Carbon–Hydrogen to Carbon–Phosphorus Transformations

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 361)


Literature published between 2008 and 2013 concerning the functionalization of carbon–hydrogen into carbon–phosphorus bonds is surveyed. The chapter is organized by reaction mechanism. The majority of methods still proceed via deprotonation of C–H into C–M (M=Li, Na, etc.) followed by reaction with a phosphorus electrophile P–X, where X is usually chlorine. A few examples of electrophilic aromatic substitution and related processes have also been reported, although this approach has not yet been developed significantly. Over the past 5 years a rapidly growing family of reactions includes transition metal “C–H activation” and formally related radical-based processes has been developed. The latter processes offer exciting prospects for the synthesis of organophosphorus compounds.


C–H activation Metallation Phosphanyl Phosphinyl Phosphonyl Phosphorus electrophiles Radical reactions 













Di-tert-butyl dicarbonate


Boiling point






Based on recovered starting material






Ceric ammonium nitrate










Hydroquinidine-2,5-diphenyl-4,6-pyrimidinediyl diether




Dimethyl sulfoxide


6H-Dibenzo[c, e][1,2]oxaphosphorine 6-oxide








Enantiomeric excess










Potassium hexamethyldisilazide potassium bis(trimethylsilyl)amide


Lithium diisopropylamide


Lithium hexamethyldisilazide lithium bis(trimethylsilyl)amide




Mesityl 2,4,6-trimethylphenyl (not methanesulfonyl)






Methyl tert-butyl ether












Room temperature










Tetrahydropyran, tetrahydropyranyl








Triphenylmethyl (trityl)


