Advertisement

Chemical-Catalytic Approaches to the Production of Furfurals and Levulinates from Biomass

  • Mark MascalEmail author
  • Saikat Dutta
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 353)

Abstract

The synthesis and chemistry of 5-(hydroxymethyl)furfural (HMF), 5-(chloromethyl)furfural (CMF), and levulinic acid (LA), three carbohydrate-derived platform molecules produced by the chemical-catalytic processing of lignocellulosic biomass, is reviewed. Starting from the historical derivation of these molecules and progressing through modern approaches to their production from biomass feedstocks, this review will then survey their principal derivative chemistries, with particular attention to aspects of commercial relevance, and discuss the relative merits of each molecule in the future of biorefining.

Keywords

5-(Chloromethyl)furfural 5-(Hydroxymethyl)furfural Biomass Biomass derivatives Biorefinery Catalysis CMF Green chemistry HMF Levulinic acid Platform chemicals Renewable chemistry 

References

  1. 1.
    Dusselier M, Mascal M, Sels BF (2014) Top Curr Chem doi:  10.1007/128_2014_544
  2. 2.
    Düll G (1895) Action of oxalic acid on inulin. Chem Zeit 19:216–217Google Scholar
  3. 3.
    Düll G (1895) A derivative of furfuraldehyde from laevulose. Chem Zeit 19:1003–1005Google Scholar
  4. 4.
    vonEkenstein WA, Blanksma JJ (1910) ω-Hydroxymethylfurfuraldehyde as the cause of certain color reactions of the hexoses. Berichte 43:2355–2361Google Scholar
  5. 5.
    Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38Google Scholar
  6. 6.
    van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597Google Scholar
  7. 7.
    Li H, Chang F, Zhang Y, Hu D, Jin L, Song B, Yang S (2012) Recent progress towards transition metal-catalyzed direct conversion of cellulose to 5-hydroxymethylfurfural. Curr Catal 1:221–232Google Scholar
  8. 8.
    Tahvildari K, Taghvaei S, Nozari M (2011) The study of hydroxymethylfurfural as a basic reagent for liquid alkanes fuel manufacture from agricultural wastes. Int J Chem Environ Eng 2:62–68Google Scholar
  9. 9.
    Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272Google Scholar
  10. 10.
    Amarasekara AS (2011) 5-Hydroxymethylfurfural based polymers. In: Mittal V (ed) Renewable polymers: synthesis, processing and technology. Wiley-Scrivener, Hoboken, pp 381–428, Chap 9Google Scholar
  11. 11.
    Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016Google Scholar
  12. 12.
    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793Google Scholar
  13. 13.
    Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block. Chem Rev 111:397–417Google Scholar
  14. 14.
    Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc i:17–54Google Scholar
  15. 15.
    Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF): a review focusing on its manufacture. Starch 42:314–321Google Scholar
  16. 16.
    Anese M, Manzocco L, Calligaris S, Nicoli MC (2013) Industrially applicable strategies for mitigating acrylamide, furan, and 5-hydroxymethylfurfural in food. J Agric Food Chem 61:10209–10214Google Scholar
  17. 17.
    Kuster BFM (1977) The influence of water concentration on the dehydration of D-fructose. Carbohydr Res 54:177–183Google Scholar
  18. 18.
    Qi X, Watanabe M, Aida TM, Smith RLJ (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–805Google Scholar
  19. 19.
    Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) Dehydration reactions of fructose in non-aqueous media. J Chem Technol Biotechnol 32:920–924Google Scholar
  20. 20.
    Shimizu K, Uozumi R, Satsuma A (2009) Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal Commun 10:1849–1853Google Scholar
  21. 21.
    Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350Google Scholar
  22. 22.
    Gaset A, Rigal L, Paillassa G, Salome J-P, Flèche GRF (1986) Process for manufacturing 5-hydroxymethylfurfural. US 4,590,283 AGoogle Scholar
  23. 23.
    Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47:9345–9348Google Scholar
  24. 24.
    Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50:7985–7989Google Scholar
  25. 25.
    Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133:4224–4227Google Scholar
  26. 26.
    Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2–ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101:4179–4186Google Scholar
  27. 27.
    Wang C, Fu L, Tong X, Yang Q, Zhang W (2012) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 347:182–185Google Scholar
  28. 28.
    Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenerg 35:2659–2665Google Scholar
  29. 29.
    Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99Google Scholar
  30. 30.
    Wu S, Fan H, Xie Y, Cheng Y, Wang Q, Zhang Z, Han B (2010) Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chem 12:1215–1219Google Scholar
  31. 31.
    Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal A Gen 193:147–153Google Scholar
  32. 32.
    Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471Google Scholar
  33. 33.
    Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11:873–877Google Scholar
  34. 34.
    Yin S, Pan Y, Tan Z (2011) Hydrothermal conversion of cellulose to 5-hydroxymethylfurfural. Int J Green Energy 8:234–247Google Scholar
  35. 35.
    Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis-surfactant-combined heteropolyacid catalyst. Chem Commun 47:2176–2178Google Scholar
  36. 36.
    Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985Google Scholar
  37. 37.
    McNeff CV, Nowlan DT, McNeff LC, Yan B, Fedie RL (2010) Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl Catal A Gen 384:65–69Google Scholar
  38. 38.
    Zhang Y, Du H, Qian X, Chen EY-X (2010) Ionic liquid−water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417Google Scholar
  39. 39.
    Snyder FH (1958) Preparation of hydroxymethylfurfural from cellulosic materials. US 2,851,468 AGoogle Scholar
  40. 40.
    Daengprasert W, Boonnoun P, Laosiripojana N, Goto M, Shotipruk A (2011) Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural. Ind Eng Chem Res 50:7903–7910Google Scholar
  41. 41.
    Dedsuksophon W, Faungnawakij K, Champreda V, Laosiripojana N (2011) Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3–ZrO2 in a single reactor. Bioresour Technol 102:2040–2046Google Scholar
  42. 42.
    Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471–477Google Scholar
  43. 43.
    Nasab EE, Habibi-Rezaei M, Khaki A, Balvardi M (2009) Investigation on acid hydrolysis of inulin: a response surface methodology approach. Int J Food Eng 5: Article 12Google Scholar
  44. 44.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600Google Scholar
  45. 45.
    Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502Google Scholar
  46. 46.
    Hu C, Yang Y, Yan H, Xiang X, Tong D, Zhu L, Li G (2009) Preparation of 5-acetoxymethylfurfural from carbohydrates. Faming Zhuanli Shenqing Gongkai Shuomingshu: CN 10163331 AGoogle Scholar
  47. 47.
    Rauchfuss TB, Thananatthanachon T (2011) Efficient method for preparing 2,5-dimethylfuran. US Pat Appl 20110263880 A1Google Scholar
  48. 48.
    Casanova O, Iborra S, Corma A (2010) Chemicals from biomass: etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5'(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts. J Catal 275:236–242Google Scholar
  49. 49.
    Sanda K, Rigal L, Gaset A (1989) Synthesis of 5-(bromomethyl)- and of 5-(chloromethyl)-2-furancarboxaldehyde. Carbohydr Res 187:15–23Google Scholar
  50. 50.
    Bredihhin A, Maeorg U, Vares L (2013) Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr Res 375:63–67Google Scholar
  51. 51.
    Cukalovic A, Stevens CV (2010) Production of biobased HMF derivatives by reductive amination. Green Chem 12:1201–1206Google Scholar
  52. 52.
    Arias KS, Al-Resayes SI, Climent MJ, Corma A, Iborra S (2013) From biomass to chemicals: synthesis of precursors of biodegradable surfactants from 5-hydroxymethylfurfural. ChemSusChem 6:123–131Google Scholar
  53. 53.
    Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634Google Scholar
  54. 54.
    Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22:1203–1379Google Scholar
  55. 55.
    Gandini A, Belgacem NM (1998) Recent advances in the elaboration of polymeric materials derived from biomass components. Polym Int 47:267–276Google Scholar
  56. 56.
    Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances 2:11184–11206Google Scholar
  57. 57.
    Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthese de l’hydroxymethyl-5-furanne carboxaldehyde-2 et de ses derives par traitement acide de sucres sur resines echangeuses d’ions. Bull Soc Chim Fr 5:855–860Google Scholar
  58. 58.
    Amarasekara AS, Green D, McMillan E (2008) Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catal Commun 9:286–288Google Scholar
  59. 59.
    Mehdi H, Bodor A, Lantos D, Horvath IT, DeVos DE, Binnemans K (2007) Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. J Org Chem 72:517–524Google Scholar
  60. 60.
    Yoon H-J, Choi J-W, Jang, H-S, Cho JK, Byun J-W, Chung W-J, Lee S-M, Lee Y-S (2011) Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by polymer-supported IBX amide. SynLett 165–168Google Scholar
  61. 61.
    Cottier L, Descotes G, Lewkowski J, Skowronski R (1995) Ultrasonically accelerated syntheses of furan-2,5-dicarbaldehyde from 5-hydroxymethyl-2-furfural. Org Prep Proc Int 27:564–566Google Scholar
  62. 62.
    Yadav GD, Sharma RV (2014) Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Appl Catal B Environ 147:293–301Google Scholar
  63. 63.
    Nie J, Xie J, Liu H (2013) Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chinese J Catal 34:871–875Google Scholar
  64. 64.
    Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 301:83–91Google Scholar
  65. 65.
    Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059Google Scholar
  66. 66.
    Nie J, Liu H (2012) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported vanadium oxide catalysts: structural effect and reaction mechanism. Pure Appl Chem 84:765–777Google Scholar
  67. 67.
    Halliday GA, Young RJ, Grushin VV (2003) One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose. Org Lett 5:2003–2005Google Scholar
  68. 68.
    Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1:1562–1565Google Scholar
  69. 69.
    Xiang X, He L, Yang Y, Guo B, Tong D, Hu C (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran. Catal Lett 141:735–741Google Scholar
  70. 70.
    Casanova O, Iborra I, Corma A (2009) Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2:1138–1144Google Scholar
  71. 71.
    Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal Today 160:55–60Google Scholar
  72. 72.
    Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F (2011) Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem 13:2091–2099Google Scholar
  73. 73.
    de Jong E, Dam MA, Sipos L, Gruter G-JM (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, ACS Symp Ser, Vol. 1105, Chapter 1, pp. 1–13Google Scholar
  74. 74.
    Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A Gen 385:1–13Google Scholar
  75. 75.
    Lew BW (1967) Method of producing dehydromucic acid. US 3,326,944 AGoogle Scholar
  76. 76.
    Zope BN, Davis SE, Davis RJ (2012) Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal 55:24–32Google Scholar
  77. 77.
    Lilga MA, Hallen RT, Gray M (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top Catal 53:1264–1269Google Scholar
  78. 78.
    Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265:109–116Google Scholar
  79. 79.
    Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30Google Scholar
  80. 80.
    Cottier L, Descotes G, Soro Y (2003) Heteromacrocycles from ring-closing metathesis of unsaturated furanic ethers. Synth Commun 33:4285–4295Google Scholar
  81. 81.
    Lichtenthaler FW, Brust A, Cuny E (2001) Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from D-fructose and isomaltulose. Green Chem 3:201–209Google Scholar
  82. 82.
    Goswami S, Dey S, Jana S (2008) Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids. Tetrahedron 64:6358–6363Google Scholar
  83. 83.
    Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036Google Scholar
  84. 84.
    Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A (2013) Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters RSC Adv 3:1033–1036Google Scholar
  85. 85.
    Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 49:6616–6618Google Scholar
  86. 86.
    Hansen TS, Barta K, Anastas PT, Ford PC, Riisager A (2012) One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem 14:2457–2461Google Scholar
  87. 87.
    Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985Google Scholar
  88. 88.
    Zu Y, Yang P, Wang J, Liu X, Ren J, Lu G, Wang Y (2014) Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B Environ 146:244–248Google Scholar
  89. 89.
    Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H (2013) Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends. Energy 54:333–342Google Scholar
  90. 90.
