Carbon–Carbon Bond Activation with 8-Acylquinolines

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 346)


Synthetically relevant advances in the area of carbon–carbon sigma bond activation have been made possible by 8-acylquinoline directing groups. Stable rhodium metallacycle intermediates have been shown to undergo a variety of transformations, including carboacylation reactions, to produce value-added products containing all-carbon quaternary centers. The kinetic profile of such reactions has been shown to be substrate dependent.


8-Acylquinoline 8-Quinolinyl ketone All-carbon quaternary centers Bond insertion Carboacylation Carbon–carbon bond activation Chelation Cyclometalation Directed metalation Directing group Metallacycle Oxidative addition Rhodium catalyst 



Bond dissociation energy


Based on recovered starting material


Carbon–carbon sigma bond


Carbon–nitrile bond


Carbon–hydrogen bond















The authors thank the National Science Foundation (CHE-115157), the donors of the Petroleum Research Fund (47565-G1), and Research Corporation for Science Advancement (Cottrell Scholar Award to CJD, 19985) for support of the work in this chapter carried out at Minnesota.


  1. 1.
    Crabtree RH (1985) Chem Rev 85:245CrossRefGoogle Scholar
  2. 2.
    Rybtchinski B, Milstein D (1999) Angew Chem Int Ed 38:870CrossRefGoogle Scholar
  3. 3.
    Jun CH (2004) Chem Soc Rev 33:610CrossRefGoogle Scholar
  4. 4.
    Murakami M, Matsuda T (2011) Chem Commun 47:1100CrossRefGoogle Scholar
  5. 5.
    Korotvička A, Nečas D, Kotora M (2012) Cur Org Chem 16:1170CrossRefGoogle Scholar
  6. 6.
    Ruhland K (2012) Eur J Org Chem 2683Google Scholar
  7. 7.
    Murakami M, Ito Y (1999) In: Murai S (ed) Activation of unreactive bonds and organic synthesis. Springer, New York, pp 97–129CrossRefGoogle Scholar
  8. 8.
    Müller E, Segnitz A, Langer E (1969) Tetrahedron Lett 10:1129CrossRefGoogle Scholar
  9. 9.
    Dermenci A, Whittaker RE, Dong G (2013) Org Lett 15:2242CrossRefGoogle Scholar
  10. 10.
    Suggs JW, Cox SD (1981) J Organomet Chem 221:199CrossRefGoogle Scholar
  11. 11.
    Bruce MI (1977) Angew Chem Int Ed 16:73CrossRefGoogle Scholar
  12. 12.
    Suggs JW, Jun CH (1984) J Am Chem Soc 106:3054CrossRefGoogle Scholar
  13. 13.
    Suggs JW, Wovkulich MJ, Cox SD (1985) Organometallics 4:1101CrossRefGoogle Scholar
  14. 14.
    Suggs JW (1978) J Am Chem Soc 100:640CrossRefGoogle Scholar
  15. 15.
    Cheng CH, Spivack BD, Eisenberg R (1977) J Am Chem Soc 99:3003CrossRefGoogle Scholar
  16. 16.
    Adamson GW, Daly JJ, Forester D (1974) J Organomet Chem 71:C17CrossRefGoogle Scholar
  17. 17.
    Hitchcock PB, Lappert MF, McLaughlin GM (1974) J Chem Soc Dalton Trans 68Google Scholar
  18. 18.
    Bombieri G, Graviani R, Panattoni C, Volponi L (1967) J Chem Soc Chem Commun 977aGoogle Scholar
  19. 19.
    Milstein D (1982) Organometallics 1:1549CrossRefGoogle Scholar
  20. 20.
    Suggs JW, Jun CH (1986) J Am Chem Soc 108:4679CrossRefGoogle Scholar
  21. 21.
    Flood TC (1981) Top Stereochem 12:37Google Scholar
  22. 22.
    Steenken S, Schushmann HP, von Sonntag C (1975) J Phys Chem 79:763CrossRefGoogle Scholar
  23. 23.
    Greene FD (1959) J Am Chem Soc 81:2688CrossRefGoogle Scholar
  24. 24.
    Ng FTT, Rempel GL, Halpern J (1982) J Am Chem Soc 104:621CrossRefGoogle Scholar
  25. 25.
    Finke RG, Hay BP (1984) Inorg Chem 23:3041CrossRefGoogle Scholar
  26. 26.
    Suggs JW, Jun CH (1985) J Chem Soc Chem Commun 92Google Scholar
  27. 27.
    Lee DY, Jun CH (2003) Bull Kor Chem Soc 24:1059CrossRefGoogle Scholar
  28. 28.
    Wentzel MT, Reddy VJ, Hyster TK, Douglas CJ (2009) Angew Chem Int Ed 48:6121CrossRefGoogle Scholar
  29. 29.
    Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J (2012) Angew Chem Int Ed 51:12334CrossRefGoogle Scholar
  30. 30.
    Tobisu M, Kinuta H, Kita Y, Remond E, Chatani N (2012) J Am Chem Soc 134:115CrossRefGoogle Scholar
  31. 31.
    Gribov DV, Pastine SJ, Schnürch M, Sames D (2007) J Am Chem Soc 129:11750CrossRefGoogle Scholar
  32. 32.
    Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993) Nature 366:529CrossRefGoogle Scholar
  33. 33.
    Trost BM, Jiang C (2006) Synthesis 369Google Scholar
  34. 34.
    Christoffers J, Baro A (eds) (2005) Quaternary stereocenters. Wiley, WeinheimGoogle Scholar
  35. 35.
    Douglas CJ, Overman LE (2004) Proc Natl Acad Sci U S A 101:5363CrossRefGoogle Scholar
  36. 36.
    Denissova I, Barriault L (2003) Tetrahedron 59:10105CrossRefGoogle Scholar
  37. 37.
    Dreis AM, Douglas CJ (2009) J Am Chem Soc 131:412CrossRefGoogle Scholar
  38. 38.
    Rathbun CM, Johnson JB (2011) J Am Chem Soc 133:2031CrossRefGoogle Scholar
  39. 39.
    Singleton DA, Thomas AA (1995) J Am Chem Soc 117:9357CrossRefGoogle Scholar
  40. 40.
    Frantz DE, Singleton DA, Snyder JP (1997) J Am Chem Soc 119:3383CrossRefGoogle Scholar
  41. 41.
    Lutz PJ, Rathbun CM, Stevenson SM, Powell BM, Boman TS, Baxter CE, Zona JM, Johnson JB (2012) J Am Chem Soc 134:715CrossRefGoogle Scholar
  42. 42.
    Brown JM, Cooley NA (1988) Chem Rev 88:1031CrossRefGoogle Scholar
  43. 43.
    Espinet P, Echavarren AM (2004) Angew Chem Int Ed 43:4704Google Scholar
  44. 44.
    Denmark SE, Sweis RF (2004) J Am Chem Soc 126:4876CrossRefGoogle Scholar
  45. 45.
    Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Brandon RJ, Konovalova T, Desrochers RJ, Pulay P, Vicic DA (2006) J Am Chem Soc 128:13175CrossRefGoogle Scholar
  46. 46.
    Nakao Y (2012) Bull Chem Soc Jpn 85:731CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations