Prediction and Theoretical Characterization of p-Type Organic Semiconductor Crystals for Field-Effect Transistor Applications

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 345)

Abstract

The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure–property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

Keywords

Charge transfer integral Charge transport Crystal structure Crystal structure prediction Mobility Organic field-effect transistors Organic semiconductors 

Abbreviations

BTBT

[1]Benzothieno[3,2-b][1]benzothiophene

BTBT-C8

2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene

DATT

Dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophene

DMA

Distributed multipole analysis

DNTT

Dinaphtha[2,3-b:2′,3′-f]thieno[3,2-b]thiophene

DPP

Diketo-pyrrolo-pyrrole

DPP(TBFu)2

3,6-Bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2- ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione

DTT-Ph-C(8,12)

2,6-Bis(4-{octyl,dodecyl}phenyl)-dithieno[3,2-b′:2′,3′-d]thiophene

GA

Genetic algorithms

ISC

Inorganic semiconductor

OSC

Organic semiconductor

PDIF-CN2

N,N′-1H,1H-Perfluorobutyldicyanoperylene-carboxydi-imide

Rubrene

5,6,11,12-Tetraphenyltetracene

TbTH

Tetraceno[2,3-b]thiophene

TcTH

Tetraceno[2,3-c]thiophene

Tips-pentacene

6,13-Bis(triisopropylsilylethynyl)pentacene

TMTSF

Tetramethyltetraselenafulvalene

References

  1. 1.
    Schwoerer M, Wolf HC (2007) Organic molecular solids. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Katz HE (2004) Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem Mater 16(23):4748–4756. doi:10.1021/cm049781j Google Scholar
  3. 3.
    Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49(18):1210–1212Google Scholar
  4. 4.
    Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater 8(5):421–426Google Scholar
  5. 5.
    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2007) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130(2):732–742. doi:10.1021/ja0771989 Google Scholar
  6. 6.
    Sokolov A, Atahan-Evrenk S, Mondal R, Akkerman HB, Sanchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SCB, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat Commun 2:437Google Scholar
  7. 7.
    Jun L, Yan Z, Huei Shuan T, Yunlong G, Chong-An D, Gui Y, Yunqi L, Ming L, Suo Hon L, Yuhua Z, Haibin S, Beng SO (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754. doi:10.1038/srep00754 Google Scholar
  8. 8.
    Marien H, Steyeart M, Heremans P (2013) Analog organic electronics, building blocks for organic smart sensor systems on foil. Analog circuits and signal processing. Springer, New YorkGoogle Scholar
  9. 9.
    Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic transistors in optical displays and microelectronic applications. Adv Mater 22(34):3778–3798. doi:10.1002/adma.200903559 Google Scholar
  10. 10.
    Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39(7):2354–2371. doi:10.1039/b914956m Google Scholar
  11. 11.
    Zschieschang U, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, Someya T, Klauk H (2011) Organic electronics on banknotes. Adv Mater 23(5):654–658. doi:10.1002/adma.201003374 Google Scholar
  12. 12.
    Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849–4861Google Scholar
  13. 13.
    Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251Google Scholar
  14. 14.
    Hachmann J, Olivares-Amaya R, Jinich A, Appleton AL, Blood-Forsythe MA, Seress LR, Roman-Salgado C, Trepte K, Atahan-Evrenk S, Er S, Shrestha S, Mondal R, Sokolov A, Bao Z, Aspuru-Guzik A (2013) Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard clean energy project. Energy Environ Sci 7:698–704Google Scholar
  15. 15.
    Mei J, Diao Y, Appleton AL, Fang L, Bao Z (2013) Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 135(18):6724–6746. doi:10.1021/ja400881n Google Scholar
  16. 16.
    Kanal IY, Owens SG, Bechtel JS, Hutchison GR (2013) Efficient computational screening of organic polymer photovoltaics. J Phys Chem Lett 4(10):1613–1623. doi:10.1021/jz400215j Google Scholar
