Skip to main content

Light-Operated Machines Based on Threaded Molecular Structures

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of “writing” and “reading” the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

bpy:

2,2'-Bipyridine

BPY2+ :

4,4'-Bipyridinium

CBPQT4+ :

Cyclobis(paraquat-p-phenylene)

α-CD:

α-Cyclodextrin

CT:

Charge-transfer

DBA+ :

Dibenzylammonium

DNP:

1,5-Dioxynaphthalene

MBA+ :

Monobenzylammonium

NMR:

Nuclear magnetic resonance

tBu:

tert-Butyl

TMeAB:

3,5,3′,5′-Tetramethylazobenzene

TTF:

Tetrathiafulvalene

References

  1. Hader D-P, Tevini M (1987) General photobiology. Pergamon, Oxford

    Google Scholar 

  2. Nalwa HS (ed) (2003) Handbook of photochemistry and photobiology, vols 1–4. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  3. Lehn J-M (1988) Supramolecular chemistry − scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed Engl 27:89

    Article  Google Scholar 

  4. Balzani V (ed) (1987) Supramolecular photochemistry. Reidel, Dordrecht

    Google Scholar 

  5. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines – concepts and perspectives for the nanoworld. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72

    Article  CAS  Google Scholar 

  7. Schliwa M (ed) (2003) Molecular motors. Wiley-VCH, Weinheim

    Google Scholar 

  8. Goodsell DS (2004) Bionanotechnology – lessons from nature. Wiley, Hoboken

    Book  Google Scholar 

  9. Jones RAL (2005) Soft machines – nanotechnology and life. Oxford University Press, Oxford

    Google Scholar 

  10. Shinkai S, Nakaji T, Ogawa T, Shigematsu K, Manabe O (1981) Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J Am Chem Soc 103:111

    Article  CAS  Google Scholar 

  11. Kai H, Nara S, Kinbara K, Aida T (2008) Toward long-distance mechanical communication: studies on a ternary complex interconnected by a bridging rotary module. J Am Chem Soc 130:6725

    Article  CAS  Google Scholar 

  12. Ballardini R, Balzani V, Gandolfi MT, Prodi L, Venturi M, Philp D, Ricketts HG, Stoddart JF (1993) A photochemically driven molecular machine. Angew Chem Int Ed Engl 32:1301

    Article  Google Scholar 

  13. Browne WR, Feringa BL (2006) Making molecular machines work. Nat Nanotech 1:25

    Article  CAS  Google Scholar 

  14. Champin B, Mobian P, Sauvage J-P (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358

    Article  CAS  Google Scholar 

  15. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542

    Article  CAS  Google Scholar 

  16. Silvi S, Venturi M, Credi A (2009) Artificial molecular shuttles: from concepts to devices. J Mater Chem 19:2279

    Article  CAS  Google Scholar 

  17. Ma X, Tian H (2010) Bright functional rotaxanes. Chem Soc Rev 39:70

    Article  CAS  Google Scholar 

  18. Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19

    Article  CAS  Google Scholar 

  19. Balzani V, Credi A, Venturi M (2008) Processing energy and signals by molecular and supramolecular systems. Chem Eur J 14:26

    Article  CAS  Google Scholar 

  20. Feynman RP (1960) There's plenty of room at the bottom. Eng Sci 23:22

    Google Scholar 

  21. Steed JW, Gale PA (eds) (2012) Supramolecular chemistry: from molecules to nanomaterials. Wiley, Chichester, UK

    Google Scholar 

  22. Schalley CA (ed) (2012) Analytical methods in supramolecular chemistry, 2nd edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  23. Balzani V (2003) Photochemical molecular devices. Photochem Photobiol Sci 2:459

    Article  CAS  Google Scholar 

  24. Marcaccio M, Paolucci F, Roffia S (2004) Supramolecular electrochemistry of coordination compounds and molecular devices. In: Pombeiro AJL, Amatore C (eds) Trends in molecular electrochemistry. Dekker, New York

    Google Scholar 

  25. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  26. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52

    Article  CAS  Google Scholar 

  27. Steinberg-Yfrach G, Rigaud J-L, Durantini EN, Moore AL, Gust D, Moore TA (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392:479

