Skip to main content

Carbon–Hydrogen to Carbon–Phosphorus Transformations

Part of the Topics in Current Chemistry book series (TOPCURRCHEM,volume 361)

Abstract

Literature published between 2008 and 2013 concerning the functionalization of carbon–hydrogen into carbon–phosphorus bonds is surveyed. The chapter is organized by reaction mechanism. The majority of methods still proceed via deprotonation of C–H into C–M (M=Li, Na, etc.) followed by reaction with a phosphorus electrophile P–X, where X is usually chlorine. A few examples of electrophilic aromatic substitution and related processes have also been reported, although this approach has not yet been developed significantly. Over the past 5 years a rapidly growing family of reactions includes transition metal “C–H activation” and formally related radical-based processes has been developed. The latter processes offer exciting prospects for the synthesis of organophosphorus compounds.

Keywords

  • C–H activation
  • Metallation
  • Phosphanyl
  • Phosphinyl
  • Phosphonyl
  • Phosphorus electrophiles
  • Radical reactions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/128_2014_558
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-15512-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49

Abbreviations

Ac:

Acetyl

Ar:

Aryl

BIPHEP:

2,2′-Bis(diphenylphosphino)-biphenyl

Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

Boc2O:

Di-tert-butyl dicarbonate

Bp:

Boiling point

Bpy:

2,2′-Bipyridyl

BQ:

1,4-Benzoquinone

brsm:

Based on recovered starting material

Bu:

Butyl

Bz:

Benzoyl

CAN:

Ceric ammonium nitrate

cat:

Catalyst

concd:

Concentrated

Cy:

Cyclohexyl

d:

Day(s)

(DHQD)2PYR:

Hydroquinidine-2,5-diphenyl-4,6-pyrimidinediyl diether

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DOPO:

6H-Dibenzo[c, e][1,2]oxaphosphorine 6-oxide

dppe:

Bis(diphenylphosphino)ethane

dppf:

1,1′-Bis(diphenylphosphino)ferrocene

dppm:

Bis(diphenylphosphino)methane

ee :

Enantiomeric excess

equiv.:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

i-Pr:

Isopropyl

KHMDS:

Potassium hexamethyldisilazide potassium bis(trimethylsilyl)amide

LDA:

Lithium diisopropylamide

LHMDS:

Lithium hexamethyldisilazide lithium bis(trimethylsilyl)amide

Me:

Methyl

Mes:

Mesityl 2,4,6-trimethylphenyl (not methanesulfonyl)

min:

Minute(s)

mol:

Mole(s)

MTBE:

Methyl tert-butyl ether

Nu:

Nucleophile

Oct:

n-Octyl

Ph:

Phenyl

Pr:

Propyl

py:

Pyridine

rt:

Room temperature

s:

Second(s)

s-Bu:

sec-Butyl

t-Bu:

tert-Butyl

THF:

Tetrahydrofuran

THP:

Tetrahydropyran, tetrahydropyranyl

TMEDA:

N,N,N′,N′-Tetramethylethylenediamine

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

Tr:

Triphenylmethyl (trityl)

References

  1. Nielsen M, Jacobsen CB, Jørgensen KA (2011) Asymmetric organocatalytic electrophilic phosphination. Angew Chem Int Ed 50:3211–3214

    CrossRef  CAS  Google Scholar 

  2. Fleckenstein CA, Kadyrov R, Plenio H (2008) Efficient large-scale synthesis of 9-alkylfluorenyl phosphines for Pd-catalyzed cross-coupling reactions. Org Process Res Dev 12:475–479

    CrossRef  CAS  Google Scholar 

  3. Wang H, Shen H, Chan H-S, Xie Z (2008) Synthesis and structural characterization of group 4 metal complexes bearing pentavalent phosphorus-bridged ligands [(C13H8)(iPr2N)P(-O)(C2B10H10)]2- and [(C13H9)(iPr2N)P(=O)(C2B9H10)]2-. Organometallics 27:3964–3970

    CrossRef  CAS  Google Scholar 

  4. Smits JP, Wiemer DF (2011) Synthesis and reactivity of alkyl-1,1,1-trisphosphonate esters. J Org Chem 76:8807–8813

    CrossRef  CAS  Google Scholar 

  5. Ortial S, Thompson DA, Montchamp J-L (2010) Mixed 1,1-bisphosphorus compounds: synthesis, alkylation, and Horner-Wadsworth-Emmons olefination reactions. J Org Chem 75:8166–8179

