Skip to main content

Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights

  • Chapter
  • First Online:
Photoinduced Phenomena in Nucleic Acids II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 356))

Abstract

This review chapter presents a critical survey of the main available information on the UVB and UVA bipyrimidine photoproducts which constitute the predominant recipient classes of photo-induced DNA damage. Evidence is provided that UVB irradiation of isolated DNA in aqueous solutions and in cells gives rise to the predominant generation of cis-syn cyclobutane pyrimidine dimers (CPDs) and, to a lesser extent, of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the importance of which is strongly primary sequence dependent. A notable change in the photoproduct distribution is observed when DNA either in the dry or in desiccated microorganisms is exposed to UVC or UVB photons with an overwhelming formation of 5-(α-thymidyl)-5,6-dihydrothymidine, also called spore photoproduct (dSP), at the expense of CPDs and 6-4PPs. UVA irradiation of isolated and cellular DNA gives rise predominantly to bipyrimidine photoproducts with the overwhelming formation of thymine-containing cyclobutane pyrimidine dimers at the exclusion of 6-4PPs. UVA photons have been shown to modulate the distribution of UVB dimeric pyrimidine photoproducts by triggering isomerization of the 6-4PPs into related Dewar valence isomers. Mechanistic aspects of the formation of bipyrimidine photoproducts are discussed in the light of recent photophysical and theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OH:

Hydroxyl radical

6-4PPs:

Pyrimidine (6-4) pyrimidone photoproducts

8-oxodGuo:

8-Oxo-7,8-dihydro-2′-deoxyguanosine

8-oxoGua:

8-Oxo-7,8-dihydroguanine

BCCs:

Basal cell carcinoma

CMMs:

Cutaneous malignant melanoma

CPDs:

Cyclobutane pyrimidine dimers

DEW:

Dewar valence isomer

DFT:

Density functional theory

DNA-PF:

DNA protection factor

dSP:

5-(α-Thymidyl)-5,6-dihydrothymidine or “spore photoproduct”

HPLC-ESI-MS/MS:

High performance coupled to electrospray ionization – tandem mass spectrometry

LM-PCR:

Ligation-mediated polymerase chain reaction

mC:

5-Methylcytosine

MED:

Minimal erythemal dose

SASP:

Small, acid-soluble spore protein

SCCs:

Squamous cell carcinoma (SCCs

SPF:

Sun protection factor

TD-DFT:

Time-dependent density functional theory

Th:

Thymidine

TTET:

Triple-triplet energy transfer

References

  1. de Gruijl FR, Rebel H (2008) Early events in UV carcinogenesis – DNA damage, target cells and mutant p53 foci. Photochem Photobiol 84:382–387

    Google Scholar 

  2. Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49:978–986

    Google Scholar 

  3. Mitchell D, Fernandez A (2012) The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma. Photochem Photobiol Sci 11:69–73

    CAS  Google Scholar 

  4. Gandini S, Autier P, Boniol M (2012) Reviews on sun exposure and artificial light and melanoma. Prog Biophys Mol Biol 107:362–366

    Google Scholar 

  5. Pfeifer GP, Besaratinia A (2012) UV wavelength DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 11:90–97

    CAS  Google Scholar 

  6. Noonan F, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Nat Commun 3:884

    Google Scholar 

  7. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88:10124–11012

    CAS  Google Scholar 

  8. Sage E, Girard P-M, Francesconi S (2012) Unravelling UVA-induced mutagenesis. Photochem Photobiol Sci 11:74–80

    CAS  Google Scholar 

  9. Ikehata H, Kumagai J, Ono T, Morita A (2013) Solar-UV-signature mutation prefers TCG to CCG: extrapolative consideration from UVA1-induced mutation spectra in mouse skin. Photochem Photobiol Sci 12:1319–1327

    CAS  Google Scholar 

  10. Cleaver JE, Crowley E (2002) UV damage, DNA repair and skin carcinogenesis. Front Biosci 7:1024–1043

    Google Scholar 

  11. Niedernhofer LJ, Bohr VA, Sander M, Kraemer KH (2011) Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. Mech Ageing Dev 132:340–347

    CAS  Google Scholar 

  12. Cadet J, Vigny P (1990) The photochemistry of nucleic acids. In: Morrison H (ed) Bioorganic photochemistry: photochemistry and the nucleic acids, vol 1. Wiley, New York, pp 1–272

    Google Scholar 

  13. Cadet J, Anselmino C, Douki T, Voituriez L (1992) Photochemistry of nucleic acids in cells. J Photochem Photobiol B 15:277–298