    Brandvold TA (2010) Carbohydrate route to para-xylene and terephthalic acid. US 20100331568 A1Google Scholar
  91. 91.
    Masuno MN, Bissell J, Smith RL, Higgins B, Wood AB, Foster M (2012) Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans. WO 2012170520 A1Google Scholar
  92. 92.
    Shiramizu M, Toste FD (2011) On the Diels–Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chem Eur J 17:12452–12457Google Scholar
  93. 93.
    Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal 2:935–939Google Scholar
  94. 94.
    Nakagawa Y, Tomishige K (2010) Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst. Catal Commun 12:154–156Google Scholar
  95. 95.
    Yao S, Wang X, Jiang Y, Wu F, Chen X, Mu X (2014) One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions. ACS Sustainable Chem Eng 2:173–180Google Scholar
  96. 96.
    Alamillo R, Tucker M, Chia M, Pagan-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14:1413–1419Google Scholar
  97. 97.
    Grochowski MR, Yang W, Sen A (2012) Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran. Chem Eur J 18:12363–12371Google Scholar
  98. 98.
    Yang W, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuel. ChemSusChem 3:597–603Google Scholar
  99. 99.
    Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70Google Scholar
  100. 100.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450Google Scholar
  101. 101.
    Liu D, Chen EY-X (2013) Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis. ChemSusChem 6:2236–2239Google Scholar
  102. 102.
    Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks (III) LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nature Chem 5:428–432Google Scholar
  103. 103.
    Virent, Inc. http://www.virent.com. Accsessed Jan 14, 2014
  104. 104.
    Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709Google Scholar
  105. 105.
    Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, Jiang H (2010) Production of adipic acid and derivatives from carbohydrate-containing materials. US 20,100,317,823 A1Google Scholar
  106. 106.
    Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis 303–306Google Scholar
  107. 107.
    Marisa C, Ilaria D, Marotta R, Roberto A, Vincenzo C (2010) Production of 5-hydroxy-4-keto-2-pentenoic acid by photo-oxidation of 5-hydroxymethylfurfural with singlet oxygen: a kinetic investigation. J Photochem Photobiol A 210:69–76Google Scholar
  108. 108.
    Fenton HJH, Gostling M (1899) Bromomethylfurfuraldehyde. J Chem Soc Trans 75:423–433Google Scholar
  109. 109.
    Fenton HJH, Gostling M (1901) Derivatives of methylfurfural. J Chem Soc Trans 79:807–816Google Scholar
  110. 110.
    Fischer E, von Neyman H (1914) Notiz über ω-chlormethyl- und athoxymethyl-furfurol. Chem Ber 47:973–977Google Scholar
  111. 111.
    Hibbert H, Hill HS (1923) Studies on cellulose chemistry II. The action of dry hydrogen bromide on carbohydrates and polysaccharides. J Am Chem Soc 45:176–182Google Scholar
  112. 112.
    Haworth WN, Jones WGM (1944) The conversion of sucrose into furan compounds. Part 1. 5-Hydroxymethylfurfuraldehyde and some derivatives. J Chem Soc 667–670Google Scholar
  113. 113.
    Hamada K, Suzukamo G, Nagase T (1978) Furaldehydes. Ger Offen DE 2745743Google Scholar
  114. 114.
    Szmant HH, Chundury DD (1981) The preparation of 5-chloromethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. J Chem Technol Biotechnol 31:205–212Google Scholar
  115. 115.
    Hamada K, Suzukamo G, Fujisawa K (1982) 5-Methylfurfural. EP44186A119820120Google Scholar
  116. 116.
    Hamada K, Yoshihara H, Suzukamo G (1982) An improved method for the conversion of saccharides into furfural derivatives. Chem Lett 617–618Google Scholar
  117. 117.
    Hamada K, Yoshihara H, Suzukamo G (1983) 5-Halomethylfurfural. EP 79206A1 19830578Google Scholar
  118. 118.