  1. 1.
    Nielsen M, Jacobsen CB, Jørgensen KA (2011) Asymmetric organocatalytic electrophilic phosphination. Angew Chem Int Ed 50:3211–3214CrossRefGoogle Scholar
  2. 2.
    Fleckenstein CA, Kadyrov R, Plenio H (2008) Efficient large-scale synthesis of 9-alkylfluorenyl phosphines for Pd-catalyzed cross-coupling reactions. Org Process Res Dev 12:475–479CrossRefGoogle Scholar
  3. 3.
    Wang H, Shen H, Chan H-S, Xie Z (2008) Synthesis and structural characterization of group 4 metal complexes bearing pentavalent phosphorus-bridged ligands [(C13H8)(iPr2N)P(-O)(C2B10H10)]2- and [(C13H9)(iPr2N)P(=O)(C2B9H10)]2-. Organometallics 27:3964–3970CrossRefGoogle Scholar
  4. 4.
    Smits JP, Wiemer DF (2011) Synthesis and reactivity of alkyl-1,1,1-trisphosphonate esters. J Org Chem 76:8807–8813CrossRefGoogle Scholar
  5. 5.
    Ortial S, Thompson DA, Montchamp J-L (2010) Mixed 1,1-bisphosphorus compounds: synthesis, alkylation, and Horner-Wadsworth-Emmons olefination reactions. J Org Chem 75:8166–8179CrossRefGoogle Scholar
  6. 6.
    Gavara L, Gelat F, Montchamp J-L (2013) The phosphorus-Claisen condensation. Tetrahedron Lett 54:817–820CrossRefGoogle Scholar
  7. 7.
    Antczak M, Montchamp J-L (2008) Synthesis of 1,1-bis-phosphorus compounds from organoboranes. Tetrahedron Lett 49:5909–5913CrossRefGoogle Scholar
  8. 8.
    Asensio G, Cuenca AB, Esteruelas MG, Medio-Simon M, Olivan M, Valencia M (2010) Osmium(III) complexes with POP pincer ligands: preparation from commercially available OsCl3•3H2O and their X-ray structures. Inorg Chem 49:8665–8867CrossRefGoogle Scholar
  9. 9.
    Huy NHT, Lu Y, Qune LFNA, Mathey F (2013) Influence of the substitution pattern on the optoelectronic properties of oligofuran and oligothiopheneephosphole chains. J Organomet Chem 730:63–68CrossRefGoogle Scholar
  10. 10.
    Hounjet LJ, Bierenstiel M, Ferguson MJ, McDonald R, Cowie M (2009) Mono- and binuclear complexes of rhodium involving a new series of hemilabile o-phosphinoaniline ligands. Dalton Trans (21):4213-4226Google Scholar
  11. 11.
    Lightburn TE, Dombrowski MT, Tan KL (2008) Catalytic scaffolding ligands: an efficient strategy for directing reactions. J Am Chem Soc 130:9210–9211CrossRefGoogle Scholar
  12. 12.
    Bellini R, Reek JNH (2012) Supramolecular hybrid bidentate ligands in asymmetric hydrogenation. Eur J Org Chem 4684–4693Google Scholar
  13. 13.
    He L-P, Liu J-Y, Li Y-G, Liu S-R, Li Y-S (2009) High-temperature living copolymerization of ethylene with norbornene by titanium complexes bearing bidentate [O, P] ligands. Macromolecules 42:8566–8570CrossRefGoogle Scholar
  14. 14.
    Piche L, Daigle J-C, Poli R, Claverie JP (2010) Investigation of steric and electronic factors of (arylsulfonyl)phosphane-palladium catalysts in ethene polymerization. Eur J Inorg Chem 4595–4601Google Scholar
  15. 15.
    Knight FR, Fuller A, Slawin AMZ, Woollins JD (2010) Preparation and compounds of (8-methoxynaphth-1-yl)diphenylphosphine. Polyhedron 29:1849–1853CrossRefGoogle Scholar
  16. 16.
    Yu S-B, Huang J-D, Wang D-Y, Hu X-P, Deng J, Duan Z-C, Zheng Z (2008) Novel chiral phosphine-phosphoramidite ligands derived from 1-naphthylamine for highly efficient Rh-catalyzed asymmetric hydrogenation. Tetrahedron Asym 29:1862–1866CrossRefGoogle Scholar
  17. 17.