    CAS  Google Scholar 

  14. Taylor JS (1994) Unraveling the molecular pathway from sunlight to skin-cancer. Acc Chem Res 27:76–82

    CAS  Google Scholar 

  15. Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63:88–102

    CAS  Google Scholar 

  16. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation mediated damage to cellular DNA. Mutat Res 571:3–17

    CAS  Google Scholar 

  17. Desnous C, Guillaume D, Clivio P (2010) Spore photoproduct: a key to bacterial eternal life. Chem Rev 110:1213–1232

    CAS  Google Scholar 

  18. Heil K, Pearson D, Carell T (2010) Chemical investigation of light induced bipyrimidine damage and repair. Chem Soc Rev 40:4271–4278

    Google Scholar 

  19. Cadet J, Mouret S, Ravanat JL, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88:1048–1065

    CAS  Google Scholar 

  20. Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Müller M, Carell T (2014) Formation and direct repair of UV-induced DNA pyrimidine lesions. Photochem Photobiol 90:1–14

    CAS  Google Scholar 

  21. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5:a012559

    Google Scholar 

  22. Richa SRP, Häder D-P (2014) Physiological aspects of UV-excitation of DNA. Top Curr Chem. doi:10.1007/128-2014-531

    Google Scholar 

  23. Batista LFZ, Kaina B, Meneghini R, Menck CFM (2009) How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 681:197–208

    CAS  Google Scholar 

  24. Vink AA, Yarosh DB, Kripke ML (1996) Chromophore for UV-induced immunosuppression: DNA. Photochem Photobiol 63:383–386

    CAS  Google Scholar 

  25. de Gruijl FR (2008) UV-induced immunosuppression in the balance. Photochem Photobiol 84:2–9

    Google Scholar 

  26. Crespo-Hernadez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2020

    Google Scholar 

  27. Middleton CT, de la Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B (2009) Annu Rev Phys Chem 60:217–239

    CAS  Google Scholar 

  28. Markovitsi D, Gustavsson T, Banyasz T (2010) Absorption of UV radiation by DNA: spatial and temporal features. Mutat Res 704:21–28

    CAS  Google Scholar 

  29. Nielsen LM, Hoffmann SV, Nielsen SB (2013) Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated. Photochem Photobiol Sci 12:1273–1285

    CAS  Google Scholar 

  30. Changenet-Barret P, Hua Y, Markovitsi D (2014) Electronic excitations in guanine quadruplexes. Top Curr Chem. doi:1007/128_2013_511

    Google Scholar 

  31. Schreier WJ, Kubon J, Regner N, Haiser K, Schrader TE, Zinth W, Clivio P, Gilch P (2009) Thymine dimerization in DNA model systems: cyclobutane photolesion is predominantly formed via the singlet channel. J Am Chem Soc 131:5038–5039

    CAS  Google Scholar 

  32. Improta R (2012) Photophysics and photochemistry of thymine deoxy-dinucleotide in water: a PCM/TD-DFR quantum mechanical study. J Phys Chem B 116:14261–14274

    CAS  Google Scholar 

  33. Plasser F, Aquino AJA, Lischka H, Nachtigallová D (2014) Electronic excitation processes in single-strand and double-strand DNA: a computational approach. Top Curr Chem. doi:10.1007/128_2013_517

  34. Cadet J, Douki T, Ravanat JL, Di Mascio P (2009) Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem Photobiol Sci 8:903–911

    CAS  Google Scholar 

  35. Epe B (2012) DNA damage spectra induced by photosensitization. Photochem Photobiol Sci 11:98–106

    CAS  Google Scholar 

  36. Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B 63:101–113

    Google Scholar 

  37. Pattison DI, Rahmanto AS, Davies MJ (2012) Photo-oxidation of proteins. Photochem Photobiol Sci 11:38–53

    CAS  Google Scholar 

  38. Douki T, Perdiz D, Grof P, Kulunsics Z, Moustacchi E, Cadet J, Sage E (1999) Oxidation of guanine in cellular DNA by solar UV radiation: biological role. Photochem Photobiol 70:184–190

    CAS  Google Scholar 

  39. Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226

    CAS  Google Scholar 

  40. Courdavault S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2004) Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UV-A irradiated human skin cells. Mutat Res 556:135–142

    CAS  Google Scholar 

  41. Douki T, Vadesne-Bauer G, Cadet J (2002) Formation of 2’-deoxyuridine hydrates upon exposure of nucleosides to gamma radiation and UVC-irradiation of isolated and cellular DNA. Photochem Photobiol Sci 1:565–569