  17. 17.
    O’Boyle NM, Campbell CM, Hutchison GR (2011) Computational design and selection of optimal organic photovoltaic materials. J Phys Chem C 115(32):16200–16210. doi:10.1021/jp202765c Google Scholar
  18. 18.
    Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12(3):191–201Google Scholar
  19. 19.
    Clancy P (2012) Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions. Curr Opin Chem Eng 1(2):117–122, 10.1016/j.coche.2012.01.001 Google Scholar
  20. 20.
    Holliday S, Donaghey JE, McCulloch I (2013) Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem Mater 26:647–663. doi:10.1021/cm402421p Google Scholar
  21. 21.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2011) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112(4):2208–2267. doi:10.1021/cr100380z Google Scholar
  22. 22.
    Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF (2012) Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112(10):5488–5519. doi:10.1021/cr3001109 Google Scholar
  23. 23.
    Troisi A (2011) Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem Soc Rev 40(5):2347–2358. doi:10.1039/c0cs00198h Google Scholar
  24. 24.
    Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39(2):423–434. doi:10.1039/b816406c Google Scholar
  25. 25.
    Coropceanu V, Cornil J, Da Silva Filho DA, Olivier Y, Silbey R, Bredas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952Google Scholar
  26. 26.
    Datta S, Grant DJW (2004) Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov 3(1):42–57Google Scholar
  27. 27.
    Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18(6):859–866. doi:10.1023/a:1011052932607 Google Scholar
  28. 28.
    Della Valle RG, Brillante A, Venuti E, Farina L, Girlando A, Masino M (2004) Exploring the polymorphism of crystalline pentacene. Org Electron 5(1–3):1–6, 10.1016/j.orgel.2003.08.017 Google Scholar
  29. 29.
    Jurchescu OD, Mourey DA, Subramanian S, Parkin SR, Vogel BM, Anthony JE, Jackson TN, Gundlach DJ (2009) Effects of polymorphism on charge transport in organic semiconductors. Phys Rev B 80(8):085201Google Scholar
  30. 30.
    Mei J, Bao Z (2014) Side chain engineering in solution-processible conjugated polymers for organic solar cells and field-effect transistors. Chem Mater 26(1):604–615. doi:10.1021/cm4020805 Google Scholar
  31. 31.
    Sumrak JC, Sokolov AN, Macgillivray LR (2011) Crystal engineering organic semiconductors. In: Self-organized organic semiconductors. Wiley, New York, pp 1–19. doi:10.1002/9780470949122.ch1
  32. 32.
    Głowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gsiorowski J, White MS, Monkowius U, Romanazzi G, Suranna GP, Mastrorilli P, Sekitani T, Bauer S, Someya T, Torsi L, Sariciftci NS (2013) Hydrogen-bonded semiconducting pigments for air-stable field-effect transistors. Adv Mater 25(11):1563–1569. doi:10.1002/adma.201204039 Google Scholar
  33. 33.
    Stone AJ (2008) Intermolecular potentials. Science 321(5890):787–789. doi:10.1126/science.1158006 Google Scholar
  34. 34.
    Klimes J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901Google Scholar
  35. 35.
    Hongo K, Watson MA, Sánchez-Carrera RS, Iitaka T, Aspuru-Guzik A (2010) Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum Monte Carlo study. J Phys Chem Lett 1(12):1789–1794. doi:10.1021/jz100418p Google Scholar
  36. 36.
    Reilly AM, Tkatchenko A (2013) Seamless and accurate modeling of organic molecular materials. J Phys Chem Lett 4(6):1028–1033. doi:10.1021/jz400226x Google Scholar
  37. 37.
    Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test. Acta Crystallogr B 67(6):535–551. doi:10.1107/S0108768111042868 Google Scholar
  38. 38.
    Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS, Della Valle RG, Venuti E, Jose J, Gadre SR, Desiraju GR, Thakur TS, van Eijck BP, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Neumann MA, Leusen FJJ, Kendrick J, Price SL, Misquitta AJ, Karamertzanis PG, Welch GWA, Scheraga HA, Arnautova YA, Schmidt MU, van de Streek J, Wolf AK, Schweizer B (2009) Significant progress in predicting the crystal structures of small organic molecules - a report on the fourth blind test. Acta Crystallogr B 65(2):107–125. doi:10.1107/S0108768109004066 Google Scholar