    Ballesteros-Garrido R, Bonnafoux L, Blanco F, Ballesteros R, Leroux FR, Abarca B, Colobert F, Alkorta I, Elguero J (2011) [1,2,3]Triazolo[1,5-a]pyridyl phosphines reflecting the influence of phosphorus lone pair orientation on spectroscopic properties. Dalton Trans 40:1387–1395CrossRefGoogle Scholar
  18. 18.
    Punniyamurthy T, Mayr M, Dorofeev AS, Bataille CJR, Gosiewska S, Nguyen B, Cowley AR, Brown JM (2008) Enantiomerically pure bicyclo[3.3.1]nona-2,6-diene as the sole source of enantioselectivity in BIPHEP-Rh asymmetric hydrogenation. Chem Commun 5092–5094Google Scholar
  19. 19.
    Xie L, Ding Y, Wang Y, Ding Y (2009) Synthetic strategy of o-hydroxyphenyl(ethynyl)phosphinates. Chinese J Chem 27:1387–1390CrossRefGoogle Scholar
  20. 20.
    Laughlin FL, Rheingold AL, Deligonul N, Laughlin BJ, Smith RC, Higham LJ, Protasiewicz JD (2012) Naphthoxaphospholes as examples of fluorescent phospha-acenes. Dalton Trans 41:12016–12022CrossRefGoogle Scholar
  21. 21.
    Catel Y, Le Pluart L, Madec J-P, Pham T-N (2010) Synthesis and photopolymerization of phosphonic acid monomers for applications in compomer materials. J Appl Polym Sci 117:2676–2687Google Scholar
  22. 22.
    Marie S, Lutz M, Spek AL, Klein Gebbink RJM, van Koten G, Kervarec N, Michaud F, Salaün J-Y, Jaffrès P-A (2009) Application of a base-induced [1,2]-rearrangement to synthesize thiophosphonate bidentate S(sp2)–N monoanionic ligand: characterization of its silver and palladium complexes. J Organomet Chem 694:4001–4007CrossRefGoogle Scholar
  23. 23.
    Itoh H, Yamamoto E, Masaoka S, Sakai K, Tokunaga M (2009) Kinetic resolution of P-chirogenic compounds by palladium-catalyzed alcoholysis of vinyl ethers. Adv Synth Catal 351:1796–1800CrossRefGoogle Scholar
  24. 24.
    Ortial S, Montchamp J-L (2011) Synthesis of Z-alkenyl phosphorus compounds through hydroalumination and carbocupration of alkynyl precursors. Org Lett 13:3134–3137CrossRefGoogle Scholar
  25. 25.
    Jouvin K, Veillard R, Theunissen C, Alayrac C, Gaumont A-C, Evano G (2013) Unprecedented synthesis of alkynylphosphine-boranes through room-temperature oxidative alkynylation. Org Lett 15:4592–4595CrossRefGoogle Scholar
  26. 26.
    Kumar D, Singh N, Keshav K, Elias AJ (2013) Synthesis and structural characterization of the first examples of butadiynyl derived cyclic fluorinated phosphazenes. J Fluorine Chem 153:48–56Google Scholar
  27. 27.
    Yang X, Kajiyama S, Fang J-K, Xu F, Uemura Y, Koumura N, Hara K, Orita A, Otera J (2012) Synthesis and properties of anthrylene-substituted phenyleneethynylene dyes having amino/cyano group(s) and their application to dye-sensitized solar cells. Bull Chem Soc Jpn 85:687–697CrossRefGoogle Scholar
  28. 28.
    Kaleta J, Nečas M, Mazal C (2012) 1,3-Diethynylbicyclo[1.1.1]pentane, a useful molecular building block. Eur J Org Chem 4783–4796Google Scholar
  29. 29.
    Liedtke R, Kehr G, Fröhlich R, Daniliuc CG, Wibbeling B, Petersen JL, Erker G (2012) Carboboration reactions of 1,2-bis[(diarylphosphino)ethynyl]benzenes with tris(pentafluorophenyl)borane. Helv Chim Acta 95:2515–2527CrossRefGoogle Scholar
  30. 30.
    Lim SH, Cohen SM (2013) Self-assembled supramolecular clusters based on phosphines and coinage metals: tetrahedra, helicates, and mesocates. Inorg Chem 52:7862–7872CrossRefGoogle Scholar
  31. 31.
    Milde B, Schaarschmidt D, Ecorchard P, Lang H (2012) Fundamental study of (ferrocenylethynyl)phosphines: correlation of steric and electronic effects in C, C cross-coupling reactions. J Organomet Chem 706/707:52–65CrossRefGoogle Scholar