    CAS  Google Scholar 

  42. Zhao X, Nadji S, Kao JL, Taylor JS (1996) The structure of d(TpA), the major photoproduct of thymidylyl-(3’5’)-deoxyadenosine. Nucleic Acids Res 24:1554–1560

    CAS  Google Scholar 

  43. Davies RJ, Malone JF, Gan Y, Cardin CJ, Lee MP, Neidle S (2007) High resolution crystal structure of the intramolecular d(TpA) thymine-adenine photoadduct and its mechanistic implications. Nucleic Acids Res 35:1048–1053

    CAS  Google Scholar 

  44. Asgatay S, Martinez A, Coantic-Castex S, Harakat D, Philippe C, Douki T, Clivio P (2010) UV-induced TA photoproducts: formation and hydrolysis in double-stranded DNA. J Am Chem Soc 132:10260–10261

    CAS  Google Scholar 

  45. Su DGT, Taylor JSA, Gross ML (2010) A new photoproduct of 5-methylcytosine and adenine characterized by high-performance liquid chromatography and mass spectrometry. Chem Res Toxicol 23:474–479

    CAS  Google Scholar 

  46. Münzel M, Szeibert C, Glas AF, Globisch D, Carell T (2011) Discovery and synthesis of new UV-induced intrastrand C(4-8)G and G(8-4)C photolesions. J Am Chem Soc 133:5186–5189

    Google Scholar 

  47. Cadet J, Douki T, Ravanat J-L (2008) Oxidatively generated damage to the guanine moiety: mechanistic aspects and formation in cells. Acc Chem Res 4:1075–1083

    Google Scholar 

  48. Cadet J, Ravanat J-L, TavernaPorro M, Menoni H, Angelov D (2012) Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 327:5–15

    CAS  Google Scholar 

  49. Douki T, Ravanat J-L, Pouget JP, Testard I, Cadet J (2006) Minor contribution of direct ionization to DNA base damage induced by heavy ions. Int J Radiat Biol 82:119–127

    CAS  Google Scholar 

  50. Madugundu GS, Wagner JR, Cadet J, Kropachev YBH, Geacintov NE, Shafirovich V (2013) Generation of guanine-thymine cross-links in human cells by one-electron oxidation mechanisms. Chem Res Toxicol 26:1031–1033

    CAS  Google Scholar 

  51. Perrier S, Hau D, Gasparutto D, Cadet J, Favier A, Ravanat J-L (2006) Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trylisine peptide. J Am Chem Soc 128:5703–5710

    CAS  Google Scholar 

  52. Cadet J, Wagner JR, Shafirovich V, Geacintov NE (2014) One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int J Radiat Biol 90:423–432

    Google Scholar 

  53. Beukers R, Berends W (1960) Isolation and identification of the irradiation product of thymine. Biochim Biophys Acta 41:550–551

    CAS  Google Scholar 

  54. Banyasz A, Douki T, Improta R, Gustavson T, Onidas D, Vayá I, Perron M, Markovitsi D (2012) Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experiments and theoretical study. J Am Chem Soc 134:14834–14845

    CAS  Google Scholar 

  55. Cadet J, Voituriez L, Hruska FE, Kan LS, De Leeuw FAAM, Altona C (1985) Characterization of thymidine ultraviolet photoproducts-cyclobutane dimers and 5,6-dihydrothymidine. Can J Chem 63:2861–2868

    CAS  Google Scholar 

  56. Branco MR, Ficz G, Reik W (2011) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    Google Scholar 

  57. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    CAS  Google Scholar 

  58. Cadet J, Wagner JR (2014) TET oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Mutat Res. doi:1016/j.mrgentox.2013.09.001

    Google Scholar 

  59. Douki T, Cadet J (1994) Formation of cyclobutane dimers and (6-4) photoproducts upon far-UV photolysis of 5-methylcytosine-containing dinucleoside monophosphates. Biochemistry 33:11942–11950

    CAS  Google Scholar 

  60. Celewicz L, Mayer M, Shetlar MD (2005) The photochemistry of thymidylyl-(3′-5′)-5-methyl-2′-deoxycytidine in aqueous solution. Photochem Photobiol 81:404–418

    CAS  Google Scholar 

  61. Li X, Eriksson LA (2005) Influence of C5-methylation of cytosine on the formation of cyclobutane pyrimidine dimer. Chem Phys Lett 401:99–103

    CAS  Google Scholar 

  62. Cannistraro VJ, Taylor J-S (2009) Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implication for UC-induced C-to-T mutation hotspots. J Mol Biol 392:1145–1157