  39. 39.
    Neumann MA (2008) Tailor-made force fields for crystal-structure prediction. J Phys Chem B 112(32):9810–9829. doi:10.1021/jp710575h Google Scholar
  40. 40.
    Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC (2011) Efficient handling of molecular flexibility in lattice energy minimization of organic crystals. J Chem Theory Comput 7(6):1998–2016. doi:10.1021/ct100597e Google Scholar
  41. 41.
    Neumann MA, Perrin M-A (2005) Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. J Phys Chem B 109(32):15531–15541. doi:10.1021/jp050121r Google Scholar
  42. 42.
    Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12(30):8478–8490. doi:10.1039/c004164e Google Scholar
  43. 43.
    Silinsh EA, Capek V (1994) Organic molecular crystals: interaction, localization, and transport phenomena. American Institute of Physics, New YorkGoogle Scholar
  44. 44.
    Ortmann F, Bechstedt F, Hannewald K (2011) Charge transport in organic crystals: theory and modelling. Phys Status Solidi B 248(3):511–525. doi:10.1002/pssb.201046278 Google Scholar
  45. 45.
    Cheng YC, Silbey RJ (2008) A unified theory for charge-carrier transport in organic crystals. J Chem Phys 128(11):114713. doi:10.1063.1.28948.0 Google Scholar
  46. 46.
    Bao Z, Locklin JJ (2007) Organic field-effect transistors. CRC, Boca RatonGoogle Scholar
  47. 47.
    Madru M, Guillaud G, Sadoun MA, Maitrot M, Clarisse C, Contellec ML, André JJ, Simon J (1987) The first field effect transistor based on an intrinsic molecular semiconductor. Chem Phys Lett 142(1–2):103–105, 10.1016/0009-2614(87)87259-7 Google Scholar
  48. 48.
    Sakanoue T, Sirringhaus H (2010) Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat Mater 9(9):736–740. doi:10.1038/nmat2825 Google Scholar
  49. 49.
    Takamiya M, Sekitani T, Ishida K, Someya T, Sakurai T (2013) Large area electronics with organic transistors. In: Cantatore E (ed) Applications of organic and printed electronics. Integrated circuits and systems. Springer, New York, pp 101–113. doi:10.1007/978-1-4614-3160-2_5 Google Scholar
  50. 50.
    Katz HE, Bao Z (1999) The physical chemistry of organic field-effect transistors. J Phys Chem B 104(4):671–678. doi:10.1021/jp992853n Google Scholar
  51. 51.
    Horowitz G (2006) Organic transistors. In: Klauk H (ed) Organic electronics, materials, manufacturing and applications. Wiley-VCH, Weinheim, pp 3–32Google Scholar
  52. 52.
    Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131(26):9396–9404. doi:10.1021/ja9029957 Google Scholar
  53. 53.
    Ukah NB, Granstrom J, Gari RRS, King GM, Guha S (2011) Low-operating voltage and stable organic field-effect transistors with poly (methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl Phys Lett 99(24):243302–243303Google Scholar
  54. 54.
    Zschieschang U, Kang MJ, Takimiya K, Sekitani T, Someya T, Canzler TW, Werner A, Blochwitz-Nimoth J, Klauk H (2012) Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J Mater Chem 22(10):4273–4277. doi:10.1039/c1jm14917b Google Scholar
  55. 55.
    Horowitz G (1998) Organic field-effect transistors. Adv Mater 10(5):365–377Google Scholar
  56. 56.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc 123:9482–9483. doi:10.1021/ja0162459 Google Scholar
  57. 57.
    Yang YS, Yasuda T, Kakizoe H, Mieno H, Kino H, Tateyama Y, Adachi C (2013) High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno[3,2-b:2′,3′-d]thiophene derivatives. Chem Commun 49(58):6483–6485. doi:10.1039/c3cc42114g Google Scholar
  58. 58.
    Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers JA, Gershenson ME (2004) Intrinsic charge transport on the surface of organic semiconductors. Phys Rev Lett 93(8):086602Google Scholar
  59. 59.
    Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z (2013) Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater 12(7):665–671. doi:10.1038/nmat3650, http://www.nature.com/nmat/journal/v12/n7/abs/nmat3650.html - supplementary-informationGoogle Scholar
  60. 60.
    Leclerc M, Morin J-F (eds) (2010) Design and synthesis of conjugated polymers. WILEY-VCH Verlag GmbH & Co.KGaA, WeinheimGoogle Scholar
  61. 61.
    Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754, http://www.nature.com/srep/2012/121018/srep00754/abs/srep00754.html - supplementary-informationGoogle Scholar
  62. 62.
    Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12(11):1038–1044Google Scholar
  63. 63.
    Bassler H, Kohler A (eds) (2012) Charge transport in organic semiconductors, vol 312. Top Curr Chem. Springer, BerlinGoogle Scholar
  64. 64.
    Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5003. doi:10.1021/Cr040084k Google Scholar
  65. 65.
    Ostroverkhova O, Cooke DG, Shcherbyna S, Egerton RF, Hegmann FA, Tykwinski RR, Anthony JE (2005) Bandlike transport in pentacene and functionalized pentacene thin films revealed by subpicosecond transient photoconductivity measurements. Phys Rev B 71(3):035204Google Scholar
  66. 66.
    Karl N (2003) Charge carrier transport in organic semiconductors. Synth Met 133–134:649–657, 10.1016/S0379-6779(02)00398-3 Google Scholar
  67. 67.
    Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci U S A 99(9):5804–5809. doi:10.1073/pnas.092143399 Google Scholar
  68. 68.
    Hatch RC, Huber DL, Höchst H (2009) HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Phys Rev B 80(8):081411Google Scholar
  69. 69.
    Ruhle V, Kirkpatrick J, Andrienko D (2010) A multiscale description of charge transport in conjugated oligomers. J Chem Phys 132(13):134103Google Scholar
  70. 70.
    Norton JE, Brédas JL (2008) Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: short intermolecular pi–pi interactions yield large electronic couplings and hole transport bandwidths. J Chem Phys 128(3):034701. doi:10.1063.1.28068.3 Google Scholar
  71. 71.
    Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA (2003) Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys 119(18):9809–9817Google Scholar
  72. 72.
    Kirkpatrick J (2008) An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian. Int J Quantum Chem 108(1):51–56. doi:10.1002/qua.21378 Google Scholar
  73. 73.
    Hannewald K, Stojanovic VM, Schellekens JMT, Bobbert PA, Kresse G, Hafner J (2004) Theory of polaron bandwidth narrowing in organic molecular crystals. Phys Rev B 69(7):075211Google Scholar
  74. 74.
    Ferretti A, Ruini A, Molinari E, Caldas MJ (2003) Electronic properties of polymer crystals: the effect of interchain interactions. Phys Rev Lett 90(8):086401Google Scholar
  75. 75.
    Huang JS, Kertesz M (2004) Intermolecular transfer integrals for organic molecular materials: can basis set convergence be achieved? Chem Phys Lett 390(1–3):110–115. doi:10.1016/j.cplett.2004.03.141 Google Scholar
  76. 76.
    Mikołajczyk M, Zaleśny R, Czyżnikowska Ż, Toman P, Leszczynski J, Bartkowiak W (2011) Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes. J Mol Model 17(9):2143–2149. doi:10.1007/s00894-010-0865-7 Google Scholar
  77. 77.
    Sancho-Garcia JC, Horowitz G, Bredas JL, Cornil J (2003) Effect of an external electric field on the charge transport parameters in organic molecular semiconductors. J Chem Phys 119(23):12563–12568Google Scholar
  78. 78.
    Kojima H, Mori T (2011) Dihedral angle dependence of transfer integrals in organic semiconductors with herringbone structures. Bull Chem Soc Jpn 84(10):1049–1056Google Scholar
  79. 79.
    Lee JY, Roth S, Park YW (2006) Anisotropic field effect mobility in single crystal pentacene. Appl Phys Lett 88(25):252106Google Scholar
  80. 80.
    Haddon RC, Siegrist T, Fleming RM, Bridenbaugh PM, Laudise RA (1995) Band structures of organic thin-film-transistor materials. J Mater Chem 5(10):1719–1724Google Scholar
  81. 81.