  32. 32.
    Allister TEM, Webb ME (2012) Triazole phosphohistidine analogues compatible with the Fmoc-strategy. Org Biomol Chem 10:4043–4049CrossRefGoogle Scholar
  33. 33.
    Ansiaux C, N’Go I, Vincent SP (2012) Reversible and efficient inhibition of UDP-galactopyranose mutase by electrophilic, constrained and unsaturated UDP-galactitol analogues. Chem Eur J 18:14860–14866CrossRefGoogle Scholar
  34. 34.
    Wang Z-W, Wang L-S (2003) Preparation of dichlorophenylphosphine via Friedel–Crafts reaction in ionic liquids. Green Chem 5:737–739CrossRefGoogle Scholar
  35. 35.
    Abranyi-Balogh P, Keglevich G (2011) Practical synthesis of 6-chloro-dibenzo[c,e][1,2]oxaphosphorine. Synth Commun 41:1421–1426CrossRefGoogle Scholar
  36. 36.
    Liu YY, Yang G, Yao D, Tian F, Zhang W (2011) Convenient synthesis of tropos phosphine-oxazoline ligands. Sci China Chem 54:87–94CrossRefGoogle Scholar
  37. 37.
    Dodds DL, Boele MDK, van Strijdonck GPF, de Vries JG, van Leeuwen PWNM, Kamer PCJ (2012) Design, testing and kinetic analysis of bulky monodentate phosphorus ligands in the Mizoroki–Heck reaction. Eur J Inorg Chem 1660–1671Google Scholar
  38. 38.
    Diaz AA, Buster B, Schomisch D, Khan MA, Baum JC, Wemschulte RJ (2008) Size matters: room temperature P-C bond formation through C-H activation in m-terphenyldiiodophosphines. Inorg Chem 47:2858–2863CrossRefGoogle Scholar
  39. 39.
    Freeman JL, Zhao Q, Zhang Y, Wang J, Lawson CM, Gray GM (2013) Synthesis, linear and nonlinear optical properties of phosphonato-substituted bithiophenes derived from 2,2′-biphenol. Dalton Trans 42:12281–12287Google Scholar
  40. 40.
    Chaikovskaya AA, Dmytriv YV, Shevchuk NV, Smaliy RV, Pinchuk AM, Tolmachev AA (2008) N → C2 → C3 migration of the dichlorophosphino group in the synthesis of phosphorylated NH-pyrroles. Heteroatom Chem 19:671–676CrossRefGoogle Scholar
  41. 41.
    Chaikovskaya AA, Dmytriv YV, Shevchuk NV, Smaliy RV, Pinchuk AM, Tolmachev AA (2009) Synthesis of 1,1-bis-phosphorus compounds from organoboranes. Heteroatom Chem 20:235–239CrossRefGoogle Scholar
  42. 42.
    Huryeva AN, Marchenko AP, Koidan GN, Yurchenko AA, Zarudnitskii EV, Pinchuk AM, Kostyuk AN (2010) 4-Phosphorylated 1,2-disubstituted imidazoles. Heteroatom Chem 21:103–118CrossRefGoogle Scholar
  43. 43.
    Svyaschenko YV, Barnych BB, Volochnyuk DM, Shevchuk NV, Kostyuk AN (2011) Electrocyclization of phosphahexatrienes: an approach to λ5-phosphinines. J Org Chem 76:6125–6133CrossRefGoogle Scholar
  44. 44.
    Svyaschenko YV, Volochnyuk DM, Kostyuk AN (2010) An approach to the synthesis of 1,2λ5-azaphosphinines. Tetrahedron Lett 51:6316–6318CrossRefGoogle Scholar
  45. 45.
    Kostyuk AN, Svyaschenko YV, Barnych BB, Sibgatulin DA, Rusanov EB, Volochnyuk DM (2009) Phosphorylation of derivatives of β-dialkyaminocrotonitriles with phosphorus(III) halides. Heteroatom Chem 20:194–201CrossRefGoogle Scholar
  46. 46.
    Dmitrichenko MY, Ivanov AV, Bidusenko IA, Ushakov IA, Mikhaleva AI, Trofimov BA (2011) Reaction of 1-vinylpyrrole-2-carbaldehydes with phosphorus pentachloride: a stereoselective synthesis of E-2-(2-dichloromethylpyrrol-1-yl)vinylphosphonyl dichlorides. Tetrahedron Lett 52:1317–1319CrossRefGoogle Scholar
  47. 47.