    CrossRef  CAS  Google Scholar 

  6. Gavara L, Gelat F, Montchamp J-L (2013) The phosphorus-Claisen condensation. Tetrahedron Lett 54:817–820

    CrossRef  CAS  Google Scholar 

  7. Antczak M, Montchamp J-L (2008) Synthesis of 1,1-bis-phosphorus compounds from organoboranes. Tetrahedron Lett 49:5909–5913

    CrossRef  CAS  Google Scholar 

  8. Asensio G, Cuenca AB, Esteruelas MG, Medio-Simon M, Olivan M, Valencia M (2010) Osmium(III) complexes with POP pincer ligands: preparation from commercially available OsCl3•3H2O and their X-ray structures. Inorg Chem 49:8665–8867

    CrossRef  CAS  Google Scholar 

  9. Huy NHT, Lu Y, Qune LFNA, Mathey F (2013) Influence of the substitution pattern on the optoelectronic properties of oligofuran and oligothiopheneephosphole chains. J Organomet Chem 730:63–68

    CrossRef  Google Scholar 

  10. Hounjet LJ, Bierenstiel M, Ferguson MJ, McDonald R, Cowie M (2009) Mono- and binuclear complexes of rhodium involving a new series of hemilabile o-phosphinoaniline ligands. Dalton Trans (21):4213-4226

    Google Scholar 

  11. Lightburn TE, Dombrowski MT, Tan KL (2008) Catalytic scaffolding ligands: an efficient strategy for directing reactions. J Am Chem Soc 130:9210–9211

    CrossRef  CAS  Google Scholar 

  12. Bellini R, Reek JNH (2012) Supramolecular hybrid bidentate ligands in asymmetric hydrogenation. Eur J Org Chem 4684–4693

    Google Scholar 

  13. He L-P, Liu J-Y, Li Y-G, Liu S-R, Li Y-S (2009) High-temperature living copolymerization of ethylene with norbornene by titanium complexes bearing bidentate [O, P] ligands. Macromolecules 42:8566–8570

    CrossRef  CAS  Google Scholar 

  14. Piche L, Daigle J-C, Poli R, Claverie JP (2010) Investigation of steric and electronic factors of (arylsulfonyl)phosphane-palladium catalysts in ethene polymerization. Eur J Inorg Chem 4595–4601

    Google Scholar 

  15. Knight FR, Fuller A, Slawin AMZ, Woollins JD (2010) Preparation and compounds of (8-methoxynaphth-1-yl)diphenylphosphine. Polyhedron 29:1849–1853

    CrossRef  CAS  Google Scholar 

  16. Yu S-B, Huang J-D, Wang D-Y, Hu X-P, Deng J, Duan Z-C, Zheng Z (2008) Novel chiral phosphine-phosphoramidite ligands derived from 1-naphthylamine for highly efficient Rh-catalyzed asymmetric hydrogenation. Tetrahedron Asym 29:1862–1866

    CrossRef  Google Scholar 

  17. Ballesteros-Garrido R, Bonnafoux L, Blanco F, Ballesteros R, Leroux FR, Abarca B, Colobert F, Alkorta I, Elguero J (2011) [1,2,3]Triazolo[1,5-a]pyridyl phosphines reflecting the influence of phosphorus lone pair orientation on spectroscopic properties. Dalton Trans 40:1387–1395

    CrossRef  CAS  Google Scholar 

  18. Punniyamurthy T, Mayr M, Dorofeev AS, Bataille CJR, Gosiewska S, Nguyen B, Cowley AR, Brown JM (2008) Enantiomerically pure bicyclo[3.3.1]nona-2,6-diene as the sole source of enantioselectivity in BIPHEP-Rh asymmetric hydrogenation. Chem Commun 5092–5094

    Google Scholar 

  19. Xie L, Ding Y, Wang Y, Ding Y (2009) Synthetic strategy of o-hydroxyphenyl(ethynyl)phosphinates. Chinese J Chem 27:1387–1390

    CrossRef  CAS  Google Scholar 

  20. Laughlin FL, Rheingold AL, Deligonul N, Laughlin BJ, Smith RC, Higham LJ, Protasiewicz JD (2012) Naphthoxaphospholes as examples of fluorescent phospha-acenes. Dalton Trans 41:12016–12022

