Abstract
The idea that the workings of molecular switches, motors, and machines based on mechanically interlocked molecules can be transferred into the solid state by using them as the building blocks of metal-organic framework materials is addressed. This involves an in-depth review and analysis of the chemistry of coordination polymers and metal-organic frameworks in which the linkers are rotaxanes and catenanes. To date, two types of materials have been prepared: (1) coordination polymers in which the interlocked components are part of a complex architecture but do not display large amplitude molecular motion or function and (2) those that clearly demonstrate some type of supramolecular quality (molecular recognition) or relative motion between interlocked components (dynamics) reminiscent of their solution counterparts. The latter can be thought of as prototypes of solid-state molecular machines. The possibility of creating more sophisticated, solid-state materials that have the full characteristics of molecular switches, motors, and machines and the way forward for this chemistry is also discussed.
Keywords
- Catenane
- Coordination polymer
- Mechanically interlocked molecule
- Metal-organic framework
- Molecular recognition
- Pseudorotaxane
- Rotaxane
This is a preview of subscription content, access via your institution.
Buying options



































Abbreviations
- 1/5NPP36C10:
-
1,5-Naphtho-p-phenylene[36]crown-10
- 22C6:
-
[22]Crown-6
- 24C6:
-
[24]Crown-6
- B24C6:
-
Benzo[24]Crown-6
- BPP34C10:
-
Bis(p-phenylene)[34]crown-10
- CB[6]:
-
Cucurbit[6]uril
- CBPQT:
-
Cyclobis(paraquat-p-phenylene)
- CP:
-
Coordination polymer
- CP/MAS:
-
Cross polarized magic angle spinning
- CT:
-
Charge transfer
- DB24C8:
-
Dibenzo[24]crown-8
- DSDB24C8:
-
Disulfonated dibenzo[24]crown-8
- MIMs:
-
Mechanically interlocked molecules
- MOFs:
-
Metal-organic frameworks
- MORF:
-
Metal-organic rotaxane framework
- P5A:
-
Pillar[5]arene
- PM:
-
1,10-Phenanthroline macrocycle
- PXRD:
-
Powder X-ray diffraction
- RCP:
-
Rotaxane coordination polymer
- TCPP:
-
Tetrakis(carboxyphenyl)porphyrin
- TGA:
-
Thermogravimetric analysis
- TPDB24C8:
-
Tetraphenoxyl dibenzo[24]crown-8
- TSMB:
-
Texas-sized molecular box
- UWDM-1:
-
University of Windsor Dynamic Material-1
References
Schill G (1971) Catenanes, rotaxanes and knots. Academic, New York
Sauvage JP, Dietrich-Buchecker CO (1999) Molecular catenanes, rotaxanes and knots: a journey through the world of molecular topology. Wiley-VCH, Weinheim
Amabilino DB, Stoddart JF (1995) Interlocked and intertwined structures and superstructures. Chem Rev 95:2725
Stoddart JF (2009) The chemistry of the mechanical bond. Chem Soc Rev 38:1802
Aricó F, Badjic JD, Cantrill SJ, Flood AH, Leung KC-F, Liu Y, Stoddart JF (2005) Template synthesis of interlocked molecules. Top Curr Chem 249:203
Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT (2011) Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes and higher order links. Angew Chem Int Ed 50:9260
Ayme J-F, Beves JE, Campbell CJ, Leigh DA (2013) Template synthesis of molecular knots. Chem Soc Rev 42:1700
Forgan RS, Sauvage J-P, Stoddart JF (2011) Chemical topology: complex molecular knots, links, and entanglements. Chem Rev 111:5434
Raymo FM, Stoddart JF (1999) In: Diederich, F Stang PJ (eds) Templated organic synthesis, vol 75. Wiley-VCH, Weinheim, p. 104
Crowley JD, Goldup SM, Lee A-L, Leigh DA, McBurney RT (2009) Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem Soc Rev 38:1530
