Advertisement

Selective Catalysis for Cellulose Conversion to Lactic Acid and Other α-Hydroxy Acids

  • Michiel DusselierEmail author
  • Bert F. SelsEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 353)

Abstract

This review discusses topical chemical routes and their catalysis for the conversion of cellulose, hexoses, and smaller carbohydrates to lactic acid and other useful α-hydroxy acids. Lactic acid is a top chemical opportunity from carbohydrate biomass as it not only features tremendous potential as a chemical platform molecule; it is also a common building block for commercially employed green solvents and near-commodity bio-plastics. Its current scale fermentative synthesis is sufficient, but it could be considered a bottleneck for a million ton scale breakthrough. Alternative chemical routes are therefore investigated using multifunctional, often heterogeneous, catalysis. Rather than summarizing yields and conditions, this review attempts to guide the reader through the complex reaction networks encountered when synthetic lactates from carbohydrate biomass are targeted. Detailed inspection of the cascade of reactions emphasizes the need for a selective retro-aldol activity in the catalyst. Recently unveiled catalytic routes towards other promising α-hydroxy acids such as glycolic acid, and vinyl and furyl glycolic acids are highlighted as well.

Keywords

Biomass-to-chemicals Catalysis Cellulose Renewables Lactic acid Vinyl glycolic acid Biodegradable polymers 

Notes

Acknowledgements

M.D. acknowledges FWO Vlaanderen (Research Foundation - Flanders) for a post-doctoral fellowship. B.F.S thanks the Research Council of the KU Leuven (IDO-3E090504) for financial support, as well as the Belgian government for its funding through IAP (Belspo).