    Larina LI, Rozinov VG, Dmitrichenko MY, Es’kova LA (2009) NMR investigation of chlorophosphorylation products of N-vinylazoles. Magn Reson Chem 47:149–157CrossRefGoogle Scholar
  48. 48.
    Clayton JO, Jensen WL (1948) Reaction of paraffin hydrocarbons with phosphorus trichloride and oxygen to produce alkanephosphonyl chlorides. J Am Chem Soc 70:3880–3882CrossRefGoogle Scholar
  49. 49.
    Mayo FR, Durham LJ, Griggs KS (1963) The reaction of alkanes with phosphorus trichloride and oxygen. J Am Chem Soc 85:3156–3164CrossRefGoogle Scholar
  50. 50.
    Flurry RL Jr, Boozer CE (1966) The mechanism of the chlorophosphonation of hydrocarbons by phosphorus trichloride and oxygen. J Org Chem 31:2076–2083CrossRefGoogle Scholar
  51. 51.
    Schwertfeger H, Machuy MM, Würtele C, Dahl JEP, Carlson RMK, Schreiner PR (2010) Diamondoid phosphines – selective phosphorylation of nanodiamonds. Adv Synth Catal 352:609–615CrossRefGoogle Scholar
  52. 52.
    Montchamp J-L (2014) Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc Chem Res 47:77–87CrossRefGoogle Scholar
  53. 53.
    Guan J, Wu G-J, Han F-S (2014) PdII-catalyzed mild C_H ortho arylation and intramolecular amination oriented by a phosphinamide group. Chem Eur J 20. doi: 10.1002/chem.201303056Google Scholar
  54. 54.
    Hu RB, Zhang H, Zhang X-Y, Yang S-D (2014) Palladium-catalyzed P(O)R2 directed C–H arylation to synthesize electron-rich polyaromatic monophosphorus ligands. Chem Commun 50:2193–2195CrossRefGoogle Scholar
  55. 55.
    Seo J, Park Y, Jeon I, Ryu T, Park S, Lee PH (2013) Synthesis of phosphaisocoumarins through rhodium-catalyzed cyclization using alkynes and arylphosphonic acid monoesters. Org Lett 15:3358–3361CrossRefGoogle Scholar
  56. 56.
    Ryu T, Kim J, Park Y, Kim S, Lee PH (2013) Rhodium-catalyzed oxidative cyclization of arylphosphonic acid monoethyl esters with alkenes: efficient synthesis of benzoxaphosphole 1-oxides. Org Lett 15:3986–3989CrossRefGoogle Scholar
  57. 57.
    Park Y, Jeon I, Shin S, Min J, Lee PH (2013) Ruthenium-catalyzed C−H activation/cyclization for the synthesis of phosphaisocoumarins. J Org Chem 78:10209–10220CrossRefGoogle Scholar
  58. 58.
    Park Y, Seo J, Park S, Yoo EJ, Lee PH (2013) Rhodium-catalyzed oxidative C–H activation/cyclization for the synthesis of phosphaisocoumarins and phosphorous 2-pyrones. Chem Eur J 19:16461–16468CrossRefGoogle Scholar
  59. 59.
    Chary BC, Kim S, Park Y, Kim J, Lee PH (2013) Palladium-catalyzed C_H arylation using phosphoramidate as a directing group at room temperature. Org Lett 15:2692–2695CrossRefGoogle Scholar
  60. 60.
    Kang D, Cho J, Lee PH (2013) Palladium-catalyzed direct C-3 oxidative alkenylation of phosphachromones. Chem Commun 49:10501–10503CrossRefGoogle Scholar
  61. 61.
    Eom D, Jeong Y, Kim YR, Lee E, Choi W, Lee PH (2013) Palladium-catalyzed C(sp2 and sp3)_H activation/C_O bond formation: synthesis of benzoxaphosphole 1- and 2-oxides. Org Lett 15:5210–5213CrossRefGoogle Scholar
  62. 62.
    Meng X, Kim S (2013) Palladium(II)-catalyzed ortho-arylation of benzylic phosphonic monoesters using potassium aryltrifluoroborates. J Org Chem 78:11247–11254CrossRefGoogle Scholar
  63. 63.
    Itoh M, Hashimoto Y, Hirano K, Satoh T, Miura M (2013) Ruthenium-catalyzed ortho-alkenylation of phenylphosphine oxides through regio- and stereoselective alkyne insertion into C−H bonds. J Org Chem 78:8098–8104CrossRefGoogle Scholar
  64. 64.