    CAS  Google Scholar 

  63. Cannistraro VJ, Taylor J-SA (2010) Methyl CpG binding protein 2 (MeCP2) enhances photodimer formation at methyl-CpG sites but suppresses dimer deamination. Nucleic Acids Res 38:6943–6955

    CAS  Google Scholar 

  64. Song Q, Cannistraro TJ-S (2011) Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. J Biol Chem 286:6329–6335

    CAS  Google Scholar 

  65. Song Q, Sherrer SM, Suo Z, Taylor J-S (2012) Preparation of site-specific T=mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase η. J Biol Chem 287:8021–8027

    CAS  Google Scholar 

  66. Garcès F, Dávila CA (1982) Alterations in DNA irradiated with ultraviolet radiation. The formation process of cyclobutylpyrimidine dimers: cross sections, action spectra and quantum yields. Photochem Photobiol 35:9–16

    Google Scholar 

  67. Pan Z, Chen J, Schreier WJ, Kohler B, Lewis FD (2012) Thymine dimer photoreversal in purine-containing trinucleotides. J Phys Chem B 116:698–704

    CAS  Google Scholar 

  68. Sancar A (2000) Enzymatic photoreactivation: 50 years and counting. Mutat Res 451:25–37

    CAS  Google Scholar 

  69. Brettel K, Byrdin M (2010) Reaction mechanisms of DNA photolyase. Curr Opin Struct Biol 20:693–701

    CAS  Google Scholar 

  70. Clivio P, Fourrey J-L, Gasche L, Favre A (1991) DNA photodamage mechanistic studies: characterization of a thietane intermediate in a model reaction relevant to “6-4 lesion”. J Am Chem Soc 113:5481–5483

    CAS  Google Scholar 

  71. Labet V, Jorge N, Morell C, Douki T, Grand A, Cadet J, Eriksson LA (2013) UV-induced formation of the thymine-thymine pyrimidone photoproduct – a DFT study of the oxetane intermediate ring opening. Photochem Photophys Sci 12:1509–1516

    CAS  Google Scholar 

  72. Taylor JS, Lu HF, Kotyk JJ (1990) Quantitative conversion of the (6–4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight. Photochem Photobiol 51:161–167

    CAS  Google Scholar 

  73. Kan L-S, Voituriez L, Cadet J (1992) The Dewar valence isomer of the (6-4) photoadducts of thymidylyl-(3′-5′)-thymidine monophosphate: formation, alkaline lability and conformational properties. J Photochem Photobiol B 12:339–357

    CAS  Google Scholar 

  74. Taylor JS, Garett DS, Cohrs MP (1988) Solution-state structure of the Dewar pyrimidinone photoproduct of thymidylyl-(3’-5’)-thymidine. Biochemistry 27:7206–7215

    CAS  Google Scholar 

  75. Haiser K, Fingerhut BP, Heil K, Glas A, Herzog TT, Pilles BM, Schreir ZW, de Vivie-Riedle R, Carell T (2012) Mechanism of UV-induced formation of Dewar lesions in DNA. Angew Chem Int Ed 51:408–411

    CAS  Google Scholar 

  76. Franklin WA, Lo KM, Haseltine WA (1982) Alkaline lability of fluorescent photoproducts produced in ultraviolet light-irradiated DNA. J Biol Chem 257:13535–13543

    CAS  Google Scholar 

  77. Donnellan JE, Setlow RB (1965) Thymine photoproducts but not thymine dimers found in ultraviolet-irradiated bacterial spores. Science 149:308–310

    CAS  Google Scholar 

  78. Varghese AJ (1970) 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun 38:484–490

    CAS  Google Scholar 

  79. Douki T, Laporte G, Cadet J (2003) Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. Nucleic Acids Res 31:3134–3142

    CAS  Google Scholar 

  80. Chandra T, Silver SC, Zilinskas E, Shepard EM, Broderick WE, Broderick JB (2009) Spore photoproduct lyase catalyzes specific repair of the 5R but not 5S spore photoproduct. J Am Chem Soc 131:2420–2421

    CAS  Google Scholar 

  81. Moysan A, Viari A, Vigny P, Voituriez L, Cadet J, Moustacchi E, Sage E (1991) Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA. Biochemistry 30:7080–7088

    CAS  Google Scholar 

  82. Shaw AA, Cadet J (1990) Radical combination processes under the direct effects of gamma radiation on thymidine. J Chem Soc Perkin Trans 2:2063–2070