References

  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489Google Scholar
  2. 2.
    Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50(45):10502–10509Google Scholar
  3. 3.
    Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547Google Scholar
  4. 4.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502Google Scholar
  5. 5.
    Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601Google Scholar
  6. 6.
    Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763Google Scholar
  7. 7.
    Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99Google Scholar
  8. 8.
    Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94Google Scholar
  9. 9.
    Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726Google Scholar
  10. 10.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6(5):1415–1442Google Scholar
  11. 11.
    Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595Google Scholar
  12. 12.
    Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098Google Scholar
  13. 13.
    Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963Google Scholar
  14. 14.
    Besson M, Gallezot P, Pinel C (2013) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870Google Scholar
  15. 15.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558Google Scholar
  16. 16.
    Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166Google Scholar
  17. 17.
    Sheldon RA (2011) Utilisation of biomass for sustainable fuels and chemicals: molecules, methods and metrics. Catal Today 167(1):3–13Google Scholar
  18. 18.
    Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2008) Green biorefineries: the green biorefinery concept – fundamentals and potential. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 253–294Google Scholar
  19. 19.
    Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635Google Scholar
  20. 20.
    Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefinery systems – an overview. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 1–40Google Scholar
  21. 21.
    Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46(27):5056–5058Google Scholar
  22. 22.
    Centi G, van Santen RA (eds) (2007) Catalysis for renewables: from feedstock to energy production. Wiley-VCH, WeinheimGoogle Scholar
  23. 23.
    Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass – a chemist’s view of the biorefinery. Top Curr Chem. doi: 10.1007/128_2014_544 Google Scholar
  24. 24.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554Google Scholar
  25. 25.
    Chahal SP, Starr JN (2000) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Nattrass L, Higson A (2010). National Non-Food Crops Centre, Renewable chemicals factsheet: lactic acid. http://www.nnfcc.co.uk/publications/nnfcc-renewable-chemicals-factsheet-lactic-acid
  27. 27.
    Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RPDS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83Google Scholar
  28. 28.
    Auras R, Lim LT, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons, Inc., Hoboken, New JerseyGoogle Scholar
  29. 29.
    Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev Sci Eng 51:293–324Google Scholar
  30. 30.
    Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111Google Scholar
  31. 31.
    Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41Google Scholar
  32. 32.
    Sun P, Yu D, Tang Z, Li H, Huang H (2010) NaY zeolites catalyze dehydration of lactic acid to acrylic acid: studies on the effects of anions in potassium salts. Ind Eng Chem Res 49:9082–9087Google Scholar
  33. 33.
    Sun P, Yu D, Fu K, Gu M, Wang Y, Huang H, Ying H (2009) Potassium modified NaY: a selective and durable catalyst for dehydration of lactic acid to acrylic acid. Catal Commun 10:1345–1349Google Scholar
  34. 34.
    Holmen RE (1958) Acrylates by catalytic dehydration of lactic acid and lactates. US Patent 2,859,240Google Scholar
  35. 35.
    Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H (2000) Acrylic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  36. 36.
    Gunter GC, Miller DJ, Jackson JE (1994) Formation of 2,3-pentanedione from lactic acid over supported phosphate catalysts. J Catal 148(1):252–260Google Scholar
  37. 37.
    Katryniok B, Paul S, Dumeignil F (2010) Highly efficient catalyst for the decarbonylation of lactic acid to acetaldehyde. Green Chem 12(11):1910–1913Google Scholar
  38. 38.
    Tam MS, Craciun R, Miller DJ, Jackson JE (1998) Reaction and kinetic studies of lactic acid conversion over alkali-metal salts. Ind Eng Chem Res 37(6):2360–2366Google Scholar
  39. 39.
    Lambrecht S, Franke O, Zahlmann K (2003) Preparation of 2,3-pentanedione by reacting hydroxyacetone with paraldehyde in the presence of a phase transfer catalyst and an acid. EP Patent 1,310,476A1Google Scholar
  40. 40.
    Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Catalysis for renewables. Wiley-VCH, Weinheim, pp 223–255Google Scholar
  41. 41.
    Vu DT, Kolah AK, Asthana NS, Peereboom L, Lira CT, Miller DJ (2005) Oligomer distribution in concentrated lactic acid solutions. Fluid Phase Equilib 236:125–135Google Scholar
  42. 42.
    Inkinen S, Hakkarainen M, Albertsson A-C, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532Google Scholar
  43. 43.
    Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes – a review. Green Chem 13:2658–2671Google Scholar
  44. 44.
    Aparicio S, Alcalde R (2009) The green solvent ethyl lactate: an experimental and theoretical characterization. Green Chem 11(1):65–78Google Scholar
  45. 45.
    Cortright RD, Sanchez-Castillo M, Dumesic JA (2002) Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper. Appl Catal B 39:353–359Google Scholar