    Huang JS, Kertesz M (2005) Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J Chem Phys 122(23):234707. doi:10.1063.1.19256.1 Google Scholar
  82. 82.
    Hotta C (2003) Classification of quasi-two dimensional organic conductors based on a new minimal model. J Phys Soc Jpn 72:840Google Scholar
  83. 83.
    Mori T, Mori H, Tanaka S (1999) Structural genealogy of BEDT-TTF-based organic conductors II. Inclined molecules: theta, alpha, and kappa phases. Bull Chem Soc Jpn 72(2):179–197Google Scholar
  84. 84.
    Vehoff T, Baumeier B, Troisi A, Andrienko D (2010) Charge transport in organic crystals: role of disorder and topological connectivity. J Am Chem Soc 132(33):11702–11708. doi:10.1021/ja104380c Google Scholar
  85. 85.
    Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599–610Google Scholar
  86. 86.
    Reimers JR (2001) A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys 115(20):9103–9109Google Scholar
  87. 87.
    McMahon DP, Troisi A (2010) Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett 1(6):941–946. doi:10.1021/jz1001049 Google Scholar
  88. 88.
    Norton JE, Brédas JL (2008) Polarization energies in oligoacene semiconductor crystals. J Am Chem Soc 130(37):12377–12384. doi:10.1021/Ja8017797 Google Scholar
  89. 89.
    Duhm S, Xin Q, Hosoumi S, Fukagawa H, Sato K, Ueno N, Kera S (2012) Charge reorganization energy and small polaron binding energy of rubrene thin films by ultraviolet photoelectron spectroscopy. Adv Mater 24(7):901–905. doi:10.1002/adma.201103262 Google Scholar
  90. 90.
    Kera S, Hosoumi S, Sato K, Fukagawa H, Nagamatsu S-I, Sakamoto Y, Suzuki T, Huang H, Chen W, Wee ATS, Coropceanu V, Ueno N (2013) Experimental reorganization energies of pentacene and perfluoropentacene: effects of perfluorination. J Phys Chem C 117(43):22428–22437. doi:10.1021/jp4032089 Google Scholar
  91. 91.
    da Silva Filho DA, Coropceanu V, Fichou D, Gruhn NE, Bill TG, Gierschner J, Cornil J, Brédas JL (2007) Hole-vibronic coupling in oligothiophenes: impact of backbone torsional flexibility on relaxation energies. Philos Trans R Soc A 365(1855):1435–1452. doi:10.1098/rsta.2007.2025 Google Scholar
  92. 92.
    Martinelli NG, Olivier Y, Athanasopoulos S, Ruiz-Delgado MC, Pigg KR, da Silva DA, Sánchez-Carrera RS, Venuti E, Della Valle RG, Brédas JL, Beljonne D, Cornil J (2009) Influence of intermolecular vibrations on the electronic coupling in organic semiconductors: the case of anthracene and perfluoropentacene. ChemPhysChem 10(13):2265–2273. doi:10.1002/cphc.200900298 Google Scholar
  93. 93.
    Nan G, Li Z (2012) Influence of lattice dynamics on charge transport in the dianthra[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene organic crystals from a theoretical study. Phys Chem Chem Phys 14(26):9451–9459. doi:10.1039/c2cp40857k Google Scholar
  94. 94.
    Troisi A, Orlandi G (2006) Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J Phys Chem A 110(11):4065–4070. doi:10.1021/Jp055432g Google Scholar
  95. 95.
    Sánchez-Carrera RS, Atahan S, Schrier J, Aspuru-Guzik A (2010) Theoretical characterization of the air-stable, high-mobility dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene organic semiconductor. J Phys Chem C 114(5):2334–2340. doi:10.1021/jp910102f Google Scholar
  96. 96.
    Sánchez-Carrera RS, Paramonov P, Day GM, Coropceanu V, Brédas J-L (2010) Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. J Am Chem Soc 132(41):14437–14446. doi:10.1021/ja1040732 Google Scholar
  97. 97.
    Coropceanu V, Sánchez-Carrera RS, Paramonov P, Day GM, Brédas JL (2009) Interaction of charge carriers with lattice vibrations in organic molecular semiconductors: naphthalene as a case study. J Phys Chem C 113(11):4679–4686. doi:10.1021/Jp900157p Google Scholar
  98. 98.
    Davydov SA (1962) Theory of molecular excitons (trans: M. K, M. O). McGraw-Hill, New YorkGoogle Scholar
  99. 99.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  100. 100.