    Sanda K, Rigal L, Gaset A (1992) Optimisation of the synthesis of 5-chloromethyl-2-furancarboxaldehyde from D-fructose dehydration and in-situ chlorination of 5-hydroxymethyl-2-furancarboxaldehyde. J Chem Technol Biotechnol 55:139–145Google Scholar
  119. 119.
    Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926Google Scholar
  120. 120.
    Mascal M (2009) High-yield conversion of cellulosic biomass into furanic biofuels and value-added products. US 7,829,732Google Scholar
  121. 121.
    Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2:859–861Google Scholar
  122. 122.
    Mascal M, Nikitin EB (2010) Co-processing of carbohydrates and lipids in oil crops to produce a hybrid biodiesel. Energy Fuels 24:2170–2171Google Scholar
  123. 123.
    Brasholz M, von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–1117Google Scholar
  124. 124.
    Breeden SW, Clark JH, Farmer TJ, Macquarrie DJ, Meimoun JS, Nonne Y, Reid JESJ (2013) Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem 15:72–75Google Scholar
  125. 125.
    Gao W, Li Y, Xiang Z, Chen K, Yang R, Argyropoulos DS (2013) Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules 18:7675–7685Google Scholar
  126. 126.
    Jadhav H, Pedersen CM, Solling T, Bols M (2011) 3-Deoxyglucosone is an intermediate in the formation of furfurals from D-glucose. ChemSusChem 4:1049–1051Google Scholar
  127. 127.
    Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 1266–1270Google Scholar
  128. 128.
    Yang W, Grochowski MR, Sen A (2012) Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem 5:1218–1222Google Scholar
  129. 129.
    Tarabanko VE, Chernyak MY, Morozov AA, Kaigorodov KL (2013) Method of producing 5-fluoromethyl furfural. RU 2,478,097Google Scholar
  130. 130.
    Gilpin JA (1984) Inhibitors for furfurals. US 4433155 AGoogle Scholar
  131. 131.
    Kawai S, Tanaka S, Terai K, Tezuka M, Nishiwaki T (1960) Synthesis of 1,4,7-cyclononanetrione. Bull Chem Soc Jpn 33:669–674Google Scholar
  132. 132.
    Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem 12:370–373Google Scholar
  133. 133.
    Liu G, Wu J, Zhang IY, Chen Z-N, Li Y-W, Xu X (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115:13628–13641Google Scholar
  134. 134.
    Rinke IJ (1934) 5-Methylfurfural. Org Synth 14:62Google Scholar
  135. 135.
    Hamada K, Yoshihara H, Suzukamo G (2001) Novel synthetic route to 2,5-disubstituted furan derivatives through surface active agent-catalyzed dehydration of D(−)-fructose. J Oleo Sci 50:533–536Google Scholar
  136. 136.
    Mikochik P, Cahana A (2012) Conversion of 5-(chloromethyl)-2-furaldehyde into 5-methyl-2-furoic acid and derivatives thereof. EP 2,606,039 A1Google Scholar
  137. 137.
    xftechnologies.com/technology/products/(Accessed Jan17, 2014)Google Scholar
  138. 138.
    Shi Y, Brenner P, Bertsch S, Radacki K, Dewhurst RD (2012) η3-Furfuryl and η3-thienyl complexes of palladium and platinum of relevance to the functionalization of biomass-derived furans. Organometallics 31:5599–5605Google Scholar
  139. 139.
    Fenton HJH, Robinson F (1909) Homologues of furfuraldehyde. J Chem Soc Trans 95:1334–1340Google Scholar
  140. 140.
    Zhou X, Rauchfuss TB (2013) Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem 6:383–388Google Scholar
  141. 141.
    Szmant HH, Chundury D (1981) Preparation of polymeric building blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind Eng Chem Prod Res Dev 20:158–163Google Scholar
  142. 142.
    Jira R, Bräunling H (1987) Synthesis of polyarenemethines, a new class of conducting polymers. Synth Met 17:691–696Google Scholar
  143. 143.
    Elix JA (1969) Synthesis and properties of annulene polyoxides. Aus J Chem 22:1951–1962Google Scholar
  144. 144.