Schalley CA, Weilandt T, Brüggemann J, Vögtle F (2004) Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Top Curr Chem 248:141
Raymo FM, Stoddart JF (1996) In: Kahn O (ed) Magnetism: a supramolecular function, NATO ARW. Kluwer, Dordrecht
Balzani V, Gomez-Lopez M, Stoddart JF (1998) Molecular machines. Acc Chem Res 31:405
Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348
Balzani V, Credi A, Ferrer B, Silvi S, Venturi M (2005) Artificial molecular motors and machines: design principles and prototype systems. Top Curr Chem 262:1
Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72
Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for the nanoworld. Wiley-VCH, Weinheim
Bermudez V, Capron N, Gase T, Gatti FG, Kajzar F, Leigh DA, Zerbetto F, Zhang S (2000) Influencing intramolecular motion with an alternating electric field. Nature 406:608
Nishimura D, Oshikiri T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A (2008) Relative rotational motion between α-cyclodextrin derivatives and a stiff axle molecule. J Org Chem 73:2496
Schalley CA, Beizai K, Vögtle F (2001) On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc Chem Res 34:465
Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424:174
Hernández JV, Kay ER, Leigh DA (2004) A reversible synthetic rotary molecular motor. Science 306:1532
Serreli V, Lee CF, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523
Anelli PL, Spencer N, Stoddart JF (1991) A molecular shuttle. J Am Chem Soc 113:5131
Bissell RA, Cordova E, Kaifer AE, Stoddart JF (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133
Loeb SJ, Wisner JA (2000) [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers. Chem Commun 1939
Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291:2124
Stanier CA, Alderman SJ, Claridge TDW, Anderson HL (2002) Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew Chem Int Ed 41:1769
Vella SJ, Tiburcio J, Loeb SJ (2007) Optically sensed molecular shuttles driven by acid–base chemistry. Chem Commun 4752
Ma X, Tian H (2010) Bright functional rotaxanes. Chem Soc Rev 39:70
Saha S, Flood AH, Stoddart JF, Impellizzeri S, Silvi S, Venturi M, Credi A (2007) A redox-driven multicomponent molecular shuttle. J Am Chem Soc 129:12159
Loeb SJ, Tiburcio J, Vella SJ (2006) A mechanical “flip-switch”. Interconversion between co-conformations of a [2]rotaxane with a single recognition site. Chem Commun 15:1598
Davidson GJE, Sharma S, Loeb SJ (2010) A [2]rotaxane flip switch driven by coordination geometry. Angew Chem Int Ed 49:4938
Suhan NH, Allen L, Gharib MT, Viljoen E, Vella SJ, Loeb SJ (2011) Colour coding the co-conformations of a [2]rotaxane flip-switch. Chem Commun 47:5991
Choi JW, Flood AH, Steuerman DW, Nygaard S, Braunschweig AB, Moonen NNP, Laursen BW, Luo Y, Delonno E, Peters AJ, Jeppesen JO, Xe K, Stoddart JF, Heath JR (2006) Ground state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxane switches in solution, polymer gels, and molecular electronic devices. Chem Eur J 12:261
Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19
Vogelsberg CS, Garcia-Garibay MA (2012) Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem Soc Rev 41:1892
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, OKeeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469
Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1:695
Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder MA (2009) High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131:2159
Hupp JT, Poeppelmeier KR (2005) Better living through nanopore chemistry. Science 309:2008
Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040