    Takimiya K, Shinamura S, Osaka I, Miyazaki E (2011) Thienoacene-based organic semiconductors. Adv Mater 23(38):4347–4370. doi:10.1002/adma.201102007 Google Scholar
  101. 101.
    Salzmann I, Duhm S, Heimel G, Oehzelt M, Kniprath R, Johnson RL, JrP R, Koch N (2008) Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds. J Am Chem Soc 130(39):12870–12871. doi:10.1021/ja804793a Google Scholar
  102. 102.
    Kazuo T, Tatsuya Y, Hideaki E, Takafumi I (2007) Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Sci Technol Adv Mater 8(4):273Google Scholar
  103. 103.
    Tang ML, Reichardt AD, Wei P, Bao Z (2009) Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives. J Am Chem Soc 131:5264–5273. doi:10.1021/ja809659b Google Scholar
  104. 104.
    Kobayashi H, Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D, Tokita Y, Itabashi M (2013) Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations. J Chem Phys 139:014707Google Scholar
  105. 105.
    Watanabe M, Chang YJ, Liu S-W, Chao T-H, Goto K, IslamMd M, Yuan C-H, Tao Y-T, Shinmyozu T, Chow TJ (2012) The synthesis, crystal structure and charge-transport properties of hexacene. Nat Chem 4(7):574–578, http://www.nature.com/nchem/journal/v4/n7/abs/nchem.1381.html - supplementary-informationGoogle Scholar
  106. 106.
    Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127(7):2339–2350. doi:10.1021/ja0461421 Google Scholar
  107. 107.
    Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater 15(11):917–922. doi:10.1002/adma.200304654 Google Scholar
  108. 108.
    Misra M, Andrienko D, Br B, Faulon J-L, von Lilienfeld OA (2011) Toward quantitative structure–property relationships for charge transfer rates of polycyclic aromatic hydrocarbons. J Chem Theory Comput 7(8):2549–2555. doi:10.1021/ct200231z Google Scholar
  109. 109.
    Faulon J-L (1994) Stochastic generator of chemical structure. 1. Application to the structure elucidation of large molecules. J Chem Inf Comput Sci 34(5):1204–1218. doi:10.1021/ci00021a031 Google Scholar
  110. 110.
    Kuo M-Y, Liu C-C (2009) Molecular design toward high hole mobility organic semiconductors: tetraceno[2,3-c]thiophene derivatives of ultrasmall reorganization energies. J Phys Chem C 113(37):16303–16306. doi:10.1021/jp9065423 Google Scholar
  111. 111.
    Kwon O, Coropceanu V, Gruhn NE, Durivage JC, Laquindanum JG, Katz HE, Cornil J, Bredas JL (2004) Characterization of the molecular parameters determining charge transport in anthradithiophene. J Chem Phys 120:8186–8194. doi:10.1063.1.16896.6 Google Scholar
  112. 112.
    Kuo M-Y, Chen H-Y, Chao I (2007) Cyanation: providing a three-in-one advantage for the design of n-type organic field-effect transistors. Chemistry 13(17):4750–4758. doi:10.1002/chem.200601803 Google Scholar
  113. 113.
    Chen H-Y, Chao I (2006) Toward the rational design of functionalized pentacenes: reduction of the impact of functionalization on the reorganization energy. ChemPhysChem 7(9):2003–2007. doi:10.1002/cphc.200600266 Google Scholar
  114. 114.
    Sancho-Garcia JC, Perez-Jimenez AJ, Olivier Y, Cornil J (2010) Molecular packing and charge transport parameters in crystalline organic semiconductors from first-principles calculations. Phys Chem Chem Phys 12(32):9381–9388. doi:10.1039/b925652k Google Scholar
  115. 115.
    Pola S, Kuo C-H, Peng W-T, Islam MM, Chao I, Tao Y-T (2012) Contorted tetrabenzocoronene derivatives for single crystal field effect transistors: correlation between packing and mobility. Chem Mater 24(13):2566–2571. doi:10.1021/cm301190c Google Scholar
  116. 116.
    Desiraju GR, Gavezzotti A (1989) Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure. Acta Crystallogr B 45(5):473–482. doi:10.1107/S0108768189003794 Google Scholar
  117. 117.
    Glowacki ED, Leonat L, Irimia-Vladu M, Schwodiauer R, Ullah M, Sitter H, Bauer S, Sariciftci NS (2012) Intermolecular hydrogen-bonded organic semiconductors–Quinacridone versus pentacene. Appl Phys Lett 101(2):023304–023305Google Scholar
  118. 118.