    Zhang H-Y, Yi H-M, Wang G-W, Yang B, Yang S-D (2013) Pd(II)-catalyzed C(sp2)_H hydroxylation with R2(O)P-coordinating group. Org Lett 15:6186–6189CrossRefGoogle Scholar
  65. 65.
    Kuninobu Y, Yoshida T, Takai K (2011) Palladium-catalyzed synthesis of dibenzophosphole oxides via intramolecular dehydrogenative cyclization. J Org Chem 76:7370–7376CrossRefGoogle Scholar
  66. 66.
    Berger O, Petit C, Deal EL, Montchamp J-L (2013) Phosphorus-carbon bond formation: palladium-catalyzed cross-coupling of H-phosphinates and other P(O)H-containing compounds. Adv Synth Catal 355:1361–1373CrossRefGoogle Scholar
  67. 67.
    Baba K, Tobisu M, Chatani N (2013) Palladium-catalyzed direct synthesis of phosphole derivatives from triarylphosphines through cleavage of carbon–hydrogen and carbon–phosphorus bonds. Angew Chem Int Ed 52:11892–11895CrossRefGoogle Scholar
  68. 68.
    Li C, Yano T, Ishida N, Murakami M (2013) Pyridine-directed palladium-catalyzed phosphonation of C(sp2)_H bonds. Angew Chem Int Ed 52:9801–9804CrossRefGoogle Scholar
  69. 69.
    Feng C-G, Ye M, Xiao K-J, Li S, Yu J-Q (2013) Pd(II)-catalyzed phosphorylation of aryl C−H bonds. J Am Chem Soc 135:9322–9325CrossRefGoogle Scholar
  70. 70.
    Hou C, Ren Y, Lang R, Hu X, Xia C, Li F (2012) Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphites. Chem Commun 48:5181–5183CrossRefGoogle Scholar
  71. 71.
    Mi X, Huang M, Zhang J, Wang C, Wu Y (2013) Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C_H functionalization. Org Lett 15:6266–6269CrossRefGoogle Scholar
  72. 72.
    Gao Y, Wang G, Chen L, Xu P, Zhao Y, Zhou Y, Han L-B (2009) Copper-catalyzed aerobic oxidative coupling of terminal alkynes with H-phosphonates leading to alkynylphosphonates. J Am Chem Soc 131:7956–7957CrossRefGoogle Scholar
  73. 73.
    Qu Z, Chen X, Yuan J, Qu L, Li X, Wang F, Ding X, Zhao Y (2012) CuSO4·5H2O-catalyzed alkynylphosphonates formation: an efficient coupling reaction of terminal alkynes with H-phosphonates. Can J Chem 90:747–752CrossRefGoogle Scholar
  74. 74.
    Wang Z, Yu Z, Wang Y, Shi D (2012) pN-Heterocyclic carbene catalyzed intramolecular hydroacylation of alkynylphosphonates. Synthesis 44:1559–1568CrossRefGoogle Scholar
  75. 75.
    Effenberger F, Kottmann H (1985) Oxidative phosphonylation of aromatic compounds. Tetrahedron 41:4171–4182CrossRefGoogle Scholar
  76. 76.
    Kottman H, Sharzewski J, Effenberger F (1987) Oxidative phosphonylierung von aromaten mit cerammoniumnitrat. Synthesis 1987:797–801CrossRefGoogle Scholar
  77. 77.
    Wang H, Li X, Wu F, Wan B (2012) Direct oxidative C–P bond formation of indoles with dialkyl phosphites. Synthesis 44:941–945CrossRefGoogle Scholar
  78. 78.
    Xiang C-B, Bian Y-J, Mao X-R, Huang Z-Z (2012) Coupling reactions of heteroarenes with phosphites under silver catalysis. J Org Chem 77:7706–7710CrossRefGoogle Scholar
  79. 79.
    Mao X, Ma X, Zhang S, Hu H, Zhu C, Cheng Y (2013) Silver-catalyzed highly regioselective phosphonation of arenes bearing electron-withdrawing groups. Eur J Org Chem 4245–4248Google Scholar
  80. 80.
    Mondal M, Bora U (2013) Recent advances in manganese(III) acetate mediated organic synthesis. RSC Adv 3:18716–18754CrossRefGoogle Scholar
  81. 81.
    Pan X-Q, Zou J-P, Zhang W (2009) Manganese(III)-promoted reactions for formation of carbon–heteroatom bonds. Mol Divers 13:421–438CrossRefGoogle Scholar
  82. 82.