    Nickl J, Naarmann H, Moehwald H (1985) Use of polyheterocyclic compounds of a certain structure as electrode material. Ger Patent DE 3409655 A1Google Scholar
  145. 145.
    Timko JM, Cram DJ (1974) Furanyl unit in host compounds. J Am Chem Soc 96:7159–7160Google Scholar
  146. 146.
    Silks LA, Gordon JC, Wu R, Hanson SK (2011) Method of carbon chain extension using novel aldol reaction. US Pat Appl 20110040109 A1Google Scholar
  147. 147.
    Seck KA (2013) Biorefinery for conversion of carbohydrates and lignocellulosics via primary hydrolysate CMF to liquid fuels. WO 2013122686 A2Google Scholar
  148. 148.
    Cooper WF, Nuttall WH (1912) Furane-2,5-dialdehyde. J Chem Soc Trans 101:1074–1081Google Scholar
  149. 149.
    Florentino HQ, Hernandez-Benitez RI, Avina JA, Burgueno-Tapia E, Tamariz J (2011) Total synthesis of naturally occurring furan compounds 5-{[(4-hydroxybenzyl)oxy]methyl}-2-furaldehyde and pichiafuran C. Synthesis 1106–1112Google Scholar
  150. 150.
    Klein LL, Shanklin MS (1988) Total synthesis of dimethyl jaconate. J Org Chem 53:5202–5209Google Scholar
  151. 151.
    Zhou F, Zheng J, Dong X, Zhang Z, Zhao L, Sha X, Li L, Wen R (2007) Synthesis and antitumor activities of 3-substituted 1- (5-formylfurfuryl) indolin-2-one derivatives. Lett Org Chem 4:601–605Google Scholar
  152. 152.
    Dai H-L, Gao L-X, Yang Y, Li J-Y, Cheng J-G, Li J, Wen R, Peng YQ, Zhang, J-B (2012) Discovery of di-indolinone as a novel scaffold for protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 22:7440–7443Google Scholar
  153. 153.
    Dai H-L, Shen Q, Zheng J-B, Li J-Y, Wen R, Li J (2011) Synthesis and biological evaluation of novel indolin-2-one derivatives as protein tyrosine phosphatase 1B inhibitors. Lett Org Chem 8:526–530Google Scholar
  154. 154.
    Mascal M, Dutta S (2011) Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41Google Scholar
  155. 155.
    Price BJ, Clitherow JW, Bradshaw J (1978) Aminoalkyl furan derivatives. US 4,128,658Google Scholar
  156. 156.
    Mascal M, Dutta S (2011) Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:3101–3102Google Scholar
  157. 157.
    Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M (2014) Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem 62:476–480Google Scholar
  158. 158.
    von Grote AF, Tollens B (1875) Untersuchungen uber kohlenhydrate. I. ueber die bei einwirkung von schwefelsäure auf zucker entstehende säure (levulinsäure). Liebigs Ann Chem 175:181–204Google Scholar
  159. 159.
    Malaguti (1836) Ueber die einwirkung der verdünnten säuren aus den gemeinen zucker. Liebigs Annalen 17:52–67Google Scholar
  160. 160.
    Mulder GJ (1840) Untersuchungen über die humussubstanzen. J Prakt Chem 21:321–370Google Scholar
  161. 161.
    Conrad M (1878) Ueber acetopropionsäure und ihre identität mit levulinsäure. Berichte 11:2177–2179Google Scholar
  162. 162.
    McKenzie BF (1929) Levulinic acid. Org Synth 9:50Google Scholar
  163. 163.
    Thomas RW, Schuette HA (1931) Studies on levulinic acid. I. Its preparation from carbohydrates by digestion with hydrochloric acid under pressure. J Am Chem Soc 53:2324–2328Google Scholar
  164. 164.
    Dahlmann J (1968) Preparation of levulinic acid. Chem Ber 101:4251–4253Google Scholar
  165. 165.
    Ploetz T (1941) The formation of levulinic acid from carbohydrates. Naturwissenschaften 29:707–708Google Scholar
  166. 166.