Deng H, Olson MA, Stoddart JF, Yaghi OM (2010) Robust dynamics. Nat Chem 2:439
Loeb SJ (2007) Rotaxanes as ligands: from molecules to materials. Chem Soc Rev 36:226
Yang H, Ghosh K, Northrop BH, Zheng Y, Lyndon MM, Muddiman DC, Stang PJ (2007) A highly efficient approach to the self-assembly of hexagonal cavity-cored tris[2]pseudorotaxanes from several components via multiple noncovalent interactions. J Am Chem Soc 129:14187
Suzaki Y, Taira T, Osakada K (2006) Irreversible and reversible formation of a [2]rotaxane containing platinum(II) complex with an N-alkyl bipyridinium ligand as the axis component. Dalton Trans 5345
Ashton PR, Balzani V, Credi A, Kocian O, Pasini D, Prodi L, Spencer N, Stoddart JF, Tolley MS, Venturi MS, White AJP, Williams DJ (1998) Molecular meccano. Part 35. Cyclophanes and [2]catenanes as ligands for transition metal complexes. Synthesis, structure, absorption spectra, excited state, and electrochemical properties. Chem Eur J 4:590
Jeppesen JO, Vignon SA, Stoddart JF (2003) In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes. Chem Eur J 9:4611
Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542
Clemente-Leon M, Credi A, Martinez-Diaz MV, Mingotaud C, Stoddart JF (2006) Towards organization of molecular machines at interfaces. Langmuir films and Langmuir–Blodgett multilayers of an acid-base switchable rotaxane. Adv Mater 18:1291
Zhou WD, Xu JL, Zheng HY, Yin XD, Zuo ZC, Liu HB, Li YL (2009) Distinct nanostructures from a molecular shuttle: effects of shuttling movement on nanostructural morphologies. Adv Funct Mater 19:141
Yoon I, Miljanic OS, Benitez D, Khan SI, Stoddart JF (2008) An interdigitated functionally rigid [2]rotaxane. Chem Commun 4561
Nygaard S, Leung KCF, Aprahamian I, Ikeda T, Saha S, Laursen BW, Kim SY, Hansen SW, Stein PC, Flood AH, Stoddart JF, Jeppesen JO (2007) Functionally rigid bistable [2]rotaxanes. J Am Chem Soc 129:960
Leigh DA, Troisi A, Zerbetto F (2000) Reducing molecular shuttling to a single dimension. Angew Chem Int Ed 39:350
Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96
Loeb SJ (2005) Metal–organic rotaxane frameworks; MORFs. Chem Commun 1511
Vukotic VN, Loeb SJ (2012) Coordination polymers containing rotaxane linkers. Chem Soc Rev 41:5896
Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41:1621
Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H (2010) Macroscopic self-assembly through molecular recognition. Nat Chem 3:34
Lukin O, Vögtle F (2005) Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies. Angew Chem Int Ed 44:1456
Li S, Chen J, Zheng B, Dong S, Ma Z, Gibson HW, Huang F (2010) A hyperbranched, rotaxane-type mechanically interlocked polymer. J Polym Sci Pol Chem 48:4067
Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed 50:1905
Kohsaka Y, Nakazono K, Koyama Y, Asai S, Takata T (2011) Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network. Angew Chem Int Ed 50:4872
Frampton MJ, Anderson HL (2007) Insulated molecular wires. Angew Chem Int Ed 46:1028
Buey J, Swager TM (2000) Three-strand conducting ladder polymers: two-step electropolymerization of metallorotaxanes. Angew Chem Int Ed 39:608
Akutagawa T, Koshinaka H, Sato D, Takeda S, Noro S-I, Takahshi H, Kumai R, Tokura Y, Nakamura T (2009) Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat Mater 8:342
Feng M, Gao L, Deng Z, Ji W, Guo X, Du S, Shi D, Zhang D, Zhu D, Gao H (2007) Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J Am Chem Soc 129:2204