  46. 46.
    Sullivan CJ (2000) Propanediols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  47. 47.
    Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939Google Scholar
  48. 48.
    Xu P, Qiu J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105(3):169–175Google Scholar
  49. 49.
    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807Google Scholar
  50. 50.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846Google Scholar
  51. 51.
    Gruber P, Henton DE, Starr J (2008) Polylactic acid from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products. Wiley-VCH, Verlag GmbH, pp 381–407Google Scholar
  52. 52.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356Google Scholar
  53. 53.
    Carus M (2012) Growth in PLA bioplastics: a production capacity of over 800,000 tonnes expected by 2020. Nova-Institute, HürthGoogle Scholar
  54. 54.
    European Bioplastics (2012) Driving the evolution of plastics. http://en.european-bioplastics.org/multimedia/
  55. 55.
    Groot W, van Krieken J, Sliekersl O, de Vos S (2010) Production and purification of lactic acid and lactide. In: Poly(lactic acid): synthesis, structures properties, processing, and applications, John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1–18Google Scholar
  56. 56.
    John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152Google Scholar
  57. 57.
    Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81(7):1119–1129Google Scholar
  58. 58.
    Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423Google Scholar
  59. 59.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176Google Scholar
  60. 60.
    Asthana NS, Kolah AK, Vu DT, Lira CT, Miller DJ (2006) A kinetic model for the esterification of lactic acid and its oligomers. Ind Eng Chem Res 45:5251–5257Google Scholar
  61. 61.
    Kim KW, Woo SI (2002) Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation. Macromol Chem Phys 203(15):2245–2250Google Scholar
  62. 62.
    Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22:245–264Google Scholar
  63. 63.
    Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172Google Scholar
  64. 64.
    Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9(1):58–62Google Scholar
  65. 65.
    Taarning E, Saravanamurugan S, Spangsberg HM, Xiong J, West RM, Christensen CH (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627Google Scholar
  66. 66.
    de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134(24):10089–10101Google Scholar
  67. 67.
    Serrano-Ruiz JC, Dumesic JA (2009) Catalytic processing of lactic acid over Pt/Nb2O5. ChemSusChem 2(6):581–586Google Scholar
  68. 68.
    Simonov MN, Zaikin PA, Simakova IL (2012) Highly selective catalytic propylene glycol synthesis from alkyl lactate over copper on silica: performance and mechanism. Appl Catal B 119–120:340–347Google Scholar
  69. 69.
    Ai M (2002) Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl Catal A 234(1–2):235–243Google Scholar
  70. 70.
    Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306Google Scholar
  71. 71.
    Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592Google Scholar
  72. 72.
    Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem 3(6):698–701Google Scholar
  73. 73.
    Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem 5(8):1549–1558Google Scholar
  74. 74.
    Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333Google Scholar
  75. 75.
    Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Chem Commun 47(1):576–578Google Scholar
  76. 76.
    Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T (2012) Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. Green Chem 14(3):614–617Google Scholar
  77. 77.
    Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C. Green Chem 13(8):2167–2174Google Scholar
  78. 78.
    Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5(8):1449–1454Google Scholar
  79. 79.
    Benoit M, Rodrigues A, Zhang Q, Fourré E, De Oliveira VK, Tatibouët J-M, Jérôme F (2011) Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. Angew Chem Int Ed 50(38):8964–8967Google Scholar
  80. 80.
    Rinaldi R, Engel P, Büchs J, Spiess AC, Schüth F (2010) An integrated catalytic approach to fermentable sugars from cellulose. ChemSusChem 3(10):1151–1153Google Scholar
  81. 81.
    Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107Google Scholar
  82. 82.
    Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037Google Scholar
  83. 83.
    Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12(9):1560–1563Google Scholar
  84. 84.
    Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111Google Scholar
  85. 85.
    Shimizu K-I, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627–1632Google Scholar
  86. 86.
    Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 46(40):7636–7639Google Scholar
  87. 87.
    Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579Google Scholar
  88. 88.
    Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3(4):440–443Google Scholar
  89. 89.
    Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem 6(1):199–208Google Scholar
  90. 90.
    Sun P, Long X, He H, Xia C, Li F (2013) Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem 6(11):2190–2197Google Scholar
  91. 91.
    Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem 13(4):839–842Google Scholar
  92. 92.
    Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574Google Scholar
  93. 93.
    Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4(9):3601–3610Google Scholar
  94. 94.