    Pummerer R, Guyot O, Birkofer L (1935) Mechanism of levulinic acid formation from hexoses. II. A hydroxyl-free glucosan-like substance. Berichte 68B:480–493Google Scholar
  167. 167.
    Isbell HS (1944) Interpretation of some reactions in the carbohydrate field in terms of consecutive electron displacement. J Res Nat Bur Stand 32:45–59Google Scholar
  168. 168.
    Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114Google Scholar
  169. 169.
    Galletti AMR, Antonetti C, De Luise V, Valentini G (2011) Conversion of biomass to levulinic acid, a new feedstock for the chemical industry. Chimica e l’Industria 93:112–117Google Scholar
  170. 170.
    Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5:198–214Google Scholar
  171. 171.
    Saladino R, Pagliaccia T, Argyropoulos DS, Crestini C (2007) Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid. ACS Symp Ser 954:262–279Google Scholar
  172. 172.
    Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The Biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries - industrial processes and products. Wiley-VCH, Weinheim, pp 139–164Google Scholar
  173. 173.
    Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84Google Scholar
  174. 174.
    Efremov AA, Pervyshina GG, Kuznetsov BN (1998) Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chem Nat Compd 34:182–185Google Scholar
  175. 175.
    Efremov AA, Pervyshina GG, Kuznetsov BN (1997) Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H2SO4. Chem Nat Compd 33:84–88Google Scholar
  176. 176.
    Farone WA, Cuzens JE (2000) Method for the production of levulinic acid and its derivatives. US 6,054,611 AGoogle Scholar
  177. 177.
    Fitzpatrick SW (1997) Production of levulinic acid from carbohydrate-containing materials. US 5,608,105 AGoogle Scholar
  178. 178.
    Chang C, Cen P, Ma X (2007) Levulinic acid production from wheat straw. Bioresour Technol 98:1448–1453Google Scholar
  179. 179.
    Yan L, Yang N, Pang H, Liao B (2008) Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. Clean 36:158–163Google Scholar
  180. 180.
    Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81:187–192Google Scholar
  181. 181.
    Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99:8367–8375Google Scholar
  182. 182.
    Ramos-Rodriguez E (1972) Process for jointly producing furfural and levulinic acid from bagasse and other lignocellulosic materials. US 3701789 AGoogle Scholar
  183. 183.
    Carlson LJ (1962) Process for the manufacture of levulinic acid. US 3,065,263 AGoogle Scholar
  184. 184.
    Sassenrath CP, Shilling WL (1966) Preparation of levulinic acid from hexose-containing material. US 3258481 AGoogle Scholar
  185. 185.
    Jeong G-T, Park D-H (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52Google Scholar
  186. 186.
    Top value added chemicals from biomass. Vol I, PNNL and the National Renewable Energy Laboratory (http://www1.eere.energy.gov/biomass/pdfs/35523.pdf)
  187. 187.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554Google Scholar
  188. 188.
    Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind Eng Chem Res 33:21–25Google Scholar
  189. 189.
    Maheria KC, Kozinski J, Dalai A (2013) Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143:1220–1225Google Scholar
  190. 190.
    Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal A Gen 425–426:199–204Google Scholar
  191. 191.
    Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins. WO 2,003,085,071 A1Google Scholar
  192. 192.
    Manzer LE (2005) Preparation of levulinic acid esters from alpha-angelica lactone and alcohols. WO 2,005,097,724 A1Google Scholar
  193. 193.
    Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Properties and performance of levulinate esters as diesel blend components. Energy Fuels 25:5422–5428Google Scholar
  194. 194.
    Windom BC, Lovestead TM, Mascal M, Nikitin EB, Bruno TJ (2011) Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 25:1878–1890Google Scholar
  195. 195.
    Zhang J, Wu S, Li B, Zhang H (2012) Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem 4:1230–1237Google Scholar
  196. 196.
    Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595Google Scholar
  197. 197.
    Corbel-Demailly L, Ly B-K, Minh D-P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions. ChemSusChem 6:2388–2395Google Scholar
  198. 198.
    Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49:5510–5514Google Scholar
  199. 199.