    CrossRef  CAS  Google Scholar 

  21. Catel Y, Le Pluart L, Madec J-P, Pham T-N (2010) Synthesis and photopolymerization of phosphonic acid monomers for applications in compomer materials. J Appl Polym Sci 117:2676–2687

    CAS  Google Scholar 

  22. Marie S, Lutz M, Spek AL, Klein Gebbink RJM, van Koten G, Kervarec N, Michaud F, Salaün J-Y, Jaffrès P-A (2009) Application of a base-induced [1,2]-rearrangement to synthesize thiophosphonate bidentate S(sp2)–N monoanionic ligand: characterization of its silver and palladium complexes. J Organomet Chem 694:4001–4007

    CrossRef  CAS  Google Scholar 

  23. Itoh H, Yamamoto E, Masaoka S, Sakai K, Tokunaga M (2009) Kinetic resolution of P-chirogenic compounds by palladium-catalyzed alcoholysis of vinyl ethers. Adv Synth Catal 351:1796–1800

    CrossRef  CAS  Google Scholar 

  24. Ortial S, Montchamp J-L (2011) Synthesis of Z-alkenyl phosphorus compounds through hydroalumination and carbocupration of alkynyl precursors. Org Lett 13:3134–3137

    CrossRef  CAS  Google Scholar 

  25. Jouvin K, Veillard R, Theunissen C, Alayrac C, Gaumont A-C, Evano G (2013) Unprecedented synthesis of alkynylphosphine-boranes through room-temperature oxidative alkynylation. Org Lett 15:4592–4595

    CrossRef  CAS  Google Scholar 

  26. Kumar D, Singh N, Keshav K, Elias AJ (2013) Synthesis and structural characterization of the first examples of butadiynyl derived cyclic fluorinated phosphazenes. J Fluorine Chem 153:48–56

    Google Scholar 

  27. Yang X, Kajiyama S, Fang J-K, Xu F, Uemura Y, Koumura N, Hara K, Orita A, Otera J (2012) Synthesis and properties of anthrylene-substituted phenyleneethynylene dyes having amino/cyano group(s) and their application to dye-sensitized solar cells. Bull Chem Soc Jpn 85:687–697

    CrossRef  CAS  Google Scholar 

  28. Kaleta J, Nečas M, Mazal C (2012) 1,3-Diethynylbicyclo[1.1.1]pentane, a useful molecular building block. Eur J Org Chem 4783–4796

    Google Scholar 

  29. Liedtke R, Kehr G, Fröhlich R, Daniliuc CG, Wibbeling B, Petersen JL, Erker G (2012) Carboboration reactions of 1,2-bis[(diarylphosphino)ethynyl]benzenes with tris(pentafluorophenyl)borane. Helv Chim Acta 95:2515–2527

    CrossRef  CAS  Google Scholar 

  30. Lim SH, Cohen SM (2013) Self-assembled supramolecular clusters based on phosphines and coinage metals: tetrahedra, helicates, and mesocates. Inorg Chem 52:7862–7872

    CrossRef  CAS  Google Scholar 

  31. Milde B, Schaarschmidt D, Ecorchard P, Lang H (2012) Fundamental study of (ferrocenylethynyl)phosphines: correlation of steric and electronic effects in C, C cross-coupling reactions. J Organomet Chem 706/707:52–65

    CrossRef  Google Scholar 

  32. Allister TEM, Webb ME (2012) Triazole phosphohistidine analogues compatible with the Fmoc-strategy. Org Biomol Chem 10:4043–4049

    CrossRef  Google Scholar 

  33. Ansiaux C, N’Go I, Vincent SP (2012) Reversible and efficient inhibition of UDP-galactopyranose mutase by electrophilic, constrained and unsaturated UDP-galactitol analogues. Chem Eur J 18:14860–14866

    CrossRef  CAS  Google Scholar 

  34. Wang Z-W, Wang L-S (2003) Preparation of dichlorophenylphosphine via Friedel–Crafts reaction in ionic liquids. Green Chem 5:737–739

    CrossRef  Google Scholar 

  35. Abranyi-Balogh P, Keglevich G (2011) Practical synthesis of 6-chloro-dibenzo[c,e][1,2]oxaphosphorine. Synth Commun 41:1421–1426

