Skip to main content

Synthetic Molecular Walkers

  • Chapter
  • First Online:
Molecular Machines and Motors

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

In biological systems, molecular motors have been developed to harness Brownian motion and perform specific tasks. Among the cytoskeletal motor proteins, kinesins ensure directional transport of cargoes to the periphery of the cell by taking discrete steps along microtubular tracks. In the past decade there has been an increasing interest in the development of molecules that mimic aspects of the dynamics of biological systems and can became a starting point for the creation of artificial transport systems.

To date, both DNA-based and small-molecule walkers have been developed, each taking advantage of the different chemistries available to them. DNA strollers exploit orthogonal base pairing and utilize strand-displacement reactions to control the relative association of the component parts. Small-molecule walkers take advantage of the reversibility of weak noncovalent interactions as well as the robustness of dynamic covalent bonds in order to transport molecular fragments along surfaces and molecular tracks using both diffusional processes and ratchet mechanisms. Here we review both types of synthetic systems, including their designs, dynamics, and how they are being used to perform functions by controlled mechanical motion at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

AQ:

Anthraquinone

ATP:

Adenosine-5′-triphosphate

bp:

Base pair(s)

CD:

α-Cyclodextrin

DCC:

Dynamic covalent chemistry; also dynamic combinatorial chemistry

DMSO:

Dimethylsulfoxide

DNA:

Deoxyribonucleic acid

DNAs:

Deoxyribonucleic acids

DTA:

9,10-Dithioanthracene

E :

(Entgegen); opposite

ESI:

Electrospray ionisation

ETAC:

Equilibrium transfer alkylating cross-linking reagent(s)

h:

Hour

HJ:

Holliday junction

HS:

High speed

Hz:

Hertz

K:

Kelvin

meV:

Millielectron volt(s)

mM:

Millimolar

MS:

Mass spectrometry

nm:

Nanometer(s)

NMR:

Nuclear magnetic resonance

PQ:

Pentaquinone

PT:

Pentacenetetrone

RNA:

Ribonucleic acid

s:

Second(s)

STM:

Scanning tunnelling microscopy

Z :

(Zusammen); together

References

  1. Lehn J-M (1995) Supramolecular chemistry. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Gellman SH (1997) Introduction: molecular recognition. Chem Rev 97:1231–1232

    Article  CAS  Google Scholar 

  3. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4774

    Article  CAS  Google Scholar 

  4. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  5. Aucagne V et al (2007) Catalytic “active-metal” template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition. J Am Chem Soc 129:11950–11963

    Article  CAS  Google Scholar 

  6. Goldup SM et al (2009) Active metal template synthesis of [2]catenanes. J Am Chem Soc 131:15924–15929

    Article  CAS  Google Scholar 

  7. Barran PE et al (2011) Active-metal template synthesis of a molecular trefoil knot. Angew Chem Int Ed 50:12280–12284

    Article  CAS  Google Scholar 

  8. Kay ER et al (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72–191

    Article  CAS  Google Scholar 

  9. Feringa BL et al (2000) Chiroptical molecular switches. Chem Rev 100:1789–1816

    Article  CAS  Google Scholar 

  10. Kelly TR et al (1999) Unidirectional rotary motion in a molecular system. Nature 401:150–152

    Article  CAS  Google Scholar 

  11. Leigh DA et al (2003) Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424:174–179

    Article  CAS  Google Scholar 

  12. Serreli V et al (2007) A molecular information ratchet. Nature 445:523–527

    Article  CAS  Google Scholar 

  13. Alvarez-Pérez M et al (2008) A chemically-driven molecular information ratchet. J Am Chem Soc 130:1836–1838

    Article  Google Scholar 

  14. Carlone A et al (2012) A three-compartment chemically-driven molecular information ratchet. J Am Chem Soc 134:8321–8323

    Article  CAS  Google Scholar 

  15. Koumura N et al (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155

    Article  CAS  Google Scholar 

  16. Browne WR, Feringa BL (2006) Making molecular machines work. Nat Nanotechnol 1:25–35

    Article  CAS  Google Scholar 

  17. Wang J, Feringa BL (2011) Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331:1429–1432

    Article  CAS  Google Scholar 

  18. Kudernac T et al (2011) Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Nature 479:208–211

    Article  CAS  Google Scholar 

  19. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., Sunderland, UK

    Google Scholar 

  20. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  CAS  Google Scholar 

  21. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95

    Article  CAS  Google Scholar 

  22. Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    Article  CAS  Google Scholar 

  23. Mallik R, Gross SP (2004) The axonal transport of mitochondria. Curr Biol 14:971–982

    Article  Google Scholar 

  24. Amos LA (2008) Molecular motors: not quite like clockwork. Cell Mol Life Sci 65:509–515

    Article  CAS  Google Scholar 

  25. Hoyt MA et al (1997) Motor proteins of the eukaryotic cytoskeleton. Proc Natl Acad Sci U S A 94:12747–12748

    Article  CAS  Google Scholar 

  26. Woehlke G, Schliwa M (2000) Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 1:50–58

    Article  CAS  Google Scholar 

  27. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  Google Scholar 

  28. Yildiz A et al (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  CAS  Google Scholar 

  29. von Delius M, Leigh DA (2011) Walking molecules. Chem Soc Rev 40:3656–3676

    Article  Google Scholar 

  30. Astumian RD (2007) Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys Chem Chem Phys 9:5067–5083

    Article  CAS  Google Scholar 

  31. Astumian RD (2010) Thermodynamics and kinetics of molecular motors. Biophys J 98:2401–2409

    Article  CAS  Google Scholar 

  32. Astumian RD (2012) Microscopic reversibility as the organizing principle of molecular machines. Nat Nanotechnol 7:684–688

    Article  CAS  Google Scholar 

  33. Hugel T, Lumme C (2010) Bio-inspired novel design principles for artificial molecular motors. Curr Opin Biotechnol 21:683–689

    Article  CAS  Google Scholar 

  34. Asbury CL et al (2003) Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302:2130–2214

    Article  CAS  Google Scholar 

  35. Yildiz A, Selvin PR (2005) Kinesin: walking, crawling or sliding along? Trends Cell Biol 15:112–120

    Article  CAS  Google Scholar 

  36. Clancy BE et al (2011) A universal pathway for kinesin stepping. Nat Struct Mol Biol 18:1020–1027

    Article  CAS  Google Scholar 

  37. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  CAS  Google Scholar 

  38. Gu H et al (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  CAS  Google Scholar 

  39. He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5:778–782

    Article  CAS  Google Scholar 

  40. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    Article  CAS  Google Scholar 

  41. Shin J-S, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835

    Article  CAS  Google Scholar 

  42. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  43. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  Google Scholar 

  44. Green SJ et al (2006) DNA hairpins: fuel for autonomous DNA devices. Biophys J 91:2966–2975

    Article  CAS  Google Scholar 

  45. Yin P et al (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  CAS  Google Scholar 

  46. Turberfield AJ et al (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90:118102

    Article  CAS  Google Scholar 

  47. Seelig G et al (2006) Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc 128:12211–12220

    Article  CAS  Google Scholar 

  48. Green SJ et al (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101(4)

    Article  Google Scholar 

  49. Bath J et al (2009) Mechanism for a directional, processive, and reversible DNA motor. Small 5:1513–1516

    Article  CAS  Google Scholar 

  50. Omabegho T et al (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71

    Article  CAS  Google Scholar 

  51. Sherman W (2009) Materials science. Building a better nano-biped. Science 324:46–47

    Article  CAS  Google Scholar 

  52. Muscat RA et al (2011) A programmable molecular robot. Nano Lett 11:982–987

    Article  CAS  Google Scholar 

  53. Muscat RA et al (2012) Small molecule signals that direct the route of a molecular cargo. Small 8:3593–3597

    Article  CAS  Google Scholar 

  54. Yin P et al (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43:4906–4911

    Article  CAS  Google Scholar 

  55. Bath J et al (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44:4358–4361

    Article  CAS  Google Scholar 

  56. Wickham SF et al (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169

    Article  CAS  Google Scholar 

  57. Ando T (2012) High-speed atomic force microscopy coming of age. Nat Nanotechnol 23:062001

    Article  Google Scholar 

  58. Lund K et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  CAS  Google Scholar 

  59. Tian Y et al (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44:4355–4358

    Article  CAS  Google Scholar 

  60. Pei R et al (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128:12693–12699

    Article  CAS  Google Scholar 

  61. McKee ML et al (2010) Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew Chem Int Ed 49:7948–7951

    Article  CAS  Google Scholar 

  62. McKee ML et al (2012) Programmable one-pot multistep organic synthesis using DNA junctions. J Am Chem Soc 134:1446–1449

    Article  CAS  Google Scholar 

  63. He Y, Liu DR (2011) A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J Am Chem Soc 133:9972–9975

    Article  CAS  Google Scholar 

  64. Lewandowski B et al (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339:189–193

    Article  CAS  Google Scholar 

  65. You M et al (2012) An autonomous and controllable light-driven DNA walking device. Angew Chem Int Ed 51:2457–2460

    Article  CAS  Google Scholar 

  66. You M et al (2012) Building a nanostructure with reversible motions using photonic energy. ACS Nano 6:7935–7941

    Article  CAS  Google Scholar 

  67. Kwon K-Y et al (2005) Unidirectional adsorbate motion on a high-symmetry surface: “walking” molecules can stay the course. Phys Rev Lett 95:166101(4)

