Ho P (2012) Scalable anisotropic shape and electrostatic models for biological bromine halogen bonds. J Chem Theory Comput 8:2461–2473CrossRefGoogle Scholar
  64. 64.
    Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the OPLS-AA force field: application to potent anti-HIV agents. J Chem Theory Comput 8:3895–3901CrossRefGoogle Scholar
  65. 65.
    Liem SY, Popelier PLA (2014) The hydration of serine: multipole moments versus point charges. Phys Chem Chem Phys 16:4122–4134CrossRefGoogle Scholar
  66. 66.
    Mo Y, Bao P, Gao J (2011) Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Phys Chem Chem Phys 13:6760–6775CrossRefGoogle Scholar
  67. 67.
    Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  68. 68.
    Palusiak M (2010) On the nature of the halogen bond – the Kohn-Sham molecular orbital approach. J Mol Struct (Theochem) 945:89–92CrossRefGoogle Scholar
  69. 69.
    Clark T, Murray JS, Politzer P (2014) Role of polarization in halogen bonds. Aust J Chem. doi:10.1071/ch13531 Google Scholar
  70. 70.
    Clark T (2014) Directional electrostatic bonding. In: Frenking G, Shaik S (eds) The chemical bond: chemical bonding across the periodic table. Wiley-VCH, KGaA, Ch 18Google Scholar
  71. 71.
    Solimannejad M, Malekani M, Alkorta I (2010) Cooperative and diminutive unusual weak bonding in F3CX···HMgH···Y and F3CX···Y···HMgH trimers (X = Cl, Br; Y = HCN and HNC). J Phys Chem A 114:12106–12111CrossRefGoogle Scholar
  72. 72.
    Scheiner S (2011) On the properties of X–N noncovalent interactions for first-, second-, and third-row X atoms. J Chem Phys 134(1–9):164313Google Scholar
  73. 73.
    Grabowski SJ, Bilewicz E (2006) Cooperative halogen bonding effect – ab initio calculations on H2CO···(ClF)n complexes. Chem Phys Lett 427:51–55CrossRefGoogle Scholar
  74. 74.
    Li Q, Li R, Zhou Z, Li W, Cheng J (2012) S–X halogen bonds and H–X hydrogen bonds in H2CS–XY (XY = FF, ClF, ClCl, BrF, BrCl and BrBr) complexes: cooperativity and solvent effect. J Chem Phys 136(1–8):14302Google Scholar
  75. 75.
    Wang W, Wang NB, Zheng W, Tian A (2004) Theoretical study on the blueshifting halogen bond. J Phys Chem A 108:1799–1805CrossRefGoogle Scholar
  76. 76.
    Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704CrossRefGoogle Scholar
  77. 77.
    Hermansson K (2002) Blue-shifting hydrogen bonds. J Phys Chem A 106:4695–4702CrossRefGoogle Scholar
  78. 78.
    Qian W, Krimm S (2002) Vibrational spectroscopy of hydrogen bonding: origin of the different behavior of the C–H–O hydrogen bond. J Phys Chem A 106:6628–6636CrossRefGoogle Scholar
  79. 79.
    Hobza P, Zahradnik R (1992) An essay on the theory and calculations of intermolecular interactions. Int J Quantum Chem 42:581–590CrossRefGoogle Scholar
  80. 80.
    Cramer CJ (2002) Essentials of computational chemistry. Wiley, ChichesterGoogle Scholar
  81. 81.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability ii: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659CrossRefGoogle Scholar
  82. 82.
    Hirschfelder JO, Eliason MA (1967) Electrostatic Hellmann–Feynman theorem applied to the long-range interaction of two hydrogen atoms. J Chem Phys 47:1164–1169CrossRefGoogle Scholar
  83. 83.
    Hunt KLC (1990) Dispersion dipoles and dispersion forces: proof of Feynman’s “conjecture” and generalization to interacting molecules of arbitrary symmetry. J Chem Phys 92:1180–1187CrossRefGoogle Scholar
  84. 84.
    Mulliken RS (1952) Molecular compounds and their spectra II. J Am Chem Soc 74:811–824CrossRefGoogle Scholar
  85. 85.
    Scerri ER (2000) Have orbitals really been observed? J Chem Ed 77:1492–1494CrossRefGoogle Scholar
  86. 86.
    Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett 473:201–205CrossRefGoogle Scholar
  87. 87.
    Stone AJ, Price SL (1988) Some new ideas in the theory of intermolecular forces: anisotropic atom-atom potentials. J Phys Chem 92:3325–3335CrossRefGoogle Scholar
  88. 88.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  89. 89.
    Sokalski WA, Roszak SM (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J Mol Struct (Theochem) 234:387–400CrossRefGoogle Scholar
  90. 90.
    Chen J, Martínez TJ (2007) QTPIE: charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chem Phys Lett 438:315–320CrossRefGoogle Scholar
  91. 91.
    Politzer P, Murray JS, Lane P (2007) σ-Hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  92. 92.
    Aakerӧy CB, Fasulo M, Shultheiss N, Desper J, Moore C (2007) Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 129:13772–13773CrossRefGoogle Scholar
  93. 93.
    Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 112:10856–10863CrossRefGoogle Scholar
  94. 94.
    Di Paolo T, Sandorfy C (1974) On the biological importance of the hydrogen bond breaking potency of fluorocarbons. Chem Phys Lett 26:466–469CrossRefGoogle Scholar
  95. 95.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786CrossRefGoogle Scholar
  96. 96.
    Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B–XY of the hydrogen bond B–HX. Angew Chem Int Ed 38:2686–2714CrossRefGoogle Scholar
  97. 97.
    Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747CrossRefGoogle Scholar
  98. 98.
    Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632CrossRefGoogle Scholar
  99. 99.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Electron density shift description of non-bonding intramolecular interactions. Comput Theor Chem 991:124–133CrossRefGoogle Scholar
  100. 100.
    Wang J, Giu J, Leszczynski J (2012) The electronic spectra and the H-bonding pattern of the sulfur and selenium substituted guanines. J Comput Chem 33:1587–1593CrossRefGoogle Scholar
  101. 101.
    Lu X, Li H, Zhu X, Zhu W, Liu H (2011) How does halogen bonding behave in solution? A theoretical study using implicit solvation model. J Phys Chem A 115:4467–4475CrossRefGoogle Scholar
  102. 102.
    Politzer P, Murray JS (2013) Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. CrystEngComm 15:3145–3150CrossRefGoogle Scholar
  103. 103.
    Del Bene JE, Alkorta I, Elguero J (2010) Do traditional, chlorine-shared and ion-pair halogen bonds exist? An ab initio investigation of FCl:CNX complexes. J Phys Chem A 114:12958–12962Google Scholar
  104. 104.
    Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN-R and SiN-R complexes with FCl and Cl2. Theor Chem Acc 131(1–10):1114Google Scholar
  105. 105.
    Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742CrossRefGoogle Scholar
  106. 106.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548CrossRefGoogle Scholar
  107. 107.
    Isaacson W (2007) Einstein: his life and universe. Simon and Schuster, New York, p 549Google Scholar
  108. 108.
    Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  109. 109.
    Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem 100:7384–7391CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Politzer
    • 1
    • 2
  • Jane S. Murray
    • 1
    • 2
  • Timothy Clark
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.CleveThcoCompClevelandUSA
  3. 3.Computer-Chemie-Centrum, Department Chemie und PharmazieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.Centre for Molecular DesignUniversity of PortsmouthPortsmouthUK

Personalised recommendations