Solubilization of Fullerenes, Carbon Nanotubes, and Graphene

  • Alain Pénicaud
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 348)


Processing of novel carbon forms, i.e. fullerenes, nanotubes and graphene, in solution is described. C60 and higher fullerenes appear to be the only truly soluble forms of pure carbon. Ways to disperse carbon nanotubes and graphene are reviewed. True solutions of carbon nanotubes and graphene can be obtained by reductive dissolution, leading to solution of polyelectrolyte nanocarbons of high concentrations without damaging the nanocarbon. Finally it is shown that these solutions allow to obtain high performing materials such as highly conducting transparent electrodes.


C60 Carbon Dissolution Entropy Fullerenes GIC Graphene Graphenide Graphite Individualization Nanotube salts Nanotubes Nanotubide Solutions 



Atomic force microscopy


Carbon nanotube


Process in which carbon nanotubes are synthesized with Co/Mo catalysts




Graphite intercalation compound


Graphene oxide


High pressure carbon monoxide process to synthesize carbon nanotubes


Highly ordered pyrolytic graphene




Polyaromatic hydrocarbon


Reduced graphene oxide


Standard calomel electrode


Scanning electron microscopy


Single-wall carbon nanotube


Transmission electron spectroscopy





Most of the experimental work described here has been performed by Dr. C. Vallés, Dr. A. Catheline, Dr D. Voiry, Dr F. Dragin, and Yu Wang, in collaboration with Dr Olivier Roubeau, Dr Carlos Drummond, the group of Prof. F. Paolucci from the University of Bologna (in particular, Dr. M. Marcaccio, Dr. M. Iurlo, Dr. G. Valenti, and Dr S. Rapino), and with Dr L. Ortolani and Dr. V. Morandi (CNR, Bologna). Prof. Eric Anglaret (Laboratoire Charles Coulomb, Montpellier), Dr. M. Monthioux (CEMES, Toulouse), and Dr. C. Furtado (CDTN, Belo Horizonte), as well as Prof. M. Pimenta, Dr. A. Righi, and Dr. C. Fantini are also gratefully acknowledged as well as all the researchers and students from the “carbon nanotubes and graphene” team at CRPP. Support from the Agence Nationale de la Recherche (TRICOTRA and GRAAL Projects), Région Aquitaine (collaboration project with Emilie Romagne 2012–2014), Arkema and Linde is acknowledged. This work has been performed within the framework of the GDR-I 3217 “graphene and nanotubes.”