    Deng W, Liu M, Zhang Q, Tan X, Wang Y (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46(15):2668–2670Google Scholar
  95. 95.
    Tominaga K-I, Mori A, Fukushima Y, Shimada S, Sato K (2011) Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem 13(4):810–812Google Scholar
  96. 96.
    Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957Google Scholar
  97. 97.
    Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxyacetone by Lewis acid active site models. J Phys Chem A 115:8754–8760Google Scholar
  98. 98.
    Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732Google Scholar
  99. 99.
    Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168Google Scholar
  100. 100.
    Dijkmans J, Gabriels D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels BF (2013) Productive sugar isomerization with highly active Sn in dealuminated [small beta] zeolites. Green Chem 15(10):2777–2785Google Scholar
  101. 101.
    Choudhary V, Pinar AB, Lobo RF, Vlachos DG, Sandler SI (2013) Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 6:2369–2376Google Scholar
  102. 102.
    Madigan M, Martinko J, Stahl D, Clark D (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, San FranciscoGoogle Scholar
  103. 103.
    Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D (2013) Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol 9(8):494–498Google Scholar
  104. 104.
    Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391Google Scholar
  105. 105.
    Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith RL Jr, Arai K (2007) Reactions of d-fructose in water at temperatures up to 400°C and pressures up to 100 MPa. J Supercrit Fluids 42(1):110–119Google Scholar
  106. 106.
    Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397Google Scholar
  107. 107.
    Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605Google Scholar
  108. 108.
    Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4(3):793–804Google Scholar
  109. 109.
    De SK, Gibbs RA (2004) Ruthenium(III) chloride-catalyzed chemoselective synthesis of acetals from aldehydes. Tetrahedron Lett 45(44):8141–8144Google Scholar
  110. 110.
    Pescarmona PP, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul JS, Jacobs PA, Sels BF (2010) Zeolite-catalysed conversion of C3 sugars to alkyl lactates. Green Chem 12:1083–1089Google Scholar
  111. 111.
    Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 7 edn. John Wiley & Sons, Inc., Hoboken, New JerseyGoogle Scholar
  112. 112.
    Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun 21:2716–2718Google Scholar
  113. 113.
    Li L, Stroobants C, Lin K, Jacobs PA, Sels BF, Pescarmona PP (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181Google Scholar
  114. 114.
    Dusselier M, Van Wouwe P, de Clippel F, Dijkmans J, Gammon DW, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel α-hydroxy acid platform molecules. ChemCatChem 5(2):569–575Google Scholar
  115. 115.
    Painter RM, Pearson DM, Waymouth RM (2010) Selective catalytic oxidation of glycerol to dihydroxyacetone. Angew Chem Int Ed 49(49):9456–9459Google Scholar
  116. 116.
    Eriksen J, Monsted O, Monsted L (1998) Mechanism of lactic acid formation catalyzed by tetraamine rhodium(III) complexes. Transition Met Chem 23:783–787Google Scholar
  117. 117.
    Kelly RL (1991) Production of hydroxy carboxylic compounds. EU Patent 0460,831A2Google Scholar
  118. 118.
    Rasrendra CB, Fachri BA, Makertihartha IGBN, Adisasmito S, Heeres HJ (2011) Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem 4:768–777Google Scholar
  119. 119.
    Lux S, Siebenhofer M (2013) Synthesis of lactic acid from dihydroxyacetone: use of alkaline-earth metal hydroxides. Catal Sci Technol 3(5):1380–1385Google Scholar
  120. 120.
    Janssen KPF, Paul JS, Sels BF, Jacobs PA (2007) Glyoxylase biomimics: zeolite catalyzed conversion of trioses. Stud Surf Sci Catal 170B:1222–1227Google Scholar
  121. 121.
    West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J Catal 269:122–130Google Scholar
  122. 122.
    Osmundsen CM, Holm MS, Dahl S, Taarning E (2012) Tin-containing silicates: structure–activity relations. Proc R Soc A Math Phys Eng Sci 468(2143):2000–2016Google Scholar
  123. 123.
    Lew CM, Rajabbeigi N, Tsapatsis M (2012) Tin-containing zeolite for the isomerization of cellulosic sugars. Microporous Mesoporous Mater 153:55–58Google Scholar
  124. 124.
    Wang J, Masui Y, Onaka M (2011) Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Bronsted acid tin ion-exchanged montmorillonite. Appl Catal B 107:135–139Google Scholar
  125. 125.
    Guo Q, Fan F, Pidko EA, van der Graaff WNP, Feng Z, Li C, Hensen EJM (2013) Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 6(8):1352–1356Google Scholar
  126. 126.
    Dapsens PY, Mondelli C, Pérez-Ramírez J (2013) Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. ChemSusChem 6(5):831–839Google Scholar
  127. 127.
    Dapsens PY, Menart MJ, Mondelli C, Perez-Ramirez J (2014) Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chem 16:589–593Google Scholar
  128. 128.
    Dapsens PY, Kusema BT, Mondelli C, Pérez-Ramírez J (2013) Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates. J Mol Catal A Chem. http://dx.doi.org/10.1016/j.molcata.2013.09.032
  129. 129.
    Hammond C, Conrad S, Hermans I (2012) Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew Chem Int Ed 51(47):11736–11739Google Scholar
  130. 130.
    IZA-Structure-Commission. database of zeolite structures. http://izasc.fos.su.se/fmi/xsl/IZA-SC/ft.xsl. Accessed 23 Jan 2014
  131. 131.
    de Clippel F, Dusselier M, Van de Vyver S, Peng L, Jacobs PA, Sels BF (2013) Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chem 15(6):1398–1430Google Scholar