    da Silva Filho DA, Kim EG, Brédas JL (2005) Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv Mater 17(8):1072–1076. doi:10.1002/adma.200401866 Google Scholar
  119. 119.
    Haas S, Stassen AF, Schuck G, Pernstich KP, Gundlach DJ, Batlogg B, Berens U, Kirner HJ (2007) High charge-carrier mobility and low trap density in a rubrene derivative. Phys Rev B 76(11):115203Google Scholar
  120. 120.
    McGarry KA, Xie W, Sutton C, Risko C, Wu Y, Young VG, Brédas J-L, Frisbie CD, Douglas CJ (2013) Rubrene-based single-crystal organic semiconductors: synthesis, electronic structure, and charge-transport properties. Chem Mater 25(11):2254–2263. doi:10.1021/cm400736s Google Scholar
  121. 121.
    Anthony JE (2006) Engineered pentacenes. In: Klauk H (ed) Organic electronics: materials, manufacturing and applications. Wiley-VCH, Weinheim, FRGGoogle Scholar
  122. 122.
    Anthony JE (2008) The larger acenes: versatile organic semiconductors. Angew Chem Int Ed 47(3):452–483Google Scholar
  123. 123.
    Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z (2011) Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480:504–508Google Scholar
  124. 124.
    Zhang L, Fakhouri SM, Liu F, Timmons JC, Ran NA, Briseno AL (2011) Chalcogenoarene semiconductors: new ideas from old materials. J Mater Chem 21(5):1329–1337. doi:10.1039/c0jm02522d Google Scholar
  125. 125.
    Tucker NM, Briseno AL, Acton O, Yip H-L, Ma H, Jenekhe SA, Xia Y, Jen AKY (2013) Solvent-dispersed benzothiadiazole-tetrathiafulvalene single-crystal nanowires and their application in field-effect transistors. ACS Appl Mater Interfaces 5(7):2320–2324. doi:10.1021/am3025036 Google Scholar
  126. 126.
    Anthony JE (2007) Induced pi-stacking in acenes. In: Muller TJJ, Bunz UHF (eds) Functional organic materials. Wiley-VCH, Weinheim, p 511Google Scholar
  127. 127.
    Curtis MD, Cao J, Kampf JW (2004) Solid-state packing of conjugated oligomers: from π-stacks to the Herringbone structure. J Am Chem Soc 126(13):4318–4328. doi:10.1021/ja0397916 Google Scholar
  128. 128.
    Kang MJ, Yamamoto T, Shinamura S, Miyazaki E, Takimiya K (2010) Unique three-dimensional (3D) molecular array in dimethyl-DNTT crystals: a new approach to 3D organic semiconductors. Chem Sci 1(2):179–183. doi:10.1039/c0sc00156b Google Scholar
  129. 129.
    Reese C, Roberts ME, Parkin SR, Bao Z (2009) Tuning crystalline solid-state order and charge transport via building-block modification of oligothiophenes. Adv Mater 21(36):3678–3681. doi:10.1002/adma.200900836 Google Scholar
  130. 130.
    Akkerman HB, Mannsfeld S, Kaushik A, Verploegen E, Burnier L, Zoombelt A, Saathoff J, Hong S, Atahan-Evrenk S, Liu X, Aspuru-Guzik A, Toney M, Clancy P, Bao Z (2013) Effects of odd-even side chain length of alkyl-substituted diphenyl-bithiophenes on first monolayer thin film packing structure. J Am Chem Soc 135(30):11006–11014Google Scholar
  131. 131.
    Liu J, Zhang Y, Phan H, Sharenko A, Moonsin P, Walker B, Promarak V, Nguyen T-Q (2013) Effects of stereoisomerism on the crystallization behavior and optoelectrical properties of conjugated molecules. Adv Mater 25(27):3645–3650. doi:10.1002/adma.201300255 Google Scholar
  132. 132.
    Troisi A, Orlandi G (2005) Band structure of the four pentacene polymorphs and effect on the hole mobility at low temperature. J Phys Chem B 109(5):1849–1856. doi:10.1021/jp0457489 Google Scholar
  133. 133.
    Bussac MN, Picon JD, Zuppiroli L (2004) The impact of molecular polarization on the electronic properties of molecular semiconductors. Europhys Lett 66(3):392Google Scholar
  134. 134.
    Topham BJ, Soos ZG (2011) Ionization in organic thin films: electrostatic potential, electronic polarization, and dopants in pentacene films. Phys Rev B 84(16):165405Google Scholar
  135. 135.
    Minder NA, Ono S, Chen Z, Facchetti A, Morpurgo AF (2012) Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv Mater 24(4):503–508. doi:10.1002/adma.201103960 Google Scholar
  136. 136.