  1. 1.
    Delhaes P (2012) Carbon science and technology: from energy to materials. Wiley, HobokenGoogle Scholar
  2. 2.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163Google Scholar
  3. 3.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358Google Scholar
  4. 4.
    Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single wall carbon nanotube salt. J Am Chem Soc 127:8–9Google Scholar
  5. 5.
    Pénicaud A, Dragin F, Pécastaings G, He M, Anglaret E (2013) Concentrated solutions of individualized single walled carbon nanotubes. Carbon.
  6. 6.
    Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91:557Google Scholar
  7. 7.
    Kuznetsov O et al (2012) Water-soluble nanodiamond. Langmuir 28:5243–5248Google Scholar
  8. 8.
    Pénicaud A (1999) Les Cristaux, fenêtres sur l’invisible. Ellipses, ParisGoogle Scholar
  9. 9.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chemie Int Ed 41:1853–1859Google Scholar
  10. 10.
    Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1120Google Scholar
  11. 11.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58Google Scholar
  12. 12.
    Fogden S, Howard CA, Heenan RK, Skipper NT, Shaffer MSP (2012) Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6:54–62Google Scholar
  13. 13.
    Hodge SA, Bayazit MK, Tay HH, Shaffer MSP (2013) Giant cationic polyelectrolytes generated via electrochemical oxidtion of single-walled carbon nanotubes. Nat Commun 4:1989Google Scholar
  14. 14.
    Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326Google Scholar
  15. 15.
    Stumpp E et al (1994) IUPAC paper. Pure Appl Chem 66(9):1893–1901Google Scholar
  16. 16.
    McCleverty JA, Connelly NG (2001) Nomenclature of inorganic chemistry II: recommendations 2000. The Royal Society of Chemistry, CambridgeGoogle Scholar
  17. 17.
    Suarez-Martinez I, Grobert N, Ewels CP (2012) Nomenclature of sp2 carbon nanoforms. Carbon N Y 50:741–747Google Scholar
  18. 18.
    Boyd PDW, Bhyrappa P, Paul P, Stinchcombe J, Bolskar R, Sun Y, Reed CA (1995) The C60 2− fulleride ion. J Am Chem Soc 117:2907–2914Google Scholar
  19. 19.
    Taylor R, Hare JP, Abdul-sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes CG0 and CT0: the third form of carbon. J Chem Soc Chem Commun 1423–1425. doi: 10.1039/C39900001423
  20. 20.
    Azamar-Barrios JA, Muñoz EP, Pénicaud A (1997) Electrochemical generation of minute quantities (<100 μg) of the higher fullerene radicals C76 .-, C78 .- and C84 .- under O2-and-H2O-free conditions and their observation by electron spin resonance. Faraday Trans 93:3119Google Scholar
  21. 21.
    Azamar-Barrios JA, Dennis TJS, Sadhukan S, Shinohara H, Scuseria G, Pénicaud A (2001) Characterization of six isomers of [84]fullerene C84 by electrochemistry, electron spin resonance spectroscopy and molecular energy levels calculations. J Phys Chem A 105(19):4627–4632Google Scholar
  22. 22.
    Hare JP, Kroto HW, Taylor R (1991) Preparation and UV/visible spectra of the fullerenes C60 and C70. Chem Phys Lett 177:394Google Scholar
  23. 23.
    Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113(3):1050–1051Google Scholar
  24. 24.
    Xie Q, Pérez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980Google Scholar
  25. 25.
    Bruno C et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125:15738–15739Google Scholar
  26. 26.
    Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97:3379–3383Google Scholar
  27. 27.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605Google Scholar
  28. 28.
    Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomlc-layer walls. Nature 363:605–607Google Scholar
  29. 29.
    Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758Google Scholar
  30. 30.
    Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487Google Scholar
  31. 31.
    Voiry D, Drummond C, Pénicaud A (2011) Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7:7998Google Scholar
  32. 32.
    Liu J et al (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129Google Scholar
  33. 33.
    Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915Google Scholar
  34. 34.
    Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194Google Scholar
  35. 35.
    Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105Google Scholar
  36. 36.
    Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walledcarbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223Google Scholar
  37. 37.
    Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the Hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8:6082–6092Google Scholar
  38. 38.
    Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695Google Scholar
  39. 39.
    Liu J et al (1998) Fullerene pipes. Science 280:1253–1256Google Scholar
  40. 40.
    Mkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8:1299–1313Google Scholar
  41. 41.
    Wenseleers W et al (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14:1105–1112Google Scholar
  42. 42.
    Martel R (2008) Sorting carbon nanotubes for electronics. ACS Nano 2:2195–2199Google Scholar
  43. 43.
    Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718Google Scholar
  44. 44.
    Tarascon JM, DiSalvo FJ, Chen CH, Carrol PJ, Walsh M, Rupp L (1985) First example of monodispersed (Mo3Se3) clusters. J Solid State Chem 58:290–300Google Scholar
  45. 45.
    Lee RS, Kim HJ, Fischer JE, Thess A (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388:255–257Google Scholar
  46. 46.
    Pénicaud A, Petit P, Fischer JE (2012) Doped carbon nanotubes. In: Monthioux M (ed) Carbon meta-nanotubes: synthesis, properties and applications, 1st edn. Wiley, Hoboken, pp 41–111Google Scholar
  47. 47.
    Pénicaud A, Poulin P, Derré A (2003) Procédé de dissolution de nanotubes de carbone, CNRS, WO 2005/073127; PCT/FR04/03383Google Scholar
  48. 48.
    Bendiab N, Anglaret E, Bantignies JL, Zahab A, Sauvajol JL, Petit P, Mathis C, Lefrant S (2001) Phys Rev B 64:245424Google Scholar
  49. 49.
    Petit P, Mathis C, Journet C, Bernier P (1999) Tuning and monitoring the electronic structure of carbon nanotubes. Chem Phys Lett 305:370–374Google Scholar
  50. 50.
    Vigolo B et al (2009) Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J Phys Chem C 113:7624–7628Google Scholar
  51. 51.
    Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110(32):15708–15718Google Scholar
  52. 52.
    Jiang C, Saha A, Xiang C, Young C, Tour JM, Pasquali M et al (2013) Increased solubility, liquid crystalline phase and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7:4503–4510Google Scholar
  53. 53.
    Paolucci D, Melle Franco M, Iurlo M, Marcaccio M, Prato M, Zerbetto F, Pénicaud A, Paolucci F (2008) Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J Am Chem Soc 130:7393–7399Google Scholar