    Google Scholar 

  83. Mantel C, Chandor A, Gasparutto D, Douki T, Atta M, Fontecave M, Bayle P-A, Mouesca J-M, Bardet M (2008) Combined NMR and DFT studies for the absolute configuration elucidation of the spore photoproduct, a UV-induced DNA lesion. J Am Chem Soc 130:16978–16984

    CAS  Google Scholar 

  84. Chandor A, Berteau O, Douki T, Gasparutto D, Sanakis Y, Ollagnier-de-Choudens S, Atta M, Fontecave M (2006) Dinucleotide spore photoproduct, a minimal substrate of the DNA repair spore photoproduct lyase enzyme from Bacillus subtilis. J Biol Chem 283:26922–26931

    Google Scholar 

  85. Mohr SC, Sokolov NV, He CM, Setlow P (1991) Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc Natl Acad Sci U S A 88:77–81

    CAS  Google Scholar 

  86. Nicholson WL, Setlow B, Setlow P (1991) Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of bacillus or clostridium species makes spore photoproduct but not thymine dimers. Proc Natl Acad Sci U S A 88:8288–8292

    CAS  Google Scholar 

  87. Douki T, Stelow B, Setlow P (2005) Effects of the binding of alpha/beta-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochem Photobiol 81:163–169

    CAS  Google Scholar 

  88. Douki T, Setlow B, Setlow P (2005) Photosensitization of DNA by dipicolinic acid, a major component of Bacillus species. Photochem Photobiol Sci 4:591–597

    CAS  Google Scholar 

  89. Varghese AJ (1970) Photochemistry of thymidine in ice. Biochemistry 9:4781–4787

    CAS  Google Scholar 

  90. Lin G, Li L (2010) Elucidation of spore-photoproduct formation by isotope labeling. Angew Chem Int Ed 49:9926–9929

    CAS  Google Scholar 

  91. Du Q, Zhao H, Song D, Liu K, Su H (2012) Consecutive reaction mechanism for the formation of spore photoproduct in DNA photolesion. J Phys Chem B 116:11117–11123

    CAS  Google Scholar 

  92. Douki T, Court M, Cadet J (2000) Electrospray-mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts. J Photochem Photobiol B 54:145–154

    CAS  Google Scholar 

  93. Douki T, Court M, Sauvaigo S, Odin F, Cadet J (2000) Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem 275:11678–11685

    CAS  Google Scholar 

  94. Douki T (2013) The variety of UV-induced pyrimidine photoproducts in DNA as shown by chromatographic quantification methods. Photochem Photobiol Sci 12:1286–1302

    CAS  Google Scholar 

  95. Mori T, Nakane M, Hattori T, Ihara M, Nikaido O (1991) Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4) photoproduct from the same mouse immunized with ultra-violet-irradiated DNA. Photochem Photobiol 54:225–232

    CAS  Google Scholar 

  96. Mizuno T, Matsunaga T, Ihara M, Nikaido O (1991) Establishment of monoclonal antibody recognizing cyclobutane-type thymine dimer in DNA. A comparative study with 64 M-1 antibody specific for (6-4) photoproducts. Mutat Res 254:175–184

    CAS  Google Scholar 

  97. Matsunaga T, Hatakeyama Y, Ohta M, Mori T, Nikaido O (1993) Establishment and characterization of a monoclonal antibody recognizing the Dewar isomers of (6-4) photoproducts. Photochem Photobiol 57:934–940

    CAS  Google Scholar 

  98. Berton TR, Mitchell DL (2012) Quantification of DNA photoproducts in mammalian cell DNA using radioimmunoassay. Methods Mol Biol 920:177–187

    CAS  Google Scholar 

  99. Kim ST, Malhotra K, Smith CA, Taylor JS, Sancar A (1993) DNA photolyase repairs the trans-syn cyclobutane thymine dimer. Biochemistry 32:7065–7068

    CAS  Google Scholar 

  100. Matallana-Surget S, Meador JA, Joux F, Douki T (2008) Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts. Photochem Photobiol Sci 7:794–801

    CAS  Google Scholar 

  101. Nguyen HT, Minton KW (1988) Ultraviolet-induced dimerization of non-adjacent dimerization. A potential mechanism for the targeted -1 frameshift mutation. J Mol Biol 200:681–693

    CAS  Google Scholar 

  102. Nguyen HT, Minton KW (1989) Extensive photodimerization of non-adjacent pyrimidines. J Mol Biol 210:869–874

    CAS  Google Scholar 

  103. Su DGT, Kao JL-F, Gross ML, Taylor J-S (2008) Structure determination of an interstrand-type cis-anti cyclobutane dimer produced in high yield by UVB light in an oligodeoxynucleotides at acidic pH. J Am Chem Soc 130:11328–11337