    Geilen FMA, Engendahl B, Holscher M, Klankermayer J, Leitner W (2011) Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study. J Am Chem Soc 133:14349–14358Google Scholar
  200. 200.
    Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5:1369–1379Google Scholar
  201. 201.
    Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chem 14:935–939Google Scholar
  202. 202.
    Haskelberg L (1948) Some derivatives of levulinic acid. J Am Chem Soc 70:2830–2831Google Scholar
  203. 203.
    Lukes R, Koblicova Z, Blaha K (1963) Reaction of angelica lactones with amines. Collect Czech Chem Commun 28:2182–2198Google Scholar
  204. 204.
    Celmer WD, Solomons IA (1963) 1,5-Dimethyl-2-oxo-3-pyrrolidineglyoxylic acid. J Org Chem 28:3221–3222Google Scholar
  205. 205.
    Frank RL, Schmitz WR, Zeidman B (1947) 1,5-Dimethyl-2-pyrrolidone. Org Synth 27:28Google Scholar
  206. 206.
    Manzer LE (2005) Production of 5-methyl-N-(methylaryl)-2-pyrrolidone, 5-methyl-N-(methylcycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds. WO 2,004,085,048 A3Google Scholar
  207. 207.
    Shilling WL (1966) Making lactams by the vapor phase reductive amination of oxo carboxylic acid compounds US 3235562 AGoogle Scholar
  208. 208.
    Wei Y, Wang C, Jiang X, Xue D, Li J, Xiao J (2013) Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chem Commun 49:5408–5410Google Scholar
  209. 209.
    Wei Y, Wang C, Jiang X, Xue D, Liu Z-T, Xiao J (2014) Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem 16:1093–1096Google Scholar
  210. 210.
    Leibig C, Mullen B, Mullen T, Rieth L, Badarinarayana V (2011) Cellulosic-derived levulinic ketal esters: a new building block. ACS Symp Ser 1063:111–116Google Scholar
  211. 211.
    Desai S (2010) Building blocks for a greener industry. Chem Ind London 21–23Google Scholar
  212. 212.
    www.segetis.com (Accessed Jan17, 2014)
  213. 213.
    Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Grosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483Google Scholar
  214. 214.
    Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577Google Scholar
  215. 215.
    West RM, Liu ZY, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424Google Scholar
  216. 216.
    Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114Google Scholar
  217. 217.
    Mascal M, Dutta S, Gandarias I (2014) The angelica lactone dimer as a renewable feedstock for hydrodeoxygenation: simple, high-yield synthesis of branched C7‒C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857Google Scholar
  218. 218.
    Case PA, van Heiningen ARP, Wheeler MC (2012) Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chem 14:85–89Google Scholar
  219. 219.
    Wong PK, Li C, Stubbs L, Vanmeurs M, AnakKumbang DG, Lim CY, Drent E (2012) Synthesis of diacids. WO 2,012,134,397 A1Google Scholar
  220. 220.
    Bond JQ, Alonso DM, West RM, Dumesic JA (2010) γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water. Langmuir 26:16291–16298Google Scholar
  221. 221.
    Grosselin J-M, Denis P, Metz F, Delis P (1992) Process for preparing adipic acid by hydrocarboxylation of pentenoic acids. EP 0,493,273 B1Google Scholar
  222. 222.
    Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95Google Scholar
  223. 223.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239Google Scholar
  224. 224.
    Dunlop AP, Shelbert S (1954) Preparation of succinic acid. US 2,676,186 AGoogle Scholar
  225. 225.
    Van Es DS, Van der Klis F, Van Haveren J (2012) Succinic acid from biomass. WO 2,012,044,168 A1Google Scholar
  226. 226.
    Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15:3077–3082Google Scholar
  227. 227.
    Ha H-J, Lee S-K, Ha Y-J, Park J-W (1994) Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid. Synth Commun 24:2557–2562Google Scholar
  228. 228.
    Manny AJ, Kjelleberg S, Kumar N, de Nys R, Read RW, Steinberg P (1997) Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53:15813–15826Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California DavisDavisUSA

Personalised recommendations