Luo Y, Collier CP, Jeppesen JO, Nielsen KA, DeIonno E, Ho G, Perkins J, Tseng H, Yamamoto T, Stoddart JF, Heath JR (2002) Two-dimensional molecular electronics circuits. ChemPhysChem 3:519
Bermudez V, Gase T, Kajzar F, Capron N, Zerbetto F, Gatt FG, Leigh DA, Zhang S (2002) Rotaxanes—novel photonic molecules. Opt Mater 21:39
Horie M, Sassa T, Hashizume D, Suzaki Y, Osakada K, Wada T (2007) A crystalline supramolecular switch: controlling the optical anisotropy through the collective dynamic motion of molecules. Angew Chem Int Ed 46:4983
Rauwald U, del Barrio J, Loh XJ, Scherman OA (2011) “On-demand” control of thermoresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host–guest complexes. Chem Commun 47:6000
Whang D, Kim K (1997) Polycatenated two-dimensional polyrotaxane net. J Am Chem Soc 119:451
Park K, Whang D, Lee E, Heo J, Kim K (2002) Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril. Chem Eur J 8:498
Whang D, Heo J, Kim C, Kim K (1997) Helical polyrotaxane: cucurbituril ‘beads’ threaded onto a helical one-dimensional coordination polymer. Chem Commun 2361
Lee E, Heo J, Kim K (2000) A three-dimensional polyrotaxane network. Angew Chem Int Ed 39:2699
Davidson GJE, Loeb SJ (2003) Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. Angew Chem Int Ed 42:74
Diskin-Posner Y, Patra GK, Goldberg I (2001) Crystal engineering of 2-D and 3-D multiporphyrin architectures − the versatile topologies of tetracarboxyphenylporphyrin-based materials. Eur J Inorg Chem 2515
Mercer DJ, Yacoub J, Loeb SK, Zhu K, Loeb SJ (2012) [2]Pseudorotaxanes, [2]rotaxanes and metal–organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels. Org Biomol Chem 10:6094
Hoffart DJ, Loeb SJ (2007) The missing link: a 2D metal-organic rotaxane framework (MORF) with one rotaxane linker and one naked linker. Supramol Chem 19:89
Hoffart DJ, Loeb SJ (2005) Metal organic rotaxane frameworks. three dimensional polyrotaxanes form lanthanide ion nodes, pyridinium-N-oxide axles and crown ether wheels. Angew Chem Int Ed 44:901
Hoffart DJ, Tiburcio J, Torre A, Knight LK, Loeb SJ (2008) Anionic wheels for cationic axles. Cooperative ion-ion interactions for the formation of interpenetrated molecules. Angew Chem 120:103
Knight LK, Vukotic VN, Viljoen E, Caputo CB, Loeb SJ (2009) Eliminating the need for independent counterions in the construction of metal-organic rotaxane frameworks (MORFs). Chem Commun 5585
Vukotic VN, Loeb SJ (2010) One-, two- and three-periodic metal-organic rotaxane frameworks (MORFs): linking cationic transition-metal nodes with an anionic rotaxane ligand. Chem Eur J 16:13630
Gong H, Rambo BM, Karnas E, Lynch VM, Sessler JL (2010) A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nat Chem 2:406
Gong H, Rambo BM, Karnas E, Lynch VM, Keller KM, Sessler JL (2011) Environmentally responsive threading, dethreading, and fixation of anion-induced pseudorotaxanes. J Am Chem Soc 133:1526
Gong H, Rambo BM, Cho W, Lynch VM, Oh M, Sessler JL (2011) Anion-directed assembly of a three-dimensional metal–organic rotaxane framework. Chem Commun 47:5973
Gong H, Rambo BM, Nelson CA, Lynch VM, Zhua X, Sessler JL (2012) Rare-earth cation effects on three-dimensional metal–organic rotaxane framework (MORF) self assembly. Chem Commun 48:10186
Dietrich-Buchecker CO, Sauvage J-P, Kintzinger JP (1983) Une nouvelle famille de molecules: les metallo-catenanes. Tet Lett 24:5095
Baranoff ED, Voignier J, Yasuda T, Heitz V, Sauvage J-P, Kato T (2007) A liquid-crystalline [2]catenane and its copper(I) complex. Angew Chem Int Ed 46:4680
Champin B, Mobian P, Sauvage J-P (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 358