    CrossRef  CAS  Google Scholar 

  36. Liu YY, Yang G, Yao D, Tian F, Zhang W (2011) Convenient synthesis of tropos phosphine-oxazoline ligands. Sci China Chem 54:87–94

    CrossRef  CAS  Google Scholar 

  37. Dodds DL, Boele MDK, van Strijdonck GPF, de Vries JG, van Leeuwen PWNM, Kamer PCJ (2012) Design, testing and kinetic analysis of bulky monodentate phosphorus ligands in the Mizoroki–Heck reaction. Eur J Inorg Chem 1660–1671

    Google Scholar 

  38. Diaz AA, Buster B, Schomisch D, Khan MA, Baum JC, Wemschulte RJ (2008) Size matters: room temperature P-C bond formation through C-H activation in m-terphenyldiiodophosphines. Inorg Chem 47:2858–2863

    CrossRef  CAS  Google Scholar 

  39. Freeman JL, Zhao Q, Zhang Y, Wang J, Lawson CM, Gray GM (2013) Synthesis, linear and nonlinear optical properties of phosphonato-substituted bithiophenes derived from 2,2′-biphenol. Dalton Trans 42:12281–12287

    Google Scholar 

  40. Chaikovskaya AA, Dmytriv YV, Shevchuk NV, Smaliy RV, Pinchuk AM, Tolmachev AA (2008) N → C2 → C3 migration of the dichlorophosphino group in the synthesis of phosphorylated NH-pyrroles. Heteroatom Chem 19:671–676

    CrossRef  CAS  Google Scholar 

  41. Chaikovskaya AA, Dmytriv YV, Shevchuk NV, Smaliy RV, Pinchuk AM, Tolmachev AA (2009) Synthesis of 1,1-bis-phosphorus compounds from organoboranes. Heteroatom Chem 20:235–239

    CrossRef  CAS  Google Scholar 

  42. Huryeva AN, Marchenko AP, Koidan GN, Yurchenko AA, Zarudnitskii EV, Pinchuk AM, Kostyuk AN (2010) 4-Phosphorylated 1,2-disubstituted imidazoles. Heteroatom Chem 21:103–118

    CrossRef  CAS  Google Scholar 

  43. Svyaschenko YV, Barnych BB, Volochnyuk DM, Shevchuk NV, Kostyuk AN (2011) Electrocyclization of phosphahexatrienes: an approach to λ5-phosphinines. J Org Chem 76:6125–6133

    CrossRef  CAS  Google Scholar 

  44. Svyaschenko YV, Volochnyuk DM, Kostyuk AN (2010) An approach to the synthesis of 1,2λ5-azaphosphinines. Tetrahedron Lett 51:6316–6318

    CrossRef  CAS  Google Scholar 

  45. Kostyuk AN, Svyaschenko YV, Barnych BB, Sibgatulin DA, Rusanov EB, Volochnyuk DM (2009) Phosphorylation of derivatives of β-dialkyaminocrotonitriles with phosphorus(III) halides. Heteroatom Chem 20:194–201

    CrossRef  CAS  Google Scholar 

  46. Dmitrichenko MY, Ivanov AV, Bidusenko IA, Ushakov IA, Mikhaleva AI, Trofimov BA (2011) Reaction of 1-vinylpyrrole-2-carbaldehydes with phosphorus pentachloride: a stereoselective synthesis of E-2-(2-dichloromethylpyrrol-1-yl)vinylphosphonyl dichlorides. Tetrahedron Lett 52:1317–1319

    CrossRef  CAS  Google Scholar 

  47. Larina LI, Rozinov VG, Dmitrichenko MY, Es’kova LA (2009) NMR investigation of chlorophosphorylation products of N-vinylazoles. Magn Reson Chem 47:149–157

    CrossRef  CAS  Google Scholar 

  48. Clayton JO, Jensen WL (1948) Reaction of paraffin hydrocarbons with phosphorus trichloride and oxygen to produce alkanephosphonyl chlorides. J Am Chem Soc 70:3880–3882

    CrossRef  CAS  Google Scholar 

  49. Mayo FR, Durham LJ, Griggs KS (1963) The reaction of alkanes with phosphorus trichloride and oxygen. J Am Chem Soc 85:3156–3164