    CAS  Google Scholar 

  104. Su DGT, Fang H, Gross ML, Taylor J-S (2009) Photocrosslinking of human telomeric G-quadruplex loops by anti cyclobutane thymine dimer formation. Proc Natl Acad Sci U S A 106:12861–12866

    CAS  Google Scholar 

  105. Smith JE, Lu C, Taylor JS (2014) Effects of sequence and metal ions on UVB-induced anti cyclobutane pyrimidine dimer formation in human telomeric DNA sequences. Nucleic Acids Res 42:5007

    CAS  Google Scholar 

  106. Moeller R, Douki T, Rettberg P, Reitz G, Cadet J, Nicholson WL, Horneck G (2010) Genomic bipyrimidine nucleotide frequency and microbial reactions to germicidal UV radiation. Arch Microbiol 192:521–529

    CAS  Google Scholar 

  107. De la Vega UP, Rettberg P, Douki T, Cadet J, Horneck G (2005) Sensitivity to polychromatic UV-radiation of strains of Deinococcus radiodurans differing in their DNA repair capacity. Int J Radiat Biol 81:601–611

    Google Scholar 

  108. Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H (2010) UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 73:271–277

    CAS  Google Scholar 

  109. Matallana-Surget S, Douki T, Cavicchioli R, Joux F (2009) Remarkable resistance to UVB of the marine bacterium Photobacterium angustum explained by an unexpected role of photolyase. Photochem Photobiol Sci 8:1313–1320

    CAS  Google Scholar 

  110. Moeller R, Stackebrandt E, Douki T, Cadet J, Rettberg P, Mollenkopf HJ, Reitz G, Horneck G (2007) DNA bipyrimidine photoproduct repair and transcriptional response of UV-C irradiated Bacillus subtilis. Arch Microbiol 188:421–431

    CAS  Google Scholar 

  111. Albarracin VH, Pathak GP, Douki T, Cadet J, Borsarelli CD, Gärtner W, Farias ME (2012) Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: remarkable UV-B resistance and efficient DNA damage repair. Orig Life Evol Biosph 42:201–221

    CAS  Google Scholar 

  112. Albarracin VH, Simon J, Pathak GP, Valle L, Douki T, Cadet J, Borsarelli CD, Farias ME, Gärtner W (2014) First characterization of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean lakes. Photochem Photobiol Sci 13:739–750

    CAS  Google Scholar 

  113. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A 103:13765–13770

    CAS  Google Scholar 

  114. Courdavault S, Baudouin C, Charveron M, Canguilhem B, Favier A, Cadet J, Douki T (2005) Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations. DNA Repair (Amst) 4:836–844

    CAS  Google Scholar 

  115. Mouret S, Charveron M, Favier A, Cadet J, Douki T (2008) Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair (Amst) 7:704–712

    CAS  Google Scholar 

  116. Mouret S, Leccia M-T, Bourrain J-L, Douki T, Beani JC (2011) Individual photosensitivity of human skin and UVA-induced pyrimidine dimers in DNA. J Invest Dermatol 131:1539–1546

    CAS  Google Scholar 

  117. Mouret S, Bogdanowicz HMJ, Castex-Rizzi N, Cadet J, Favier A, Douki T (2011) Assessment of the photoprotection properties of sunscreens by chromatographic measurement of DNA damage in skin explants. Photochem Photobiol 87:109–116

    CAS  Google Scholar 

  118. Schuch AP, Lago JC, Tagura T, Menck CF (2012) DNA dosimetry assessment for sunscreen genotoxic photoprotection. PLoS One 7:e40344

    CAS  Google Scholar 

  119. Ravanat J-L, Di Mascio P, Martinez GR, Medeiros MH, Cadet J (2000) Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 275:40601–40604

    CAS  Google Scholar 

  120. Cadet J, Douki T, Ravanat J-L (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49:9–21

    CAS  Google Scholar 

  121. Dedon PC (2008) The toxicology of 2-deoxyribose oxidation in DNA. Chem Res Toxicol 21:206–219

    Google Scholar 

  122. Charlier M, Hélène C (1967) Photosensitized dimerization of orotic acid in aqueous solution. Photochem Photobiol 6:501–504

    CAS  Google Scholar 

  123. Lamola AA (1970) Triplet photosensitization and the photobiology of thymine dimers in DNA. Pure Appl Chem 24:599–610