  54. 54.
    Voiry D, Vallés C, Roubeau O, Pénicaud A (2011) Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon N Y 49:170–175Google Scholar
  55. 55.
    Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RE, Billups WE (2004) Nano Lett 4:1257–1260Google Scholar
  56. 56.
    Chattopadhyay J et al (2005) Carbon nanotube salts: arylation of single-wall carbon nanotubes. Org Lett 7:4067–4069Google Scholar
  57. 57.
    Graupner R et al (2006) Nucleophilic-alkylation-reoxidation: a functionalization sequence for single-wall carbon nanotubes. J Am Chem Soc 128:6683–6689Google Scholar
  58. 58.
    Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148Google Scholar
  59. 59.
    Guan J, Martinez-Rubi Y, Dénommée S, Ruth D, Kingston CT, Daroszewska M et al (2009) About the solubility of reduced SWCNT in DMSO. Nanotechnology 20(24):245701Google Scholar
  60. 60.
    Voiry D, Roubeau O, Pénicaud A (2010) Stoichiometric control of single walled carbon nanotubes functionalization. J Mater Chem 20:4385Google Scholar
  61. 61.
    Chen Z, Wu Z, Sippel J, Rinzler AG (2004) Metallic/semiconducting nanotube separation and ultra-thin, transparent nanotube films. In: Electronic properties and synthesis of nanostructures B. Series of AIP conference proceedings, New York, vol 723, pp 69–74Google Scholar
  62. 62.
    Krupke R, Hennrich F, von Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347Google Scholar
  63. 63.
    Hodge SA, Fogden S, Howard CA, Skipper NT, Shaffer MSP (2013) Electrochemical processing of discrete single-walled carbon nanotube anions. ACS Nano 7:1769–1778Google Scholar
  64. 64.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596Google Scholar
  65. 65.
    Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273Google Scholar
  66. 66.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534Google Scholar
  67. 67.
    Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747Google Scholar
  68. 68.
    Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473Google Scholar
  69. 69.
    Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533Google Scholar
  70. 70.
    Paiva MC et al (2010) Unzipping of functionalized multiwall carbon nanotubes induced by STM. Nano Lett 10:1764–1768Google Scholar
  71. 71.
    Janowska I et al (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A 371:22–30Google Scholar
  72. 72.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880Google Scholar
  73. 73.
    Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876Google Scholar
  74. 74.
    Campos-Delgado J et al (2008) Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778Google Scholar
  75. 75.
    Ning G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun (Camb) 47(5976–8)Google Scholar
  76. 76.
    Sun Z et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552Google Scholar
  77. 77.
    Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924Google Scholar
  78. 78.
    Dreyer DR, Park S, Bielawski W, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240Google Scholar
  79. 79.
    Krishnamoorthy K, Veerapandian M, Yun K, Kim S (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49Google Scholar
  80. 80.
    Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568Google Scholar
  81. 81.
    Lotya M et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620Google Scholar
  82. 82.
    Guardia L et al (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon N Y 49:1653–1662Google Scholar
  83. 83.
    Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259Google Scholar
  84. 84.
    Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871Google Scholar
  85. 85.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  86. 86.
    Berger C et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene based nanoelectronics. J Phys Chem B 108:19912–19916Google Scholar
  87. 87.
    Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578Google Scholar
  88. 88.
    Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411Google Scholar
  89. 89.
    Vallés C et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804Google Scholar
  90. 90.
    Pénicaud A, Drummond C (2013) Deconstructing graphite: graphenide solutions. Acc Chem Res 46:129–137Google Scholar
  91. 91.
    Milner EM et al (2012) Structure and morphology of charged graphene platelets in solution by small angle neutron scattering. J Am Chem Soc 134:8302–8305Google Scholar
  92. 92.
    Englert JM et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286Google Scholar
  93. 93.
    Kelly KF, Billups WE (2013) Synthesis of soluble graphite and graphene. Acc Chem Res 46:4–13Google Scholar
  94. 94.
    Catheline A et al (2011) Graphene solutions. Chem Commun (Camb) 47(5470–2)Google Scholar
  95. 95.
    Catheline A et al (2012) Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter 8:7882Google Scholar
  96. 96.
    Iijima S et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170Google Scholar
  97. 97.
    Endo M et al (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267Google Scholar
  98. 98.
    Saito K, Ohtani M, Fukuzumi S (2006) Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size. J Am Chem Soc 128:14216–14217Google Scholar
  99. 99.
    Voiry D, Pagona G, Tagmatarchis N, Pénicaud A (2007) Solutions of carbon nanohorns, method for making same, and uses thereof, WO 2011/154894, demande de brevet européen du 7 juin 2010, N° EP 10165108.1Google Scholar
  100. 100.
    Voiry D, Pagona G, del Canto E, Ortolani L, Morandi V, Noé L, Melle Franco M, Monthioux M, Tagmatarchis N, Penicaud A Individualized single-wall carbon nanohorns: a new form of metal free carbon nanomaterial, in preparationGoogle Scholar
  101. 101.
    Davis VA et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834Google Scholar
  102. 102.
    Yotprayoonsak P, Hannula K, Lahtinen T, Ahlskog M, Johansson A (2011) Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time. Carbon N Y 49:5283–5291Google Scholar
  103. 103.
    Lorençon E, Ferlauto AS, de Oliveira S, Miquita DR, Resende RR, Lacerda RG, Ladeira LO (2009) Appl Mater Interfaces 1:2104–2106Google Scholar
  104. 104.
    Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513Google Scholar
  105. 105.
    Pénicaud A, Catheline A, Gaillard P (2011) Procédé de préparation de films transparents conducteurs à base de nanotubes de carbone, FR2011/051352Google Scholar
  106. 106.
    Monthioux M, Kuznetsov V (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623Google Scholar
  107. 107.
    Zakri C, Penicaud A, Poulin P (2013) Les nanotubes: des fibres d’avenir. Dossiers Pour la Sci 79:86Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CNRS, Centre de Recherche Paul Pascal (CRPP)Université de BordeauxPessacFrance

Personalised recommendations