    CrossRef  CAS  Google Scholar 

  50. Flurry RL Jr, Boozer CE (1966) The mechanism of the chlorophosphonation of hydrocarbons by phosphorus trichloride and oxygen. J Org Chem 31:2076–2083

    CrossRef  CAS  Google Scholar 

  51. Schwertfeger H, Machuy MM, Würtele C, Dahl JEP, Carlson RMK, Schreiner PR (2010) Diamondoid phosphines – selective phosphorylation of nanodiamonds. Adv Synth Catal 352:609–615

    CrossRef  CAS  Google Scholar 

  52. Montchamp J-L (2014) Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc Chem Res 47:77–87

    CrossRef  CAS  Google Scholar 

  53. Guan J, Wu G-J, Han F-S (2014) PdII-catalyzed mild C_H ortho arylation and intramolecular amination oriented by a phosphinamide group. Chem Eur J 20. doi: 10.1002/chem.201303056

    Google Scholar 

  54. Hu RB, Zhang H, Zhang X-Y, Yang S-D (2014) Palladium-catalyzed P(O)R2 directed C–H arylation to synthesize electron-rich polyaromatic monophosphorus ligands. Chem Commun 50:2193–2195

    CrossRef  CAS  Google Scholar 

  55. Seo J, Park Y, Jeon I, Ryu T, Park S, Lee PH (2013) Synthesis of phosphaisocoumarins through rhodium-catalyzed cyclization using alkynes and arylphosphonic acid monoesters. Org Lett 15:3358–3361

    CrossRef  CAS  Google Scholar 

  56. Ryu T, Kim J, Park Y, Kim S, Lee PH (2013) Rhodium-catalyzed oxidative cyclization of arylphosphonic acid monoethyl esters with alkenes: efficient synthesis of benzoxaphosphole 1-oxides. Org Lett 15:3986–3989

    CrossRef  CAS  Google Scholar 

  57. Park Y, Jeon I, Shin S, Min J, Lee PH (2013) Ruthenium-catalyzed C−H activation/cyclization for the synthesis of phosphaisocoumarins. J Org Chem 78:10209–10220

    CrossRef  CAS  Google Scholar 

  58. Park Y, Seo J, Park S, Yoo EJ, Lee PH (2013) Rhodium-catalyzed oxidative C–H activation/cyclization for the synthesis of phosphaisocoumarins and phosphorous 2-pyrones. Chem Eur J 19:16461–16468

    CrossRef  CAS  Google Scholar 

  59. Chary BC, Kim S, Park Y, Kim J, Lee PH (2013) Palladium-catalyzed C_H arylation using phosphoramidate as a directing group at room temperature. Org Lett 15:2692–2695

    CrossRef  CAS  Google Scholar 

  60. Kang D, Cho J, Lee PH (2013) Palladium-catalyzed direct C-3 oxidative alkenylation of phosphachromones. Chem Commun 49:10501–10503

    CrossRef  CAS  Google Scholar 

  61. Eom D, Jeong Y, Kim YR, Lee E, Choi W, Lee PH (2013) Palladium-catalyzed C(sp2 and sp3)_H activation/C_O bond formation: synthesis of benzoxaphosphole 1- and 2-oxides. Org Lett 15:5210–5213

    CrossRef  CAS  Google Scholar 

  62. Meng X, Kim S (2013) Palladium(II)-catalyzed ortho-arylation of benzylic phosphonic monoesters using potassium aryltrifluoroborates. J Org Chem 78:11247–11254

    CrossRef  CAS  Google Scholar 

  63. Itoh M, Hashimoto Y, Hirano K, Satoh T, Miura M (2013) Ruthenium-catalyzed ortho-alkenylation of phenylphosphine oxides through regio- and stereoselective alkyne insertion into C−H bonds. J Org Chem 78:8098–8104

    CrossRef  CAS  Google Scholar 

  64. Zhang H-Y, Yi H-M, Wang G-W, Yang B, Yang S-D (2013) Pd(II)-catalyzed C(sp2)_H hydroxylation with R2(O)P-coordinating group. Org Lett 15:6186–6189

    CrossRef  CAS  Google Scholar 

  65. Kuninobu Y, Yoshida T, Takai K (2011) Palladium-catalyzed synthesis of dibenzophosphole oxides via intramolecular dehydrogenative cyclization. J Org Chem 76:7370–7376

    CrossRef  CAS  Google Scholar 

  66. Berger O, Petit C, Deal EL, Montchamp J-L (2013) Phosphorus-carbon bond formation: palladium-catalyzed cross-coupling of H-phosphinates and other P(O)H-containing compounds. Adv Synth Catal 355:1361–1373

    CrossRef  CAS  Google Scholar 

  67. Baba K, Tobisu M, Chatani N (2013) Palladium-catalyzed direct synthesis of phosphole derivatives from triarylphosphines through cleavage of carbon–hydrogen and carbon–phosphorus bonds. Angew Chem Int Ed 52:11892–11895

    CrossRef  CAS  Google Scholar 

  68. Li C, Yano T, Ishida N, Murakami M (2013) Pyridine-directed palladium-catalyzed phosphonation of C(sp2)_H bonds. Angew Chem Int Ed 52:9801–9804

    CrossRef  CAS  Google Scholar 

  69. Feng C-G, Ye M, Xiao K-J, Li S, Yu J-Q (2013) Pd(II)-catalyzed phosphorylation of aryl C−H bonds. J Am Chem Soc 135:9322–9325

    CrossRef  CAS  Google Scholar 

  70. Hou C, Ren Y, Lang R, Hu X, Xia C, Li F (2012) Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites. Chem Commun 48:5181–5183

    CrossRef  CAS  Google Scholar 

  71. Mi X, Huang M, Zhang J, Wang C, Wu Y (2013) Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C_H functionalization. Org Lett 15:6266–6269

    CrossRef  CAS  Google Scholar 

  72. Gao Y, Wang G, Chen L, Xu P, Zhao Y, Zhou Y, Han L-B (2009) Copper-catalyzed aerobic oxidative coupling of terminal alkynes with H-phosphonates leading to alkynylphosphonates. J Am Chem Soc 131:7956–7957

    CrossRef  CAS  Google Scholar 

  73. Qu Z, Chen X, Yuan J, Qu L, Li X, Wang F, Ding X, Zhao Y (2012) CuSO4·5H2O-catalyzed alkynylphosphonates formation: an efficient coupling reaction of terminal alkynes with H-phosphonates. Can J Chem 90:747–752

    CrossRef  CAS  Google Scholar 

  74. Wang Z, Yu Z, Wang Y, Shi D (2012) pN-Heterocyclic carbene catalyzed intramolecular hydroacylation of alkynylphosphonates. Synthesis 44:1559–1568

    CrossRef  CAS  Google Scholar 

  75. Effenberger F, Kottmann H (1985) Oxidative phosphonylation of aromatic compounds. Tetrahedron 41:4171–4182

    CrossRef  CAS  Google Scholar 

  76. Kottman H, Sharzewski J, Effenberger F (1987) Oxidative phosphonylierung von aromaten mit cerammoniumnitrat. Synthesis 1987:797–801

    CrossRef  Google Scholar 

  77. Wang H, Li X, Wu F, Wan B (2012) Direct oxidative C–P bond formation of indoles with dialkyl phosphites. Synthesis 44:941–945

    CrossRef  CAS  Google Scholar 

  78. Xiang C-B, Bian Y-J, Mao X-R, Huang Z-Z (2012) Coupling reactions of heteroarenes with phosphites under silver catalysis. J Org Chem 77:7706–7710

    CrossRef  CAS  Google Scholar 

  79. Mao X, Ma X, Zhang S, Hu H, Zhu C, Cheng Y (2013) Silver-catalyzed highly regioselective phosphonation of arenes bearing electron-withdrawing groups. Eur J Org Chem 4245–4248

    Google Scholar 

  80. Mondal M, Bora U (2013) Recent advances in manganese(III) acetate mediated organic synthesis. RSC Adv 3:18716–18754

    CrossRef  CAS  Google Scholar 

  81. Pan X-Q, Zou J-P, Zhang W (2009) Manganese(III)-promoted reactions for formation of carbon–heteroatom bonds. Mol Divers 13:421–438

    CrossRef  CAS  Google Scholar 

  82. Kagayama T, Nakano A, Sakaguchi S, Ishii Y (2006) Phosphonation of arenes with dialkyl phosphites catalyzed by Mn(II)/Co(II)/O2 redox couple. Org Lett 8:407–409