    CAS  Google Scholar 

  124. Ben-Ishai R, Ben-Hur E, Hornfeld Y (1968) Photosensitized dimerization of thymine and cytosine in DNA. Isr J Chem 6:769–775

    CAS  Google Scholar 

  125. Gut IG, Wood PD, Redmond RW (1996) Interaction of triplet photosensitizers with nucleotides and DNA in aqueous solution at room temperature. J Am Chem Soc 118:2366–2373

    CAS  Google Scholar 

  126. Wood PD, Redmond RW (1996) Triplet state interactions between nucleic acid bases in solution at room temperature: intramolecular energy and electron transfer. J Am Chem Soc 118:4256–4263

    CAS  Google Scholar 

  127. Marguery MC, Chouini-Lalanne N, Ader JC, Paillous N (1998) Comparison of the DNA damage photoinduced by fenofibrate and ketoprofen, two phototoxic drugs of parent structure. Photochem Photobiol 68:679–684

    CAS  Google Scholar 

  128. Lhiaubet V, Paillous N, Chouini-Lalanne N (2001) Comparison of DNA damage photoinduced by ketoprofen, fenofibric acid and benzophenone via electron and energy transfer. Photochem Photobiol 74:670–678

    CAS  Google Scholar 

  129. Cuquerella MC, Lhiaubet-Vallet V, Bosca F, Miranda MA (2011) Photosensitised pyrimidine dimerisation in DNA. Chem Sci 2:1219–1232

    CAS  Google Scholar 

  130. Cuquerella MC, Lhiiaubet-Vallet V, Cadet J, Miranda MA (2012) Benzophenone photosensitized DNA damage. Acc Chem Res 45:1558–1570

    CAS  Google Scholar 

  131. Trzcionka J, Lhiaubet-Vallet V, Chouini-Lalanne N (2004) DNA photosensitization by indoprofen – is DNA damage photoinduced by indoprofen or by its photoproducts? Photochem Photobiol Sci 3:226–230

    CAS  Google Scholar 

  132. Traynor NJ, Gibbs NK (1999) The phototumorigenic fluoroquinolone lomefloxacin photosensitizes pyrimidine dimer formation in human keratinocytes in vitro. Photochem Photobiol 70:957–959

    CAS  Google Scholar 

  133. Sauvaigo S, Douki T, Odin F, Caillat S, Ravanat J-L, Cadet J (2001) Analysis of fluoroquinolone-mediated photosensitization of 2′-deoxyguanosine, calf thymus and cellular DNA: determination of type-I, type-II and triplet-triplet energy transfer mechanism contribution. Photochem Photobiol 13:230–237

    Google Scholar 

  134. Bosca F, Lhiaubet-Vallet V, Cuquerella MC, Castell JV, Miranda MA (2006) The triplet energy of thymine in DNA. J Am Chem Soc 128:6318–6319

    CAS  Google Scholar 

  135. Lhiaubet-Vallet V, Cuquerella MC, Castell JV, Bosca F, Miranda MA (2007) Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA. J Phys Chem B 111:7409–7414

    CAS  Google Scholar 

  136. Varghese AJ (1972) Photochemistry of nucleic acids and their constituents. In: Giese AC (ed) Photophysiology, vol 7. Academic, New York, pp 207–274

    Google Scholar 

  137. Patrick MH, Snow JM (1977) Studies on thymine-derived UV photoproducts in DNA-I. A comparative analysis of damage caused by 254 nm irradiation and triplet-state photosensitization. Photochem Photobiol 25:373–384

    CAS  Google Scholar 

  138. Douki T, Bérard I, Wack A, Andrä S (2014) Contribution of cytosine-containing cyclobutane dimers to DNA damage produced by photosensitized triplet-triplet energy transfer. Chemistry 20:5787–5794

    Google Scholar 

  139. Lamola AA, Gueron M, Yamane T, Eisinger J, Shulman RG (1967) Triplet state of DNA. J Chem Phys 47:2210–2217

    CAS  Google Scholar 

  140. Zuo ZH, Yao SD, Luo JA, Wang WF, Zhang JS, Lin NY (1992) Laser photolysis of cytosine, cytidine and dCMP in aqueous solution. J Photochem Photobiol B 15:215–222

    CAS  Google Scholar 

  141. Abouaf R, Pommier J, Dunet H, Quan P, Nam PC, Nguyen MT (2004) The triplet state of cytosine and its derivatives: electron impact and quantum chemical study. J Chem Phys 121:11668–11674