    Article  Google Scholar 

  68. Wong KL et al (2007) A molecule carrier. Science 315:1391–1393

    Article  CAS  Google Scholar 

  69. Cheng Z et al (2010) Tunability in polyatomic molecule diffusion through tunneling versus pacing. J Am Chem Soc 132:13578–13581

    Article  CAS  Google Scholar 

  70. Perl A et al (2011) Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nat Chem 3:317–322

    Article  CAS  Google Scholar 

  71. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  CAS  Google Scholar 

  72. Gates BD et al (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  Google Scholar 

  73. Perl A et al (2009) Microcontact printing: limitations and achievements. Adv Mater 21:2257–2268

    Article  CAS  Google Scholar 

  74. Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463

    Article  CAS  Google Scholar 

  75. Rowan SJ et al (2002) Dynamic covalent chemistry. Angew Chem Int Ed 41:898–952

    Article  Google Scholar 

  76. Corbett PT et al (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711

    Article  CAS  Google Scholar 

  77. Lehn J-M (2007) Dynamic combinatorial chemistry. Chem Soc Rev 36:151–160

    Article  CAS  Google Scholar 

  78. Hunt RAR, Otto S (2011) Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem Commun 47:847–858

    Article  CAS  Google Scholar 

  79. Cougnon FBL et al (2012) Templated dynamic synthesis of a [3]catenane. Angew Chem Int Ed 51:1443–1447

    Article  CAS  Google Scholar 

  80. Belowich ME, Stoddart JF (2012) Dynamic imine chemistry. Chem Soc Rev 41:2003–2024

    Article  CAS  Google Scholar 

  81. Miller BL (2010) Dynamic combinatorial chemistry. Wiley, Chichester

    Google Scholar 

  82. Reek JNH, Otto S (2010) Dynamic combinatorial chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  83. Lippert AR et al (2006) Synthesis of oligosubstituted bullvalones: shapeshifting molecules under basic conditions. J Am Chem Soc 128:14738–14739

    Article  CAS  Google Scholar 

  84. Lippert AR et al (2009) Dynamic supramolecular complexation by shapeshifting organic molecules. Org Biomol Chem 7:1529–1532

    Article  CAS  Google Scholar 

  85. Lippert AR et al (2010) Synthesis of phototrappable shape-shifting molecules for adaptive guest binding. J Am Chem Soc 132:15790–15799

    Article  CAS  Google Scholar 

  86. He M, Bode JW (2011) Racemization as a stereochemical measure of dynamics and robustness in shape-shifting organic molecules. Proc Natl Acad Sci U S A 108:14752–14756

    Article  CAS  Google Scholar 

  87. He M, Bode JW (2013) E pluribus unum: isolation, structure determination, network analysis and DFT studies of a single metastable structure from a shapeshifting mixture of 852 bullvalene structural isomers. Org Biomol Chem 11:1306–1317

    Article  CAS  Google Scholar 

  88. von Delius M et al (2010) Synthesis and solid state structure of a hydrazone-disulfide macrocycle and its dynamic covalent ring-opening under acidic and basic conditions. Org Biomol Chem 8:4617–4624

    Article  Google Scholar 

  89. Shi B, Greaney MF (2005) Reversible Michael addition of thiols as a new tool for dynamic combinatorial chemistry. Chem Commun 886–888

    Google Scholar 

  90. Shi B et al (2006) Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry. J Am Chem Soc 128:8459–8467

    Article  CAS  Google Scholar 

  91. Bhat VT et al (2010) Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry. Nat Chem 2:490–497

    Article  CAS  Google Scholar 

  92. Kovaříček P, Lehn J-M (2012) Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes. J Am Chem Soc 134:9446–9455

    Article  Google Scholar 

  93. Mitra S, Lawton RG (1979) Reagents for cross- linking of proteins by equilibrium transfer alkylation. J Am Chem Soc 101:3097–3110

    Article  CAS  Google Scholar 

  94. Campaña AG et al (2012) A small molecule that walks non-directionally along a track without external intervention. Angew Chem Int Ed 51:5480–5483

    Article  Google Scholar 

  95. Campaña AG et al (2013) One dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J Am Chem Soc 135:8639–8645

    Article  Google Scholar 

  96. von Delius M et al (2010) A synthetic small molecule that can walk down a track. Nat Chem 2:96–101

    Article  Google Scholar 

  97. von Delius M et al (2010) Design, synthesis, and operation of small molecules that walk along tracks. J Am Chem Soc 132:16134–16145

    Article  Google Scholar 

  98. Barrell MJ et al (2011) Light-driven transport of a molecular walker in either direction along a molecular track. Angew Chem Int Ed 50:285–290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Leigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leigh, D.A., Lewandowska, U., Lewandowski, B., Wilson, M.R. (2014). Synthetic Molecular Walkers. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2014_546

Download citation

Publish with us

Policies and ethics