    CrossRef  CAS  Google Scholar 

  83. Mu X-J, Zou J-P, Qian Q-F, Zhang W (2006) Manganese(III) acetate promoted regioselective phosphonation of heteroaryl compounds. Org Lett 8:5291–5293

    CrossRef  CAS  Google Scholar 

  84. Xu W, Zou J-P, Zhang W (2010) Manganese(III)-mediated direct phosphonylation of arenes. Tetrahedron Lett 51:2639–2643

    CrossRef  CAS  Google Scholar 

  85. Pan X-Q, Zou J-P, Zhang G-L, Zhang W (2010) Manganese(III)-mediated direct phosphonation of arylalkenes and arylalkynes. Chem Commun 46:1721–1723

    CrossRef  CAS  Google Scholar 

  86. Zhou P, Jiang Y-J, Zou J-P, Zhang W (2012) Manganese(III) acetate mediated free-radical phosphonylation of flavones and coumarins. Synthesis 44:1043–1050

    CrossRef  CAS  Google Scholar 

  87. Sun W-B, Ji Y-F, Pan X-Q, Zhou S-F, Zou J-P, Zhang W (2013) Mn(OAc)3-mediated selective free radical phosphonylation of pyridinones and pyrimidinones. Synthesis 45:1529–1533

    CrossRef  CAS  Google Scholar 

  88. Kim SE, Kim SH, Lim CH, Kim JN (2013) An efficient synthesis of 5-phosphorylated uracil derivatives: oxidative cross-coupling between uracil and dialkyl phosphites. Tetrahedron Lett 54:1697–1699

    CrossRef  CAS  Google Scholar 

  89. Wang G-W, Wang C-Z, Zou J-P (2011) Radical reaction of [60]fullerene with phosphorus compounds mediated by manganese(III) acetate. J Org Chem 76:6088–6094

    CrossRef  CAS  Google Scholar 

  90. Fisher HC, Berger O, Gelat F, Montchamp J-L (2014) Manganese-catalyzed and promoted reactions of H-phosphinate esters. Adv Synth Catal 356:1199–1204

    Google Scholar 

  91. Berger O, Montchamp J-L (2014) Manganese-Mediated Intermolecular Arylation of H-Phosphinates and Related Compounds. Chem Eur J 20:12385–12388

    CrossRef  CAS  Google Scholar 

  92. Brown JM, Woodward S (1991) Selective ortho lithiation of (2,5-dimethoxyphenyl)diphenylphosphine oxide and trapping of the resulting aryllithium with electrophiles. J Org Chem 56:6803–6809

    CrossRef  CAS  Google Scholar 

  93. Ho T-H, Hwang H-J, Shieh J-Y, Chung M-C (2009) Thermal, physical and flame-retardant properties of phosphorus-containing epoxy cured with cyanate ester. React Funct Polymers 69:176–182

    CrossRef  CAS  Google Scholar 

  94. Demchuk OM, Yoruk B, Blackburn T, Snieckus V (2006) A mixed naphthyl-phenyl phosphine ligand motif for Suzuki, Heck, and hydrodehalogenation reactions. Synlett 18:2908–2913

    CrossRef  Google Scholar 

  95. Frolova NG, Savin ED, Goryunov EI, Lysenko KA, Nelyubina YV, Petrovskii PV, Nifant’ev EE (2010) Addition of bis(pentafluorophenyl)phosphinous acid to compounds with activated C=C bond as a method for the synthesis of first tertiary P, P_bis(pentafluorophenyl)phosphine oxides. Doklady Chem 430:18–23

    CrossRef  CAS  Google Scholar 

  96. Xiong B, Shen R, Goto M, Yin S-F, Han L-B (2012) Highly selective 1,4- and 1,6-addition of P(O)_H compounds to p-quinones: a divergent method for the synthesis of C- and O-phosphoryl hydroquinone derivatives. Chem Eur J 18:16902–16910

    CrossRef  CAS  Google Scholar 

  97. Müller P, Bykov Y, Walter O, Döring M (2012) New phosphorus-containing quinone derivatives. Heteroatom Chem 23:383–394

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Montchamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montchamp, JL. (2014). Carbon–Hydrogen to Carbon–Phosphorus Transformations. In: Montchamp, JL. (eds) Phosphorus Chemistry II. Topics in Current Chemistry, vol 361. Springer, Cham. https://doi.org/10.1007/128_2014_558

Download citation