    Chang Y-f L, Z-y AL-j, J-p Z (2011) From molecules to materials: molecular and crystal engineering design of organic optoelectronic functional materials for high carrier mobility. J Phys Chem C 116(1):1195–1199. doi:10.1021/jp208063h Google Scholar
  137. 137.
    Reck G, Schulz BW (2006) Benzo(e)pyrene (CSD-CEQGEL)Google Scholar
  138. 138.
    Marcon V, Raos G (2004) Molecular modeling of crystalline oligothiophenes: testing and development of improved force fields. J Phys Chem B 108(46):18053–18064. doi:10.1021/Jp047128d Google Scholar
  139. 139.
    Della Valle RG, Venuti E, Brillante A, Girlando A (2006) Inherent structures of crystalline tetracene. J Phys Chem A 110(37):10858–10862. doi:10.1021/jp0611020 Google Scholar
  140. 140.
    Venuti E, Della Valle RG, Brillante A, Masino M, Girlando A (2002) Probing pentacene polymorphs by lattice dynamics calculations. J Am Chem Soc 124(10):2128–2129. doi:10.1021/ja0166949 Google Scholar
  141. 141.
    Della Valle RG, Venuti E, Brillante A, Girlando A (2003) Inherent structures of crystalline pentacene. J Chem Phys 118(2):807–815Google Scholar
  142. 142.
    Della Valle RG, Venuti E, Brillante A, Girlando A (2008) Are crystal polymorphs predictable? The case of sexithiophene. J Phys Chem A 112(29):6715–6722. doi:10.1021/jp801749n Google Scholar
  143. 143.
    Williams DE, Starr TL (1977) J Comput Chem 1:13Google Scholar
  144. 144.
    Spek AL (2003) Platon. J Appl Cryst 36:7Google Scholar
  145. 145.
    Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nat Mater 7(12):937–946Google Scholar
  146. 146.
    Bazterra VE, Ferraro MB, Facelli JC (2002) Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene. J Chem Phys 116(14):5984–5991Google Scholar
  147. 147.
    Kim S, Orendt AM, Ferraro MB, Facelli JC (2009) Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field. J Comput Chem 30(13):1973–1985. doi:10.1002/jcc.21189 Google Scholar
  148. 148.
    Baur WH, Kassner D (1992) The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr B 48(4):356–369. doi:10.1107/S0108768191014726 Google Scholar
  149. 149.
    Padmaja N, Ramakumar S, Viswamitra MA (1990) Space-group frequencies of proteins and of organic compounds with more than one formula unit in the asymmetric unit. Acta Crystallogr A 46(9):725–730. doi:10.1107/S0108767390004512 Google Scholar
  150. 150.
    Price S (2013) Why don’t we find more polymorphs? Acta Crystallogr B 69(4):313–328. doi:10.1107/S2052519213018861 Google Scholar
  151. 151.
    Mellot-Draznieks C (2007) Role of computer simulations in structure prediction and structure determination: from molecular compounds to hybrid frameworks. J Mater Chem 17(41):4348–4358. doi:10.1039/b702516p Google Scholar
  152. 152.
    Sanchez-Carrera RS, Atahan-Evrenk S, Schrier J, Aspuru-Guzik A (2010) Theoretical characterization of the air-stable, high-mobility dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene organic semiconductor. J Phys Chem C 114(5):2334–2340Google Scholar
  153. 153.
    Uno M, Tominari Y, Yamagishi M, Doi I, Miyazaki E, Takimiya K, Takeya J (2009) Moderately anisotropic field-effect mobility in dinaphtho[2,3-b:2(′),3(′)-f]thiopheno[3,2-b]thiophenes single-crystal transistors. Appl Phys Lett 94(22):223308. doi:10.1063.1.31531.9 Google Scholar
  154. 154.
    Accelrys (2006) Materials studioGoogle Scholar
  155. 155.
    Clancy P (2011) Application of molecular simulation techniques to the study of factors affecting the thin-film morphology of small-molecule organic semiconductors. Chem Mater 23(3):522–543. doi:10.1021/cm102231b Google Scholar
  156. 156.
    Minemawari H, Yamada T, Matsui H, Tsutsumi JY, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 475(7356):364–367, http://www.nature.com/nature/journal/v475/n7356/abs/nature10313.html - supplementary-informationGoogle Scholar
  157. 157.
    Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T (2007) Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc 129(51):15732–15733Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.TOBB-ETU Medical SchoolAnkaraTurkey

Personalised recommendations