Coskun A, Hmadeh M, Barin G, Gándara F, Li Q, Choi E, Strutt NL, Cordes DB, Slawin AMZ, Stoddart JF, Sauvage J-P, Yaghi OM (2012) Metal–organic frameworks incorporating copper-complexed rotaxanes. Angew Chem 124:2202
Mercer DJ, Vukotic VN, Loeb SJ (2011) Linking [2]rotaxane wheels to create a new type of metal organic rotaxane framework. Chem Commun 47:896
Frank NC, Mercer DJ, Loeb SJ (2013) An interwoven metal-organic framework combining mechanically interlocked linkers and interpenetrated networks. Chem Eur J 19:14076
Zhao Y-L, Liu L, Zhang W, Sue C-H, Li Q, Miljanic OŠ, Yaghi OM, Stoddart JF (2009) Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks. Chem Eur J 13:13356
Li Q, Zhang W, Miljanić OŠ, Knobler CB, Stoddart JF, Yaghi OM (2010) A metal-organic framework replete with ordered donor–acceptor catenanes. Chem Commun 46:380
Li Q, Sue C, Basu S, Shveyd AK, Zhang W, Barin G, Fang L, Sarjeant AA, Stoddart JF, Yaghi OM (2010) A catenated strut in a catenated metal–organic framework. Angew Chem Int Ed 49:6751
Cao D, Juríček M, Brown ZJ, Sue AC-H, Liu Z, Lei J, Blackburn AK, Grunder S, Sarjeant AA, Coskun A, Wang C, Farha OK, Hupp JT, Stoddart JF (2013) Three-dimensional architectures incorporating stereoregular donor–acceptor stacks. Chem Eur J 19:8457
Li Q, Zhang W, Miljanić OŠ, Sue C, Zhao Y, Liu L, Knobler CB, Stoddart JF, Yaghi OM (2009) Docking in metal–organic frameworks. Science 325:855
Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276
Amabilino DB, Anelli PL, Ashton PR, Brown GR, Cordova E, Godinez LA, Hayes W, Kaifer AE, Philp D, Slawin AMZ, Spencer N, Stoddart JF, Tolley MS, Williams DJ (1995) Molecular meccano 3: constitutional and translational isomerism in [2]catenanes and [n]pseudorotaxanes. J Am Chem Soc 117:11142
Ashton PR, Philp D, Spencer N, Stoddart JF (1991) The self-assembly of [n]pseudorotaxanes. J Chem Soc Chem Commun 23:1677
Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022
Xue M, Yang Y, Chi X, Zhang Z, Huang F (2012) Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res 45:1294
Strutt NL, Fairen-Jimenez D, Iehl J, Lalonde MB, Snurr RQ, Farha OK, Hupp JT, Stoddart JF (2012) Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal–organic framework. J Am Chem Soc 134:17436
Vukotic VN, Harris KJ, Zhu K, Schurko RW, Loeb SJ (2012) Metal–organic frameworks with dynamic interlocked components. Nat Chem 4:456
Ratcliffe CI, Ripmeester JA, Buchanan GW, Denike JK (1992) A molecular merry-go-round: motion of the large macrocyclic molecule 18-crown-6 in its solid complexes studied by deuterium NMR. J Am Chem Soc 114:3294
Ratcliffe CI, Buchanan GW, Denike JK (1995) Dynamics of 12-crown-4 ether in its LiNCS complex as studied by solid-state 2H NMR. J Am Chem Soc 117:2900
Vukotic VN, Loeb SJ (2013) Metal-organic frameworks with dynamic interlocked components. Paper presented at the 245th meeting of the American Chemical Society, New Orleans, April 7–11 2013
Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705
Zhu K, Vukotic VN, Loeb SJ (2012) Molecular shuttling of a compact and rigid, H-shaped [2]rotaxane. Angew Chem Int Ed 51:2210
Zhu K, Vukotic VN, Noujeim N, Loeb SJ (2012) Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem Sci 3:3265
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Zhu, K., Loeb, S.J. (2014). Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_516
Download citation
DOI: https://doi.org/10.1007/128_2013_516
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08677-4
Online ISBN: 978-3-319-08678-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)