    CAS  Google Scholar 

  142. Tyrrell RM (1973) Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation. Photochem Photobiol 17:69–73

    CAS  Google Scholar 

  143. Freeman SE, Ryan SL (1990) Wavelength dependence for UV-induced pyrimidine dimer formation in DNA of human peripheral blood lymphocytes. Mutat Res 235:181–186

    CAS  Google Scholar 

  144. Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    CAS  Google Scholar 

  145. Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18:2379–2384

    CAS  Google Scholar 

  146. Perdiz D, Grόf P, Mezzina M, Nikaido O, Moustacchi E, Sage E (2000) Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells: possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem 275:26732–26742

    CAS  Google Scholar 

  147. Freeman SE, Hacham H, Gange RW, Maytum DJ, Sutherland JC, Sutherland BM (1989) Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci U S A 86:5605–5609

    CAS  Google Scholar 

  148. Young AR, Potten CS, Nikaido O, Parsons PG, Boenders J, Ramsden JM, Chadmick CA (1998) Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers. J Invest Dermatol 111:936–940

    CAS  Google Scholar 

  149. Mouret S, Forestier A, Douki T (2012) The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci 11:155–162

    CAS  Google Scholar 

  150. Rochette PJ, Therrien J-P, Drouin R, Perdiz D, Bastien N, Drobetsky EA, Sage E (2003) UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Res 31:2786–2794

    CAS  Google Scholar 

  151. Kappes UP, Luo D, Potter M, Schulmeister K, Rünger TM (2006) Short- and long-wave light (UVB and UVA) induce similar mutations in human skin cells. J Invest Dermatol 126:667–675

    CAS  Google Scholar 

  152. Rünger TM (2008) C -> T transition mutations are not solely UVB-signature mutations, because they are also generated by UVA. J Invest Dermatol 128:2138–2140

    Google Scholar 

  153. Ikehata H, Kawai K, Komura J, Sakatsume K, Wang L, Imai M, Higashi S, Nikaido O, Yamamoto K, Hieda K, Watanabe M, Kasai H, Ono T (2008) UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. J Invest Dermatol 128:2289–2296

    CAS  Google Scholar 

  154. Agar NS, Halliday GM, Barnetson ESC, Ananthaswamy HN, Wheeler M, Jones AM (2004) Proc Natl Acad Sci U S A 101:4954–4959

    CAS  Google Scholar 

  155. Kuluncsics Z, Perdriz D, Brulay E, Muel B, Sage E (1999) Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts. J Photochem Photobiol B 49:71–80

    CAS  Google Scholar 

  156. Jiang Y, Rabbi M, Kim M, Ke CH, Lee W, Clark RL, Mieczkowski PA, Marszalek PE (2009) UVA generates pyrimidine dimers in DNA directly. Biophys J 96:1151–1158

    CAS  Google Scholar 

  157. Mouret S, Philippe C, Gracia-Chantegrel J, Banyasz A, Karpati S, Markovitsi D, Douki T (2010) UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Org Biomol Chem 8:1706–1711

    CAS  Google Scholar 

  158. Sutherland JC, Griffin KP (1981) Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiat Res 86:399–409

    CAS  Google Scholar 

  159. Banyasz A, Vaya I, Changenet-Barret P, Gustavsson T, Douki T, Markovitsi D (2011) Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA. J Am Chem Soc 133:5163–5165

    CAS  Google Scholar 

  160. Clingen PH, Arlett CF, Roza L, Mori T, Nikaido O, Green MHL (1995) Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells. Cancer Res 55:2245–2248

    CAS  Google Scholar 

  161. Qin XS, Zhang SM, Zarkovic M, Nakatsuru Y, Shimizu S, Yamazaki Y, Oda H, Nikaido O, Ishikawa T (1996) Detection of ultraviolet photoproducts in mouse skin exposed to natural sunlight. Jpn J Cancer Res 87:685–690

    CAS  Google Scholar 

  162. Chadwick CA, Potten CS, Nikaido O, Matsunaga T, Proby C, Young AR (1995) The detection of cyclobutane thymine dimers, (6-4) photolesions and the Dewar photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects. J Photochem Photobiol B 28:163–170

    CAS  Google Scholar 

  163. Meador JA, Baldwin AJ, Pakulski JD, Jeffrey WH, Mitchell DL, Douki T (2014) The significance of the Dewar valence photoisomer as an ultraviolet radiation induced DNA photoproduct in marine microbial communities, Environ Microbiol 16:1808–1820

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Cadet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadet, J., Grand, A., Douki, T. (2014). Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids II. Topics in Current Chemistry, vol 356. Springer, Cham. https://doi.org/10.1007/128_2014_553

Download citation

Publish with us

Policies and ethics