    Kagayama T, Nakano A, Sakaguchi S, Ishii Y (2006) Phosphonation of arenes with dialkyl phosphites catalyzed by Mn(II)/Co(II)/O2 redox couple. Org Lett 8:407–409CrossRefGoogle Scholar
  83. 83.
    Mu X-J, Zou J-P, Qian Q-F, Zhang W (2006) Manganese(III) acetate promoted regioselective phosphonation of heteroaryl compounds. Org Lett 8:5291–5293CrossRefGoogle Scholar
  84. 84.
    Xu W, Zou J-P, Zhang W (2010) Manganese(III)-mediated direct phosphonylation of arenes. Tetrahedron Lett 51:2639–2643CrossRefGoogle Scholar
  85. 85.
    Pan X-Q, Zou J-P, Zhang G-L, Zhang W (2010) Manganese(III)-mediated direct phosphonation of arylalkenes and arylalkynes. Chem Commun 46:1721–1723CrossRefGoogle Scholar
  86. 86.
    Zhou P, Jiang Y-J, Zou J-P, Zhang W (2012) Manganese(III) acetate mediated free-radical phosphonylation of flavones and coumarins. Synthesis 44:1043–1050CrossRefGoogle Scholar
  87. 87.
    Sun W-B, Ji Y-F, Pan X-Q, Zhou S-F, Zou J-P, Zhang W (2013) Mn(OAc)3-mediated selective free radical phosphonylation of pyridinones and pyrimidinones. Synthesis 45:1529–1533CrossRefGoogle Scholar
  88. 88.
    Kim SE, Kim SH, Lim CH, Kim JN (2013) An efficient synthesis of 5-phosphorylated uracil derivatives: oxidative cross-coupling between uracil and dialkyl phosphites. Tetrahedron Lett 54:1697–1699CrossRefGoogle Scholar
  89. 89.
    Wang G-W, Wang C-Z, Zou J-P (2011) Radical reaction of [60]fullerene with phosphorus compounds mediated by manganese(III) acetate. J Org Chem 76:6088–6094CrossRefGoogle Scholar
  90. 90.
    Fisher HC, Berger O, Gelat F, Montchamp J-L (2014) Manganese-catalyzed and promoted reactions of H-phosphinate esters. Adv Synth Catal 356:1199–1204Google Scholar
  91. 91.
    Berger O, Montchamp J-L (2014) Manganese-Mediated Intermolecular Arylation of H-Phosphinates and Related Compounds. Chem Eur J 20:12385–12388CrossRefGoogle Scholar
  92. 92.
    Brown JM, Woodward S (1991) Selective ortho lithiation of (2,5-dimethoxyphenyl)diphenylphosphine oxide and trapping of the resulting aryllithium with electrophiles. J Org Chem 56:6803–6809CrossRefGoogle Scholar
  93. 93.
    Ho T-H, Hwang H-J, Shieh J-Y, Chung M-C (2009) Thermal, physical and flame-retardant properties of phosphorus-containing epoxy cured with cyanate ester. React Funct Polymers 69:176–182CrossRefGoogle Scholar
  94. 94.
    Demchuk OM, Yoruk B, Blackburn T, Snieckus V (2006) A mixed naphthyl-phenyl phosphine ligand motif for Suzuki, Heck, and hydrodehalogenation reactions. Synlett 18:2908–2913CrossRefGoogle Scholar
  95. 95.
    Frolova NG, Savin ED, Goryunov EI, Lysenko KA, Nelyubina YV, Petrovskii PV, Nifant’ev EE (2010) Addition of bis(pentafluorophenyl)phosphinous acid to compounds with activated C=C bond as a method for the synthesis of first tertiary P, P_bis(pentafluorophenyl)phosphine oxides. Doklady Chem 430:18–23CrossRefGoogle Scholar
  96. 96.
    Xiong B, Shen R, Goto M, Yin S-F, Han L-B (2012) Highly selective 1,4- and 1,6-addition of P(O)_H compounds to p-quinones: a divergent method for the synthesis of C- and O-phosphoryl hydroquinone derivatives. Chem Eur J 18:16902–16910CrossRefGoogle Scholar
  97. 97.
    Müller P, Bykov Y, Walter O, Döring M (2012) New phosphorus-containing quinone derivatives. Heteroatom Chem 23:383–394CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryTexas Christian UniversityFort WorthUSA

Personalised recommendations