  132. 132.
    Lobo RF (2010) Synthetic glycolysis. ChemSusChem 3(11):1237–1240Google Scholar
  133. 133.
    Blunden SJ, Cusack PA, Smith PJ (1987) The use of tin compounds in carbohydrate and nucleoside chemistry. J Organomet Chem 325:141–152Google Scholar
  134. 134.
    Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580Google Scholar
  135. 135.
    Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410Google Scholar
  136. 136.
    Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of d-sucrose, d-glucose and d-fructose. Carbohydr Res 339(13):2267–2273Google Scholar
  137. 137.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem 120(44):8638–8641Google Scholar
  138. 138.
    Zhao G, Zheng M, Zhang J, Wang A, Zhang T (2013) Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res 52(28):9566–9572Google Scholar
  139. 139.
    Ooms R, Dusselier M, Geboers JA, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707Google Scholar
  140. 140.
    Murillo B, Sánchez A, Sebastián V, Casado-Coterillo C, de la Iglesia O, López-Ram- de-Viu MP, Téllez C, Coronas J (2013) Conversion of glucose to lactic acid derivatives with mesoporous Sn-MCM-41 and microporous titanosilicates. J Chem Technol Biot. doi:10.1002/jctb.4210
  141. 141.
    Liu Z, Li W, Pan C, Chen P, Lou H, Zheng X (2011) Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts. Catal Commun 15:82–87Google Scholar
  142. 142.
    van Zandvoort I, Wang Y, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758Google Scholar
  143. 143.
    Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293Google Scholar
  144. 144.
    Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Green chemicals from D-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53:1241–1247Google Scholar
  145. 145.
    Wang F-F, Liu C-L, Dong W-S (2013) Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem 15(8):2091–2095Google Scholar
  146. 146.
    Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141Google Scholar
  147. 147.
    Holm MS, Pagan-Torres YJ, Saravanamurugan S, Riisager A, Dumesic JA, Taarning E (2012) Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chem 14(3):702–706Google Scholar
  148. 148.
    Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800Google Scholar
  149. 149.
    dos Santos JB, da Silva FL, Altino FMRS, da Silva Moreira T, Meneghetti MR, Meneghetti SMP (2013) Cellulose conversion in the presence of catalysts based on Sn(IV). Catal Sci Technol 3(3):673–678Google Scholar
  150. 150.
    Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2011) Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Appl Catal B 105(1–2):171–181Google Scholar
  151. 151.
    Carrasquillo-Flores R, Käldström M, Schüth F, Dumesic JA, Rinaldi R (2013) Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal 3(5):993–997Google Scholar
  152. 152.
    Hilgert J, Meine N, Rinaldi R, Schuth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6(1):92–96Google Scholar
  153. 153.
    Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6(11):2042–2044Google Scholar
  154. 154.
    Dapsens PY, Mondelli C, Kusema B, Verel R, Perez-Ramirez J (2013) Continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green ChemGoogle Scholar
  155. 155.
    Miltenberger K (2000) Hydroxycarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  156. 156.
    Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2(8):1698–1702Google Scholar
  157. 157.
    Mattioda G, Blanc A (2000) Glyoxal. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  158. 158.
    Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5(12):9808–9826Google Scholar
  159. 159.
    Richards GN (1987) Glycolaldehyde from pyrolysis of cellulose. J Anal Appl Pyrolysis 10:251–255Google Scholar
  160. 160.
    Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325Google Scholar
  161. 161.
    Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal 3(12):2689–2693Google Scholar
  162. 162.
    Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491(7423):235–239Google Scholar
  163. 163.
    Vennestrøm PNR, Taarning E, Christensen CH, Pedersen S, Grunwaldt J-D, Woodley JM (2010) Chemoenzymatic combination of glucose oxidase with titanium silicalite-1. ChemCatChem 2(8):943–945Google Scholar
  164. 164.
    Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597Google Scholar
  165. 165.
    Yang Q, Chung T-S (2007) Modification of the commercial carrier in supported liquid membrane system to enhance lactic acid flux and to separate L, D-lactic acid enantiomers. J Membr Sci 294:127–131Google Scholar
  166. 166.
    Gao C, Qiu J, Li J, Ma C, Tang H, Xu P (2009) Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. Bioresour Technol 100(5):1878–1880Google Scholar
  167. 167.
    Van Wouwe P, Dusselier M, Basic A, Sels BF (2013) Bridging racemic lactate esters with stereoselective polylactic acid using commercial lipase catalysis. Green Chem 15(10):2817–2824Google Scholar
  168. 168.
    Schutyser W et al (2014) Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chem 16(4):1999–2007Google Scholar
  169. 169.
    Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Bioref 4(1):25–40Google Scholar
  170. 170.
    Bicker M, Endres S, Ott L, Vogel H (2005) Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J Mol Catal A Chem 239:151–157Google Scholar
  171. 171.
    Esposito D, Antonietti M (2013) Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem 6:989–992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Surface Chemistry and CatalysisKU LeuvenLeuvenBelgium

Personalised recommendations