    Article  CAS  Google Scholar 

  28. Tian Y, He Y, Chen Y, Yin P, Mao CD (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44:4355

    Article  CAS  Google Scholar 

  29. Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11:982

    Article  CAS  Google Scholar 

  30. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348

    Article  CAS  Google Scholar 

  31. Stoddart JF (ed) (2001) Acc Chem Res 34(6): special issue on molecular machines

    Google Scholar 

  32. Sauvage J-P (ed) (2001) Struct Bond 99: special volume on molecular machines and motors

    Google Scholar 

  33. Flood AH, Ramirez RJA, Deng WQ, Muller RP, Goddard WA, Stoddart JF (2004) Meccano on the nanoscale – a blueprint for making some of the world's tiniest machines. Aust J Chem 57:301

    Article  CAS  Google Scholar 

  34. Kelly TR (ed) (2005) Top Curr Chem 262: special volume on molecular machines

    Google Scholar 

  35. Sauvage J-P (2005) Transition metal-complexed catenanes and rotaxanes as molecular machine prototypes. Chem Commun 1507

    Google Scholar 

  36. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281

    Article  CAS  Google Scholar 

  37. Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377

    Article  CAS  Google Scholar 

  38. Tian H, Wang Q-C (2006) Recent progress on switchable rotaxanes. Chem Soc Rev 35:361

    Article  CAS  Google Scholar 

  39. Willner I (ed) (2006) Org Biomol Chem 4(18); special issue on DNA-based nanoarchitectures and nanomachines

    Google Scholar 

  40. Credi A (2006) Artificial molecular motors powered by light. Aust J Chem 59:157

    Article  CAS  Google Scholar 

  41. Credi A, Tian H (eds) (2007) Adv Funct Mater 17(5): special issue on molecular machines and switches

    Google Scholar 

  42. Mateo-Alonso A, Guldi DM, Paolucci F, Prato M (2007) Fullerenes: multitask components in molecular machinery. Angew Chem Int Ed 46:8120

    Article  CAS  Google Scholar 

  43. Simmel FC, Dittmer WU (2005) DNA nanodevices. Small 1:284

    Article  CAS  Google Scholar 

  44. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275

    Article  CAS  Google Scholar 

  45. Sauvage J-P, Dietrich-Buchecker C (eds) (1999) Catenanes, rotaxanes and knots. Wiley-VCH, Weinheim

    Google Scholar 

  46. Balzani V, Credi A, Venturi M (2002) Controlled disassembling of self-assembling systems: toward artificial molecular-level devices and machines. Proc Natl Acad Sci U S A 99:4814

    Article  CAS  Google Scholar 

  47. Thordarson P, Nolte RJM, Rowan AE (2004) Mimicking the motion of life: catalytically active rotaxanes as processive enzyme mimics. Aust J Chem 57:323

    Article  CAS  Google Scholar 

  48. Anelli PL, Spencer N, Stoddart JF (1991) A molecular shuttle. J Am Chem Soc 113:5131

    Article  CAS  Google Scholar 

  49. Bissell RA, Córdova E, Kaifer AE, Stoddart JF (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133

    Article  CAS  Google Scholar 

  50. Ashton PR, Ballardini R, Balzani V, Credi A, Dress R, Ishow E, Kleverlaan CJ, Kocian O, Preece JA, Spencer N, Stoddart JF, Venturi M, Wenger S (2000) A photochemically driven molecular-level abacus. Chem Eur J 6:3558

    Article  CAS  Google Scholar 

  51. Balzani V, Clemente-León M, Credi A, Ferrer B, Venturi V, Flood AH, Stoddart JF (2006) Autonomous artificial nanomotor powered by sunlight. Proc Natl Acad Sci U S A 103:1178

    Article  CAS  Google Scholar 

  52. Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291:2124

    Article  CAS  Google Scholar 

  53. Panman MR, Bodis P, Shaw DJ, Bakker BH, Newton AC, Kay ER, Brouwer AM, Buma WJ, Leigh DA, Woutersen S (2010) Operation mechanism of a molecular machine revealed using time-resolved vibrational spectroscopy. Science 328:1255

    Article  CAS  Google Scholar 

  54. Willner I, Pardo-Yissar V, Katz E, Ranjit KT (2001) A photoactivated 'molecular train' for optoelectronic applications: light-stimulated translocation of a beta-cyclodextrin receptor within a stoppered azobenzone-alkyl chain supramolecular monolayer assembly on a Au-electrode. J Electroanal Chem 497:172

    Article  CAS  Google Scholar 

  55. Stanier CA, Alderman SJ, Claridge TDW, Anderson HL (2002) Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew Chem Int Ed 41:1769

    Article  Google Scholar 

  56. Qu D-H, Wang Q-C, Ma X, Tian H (2005) A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. Chem Eur J 11:5929

    Article  CAS  Google Scholar 

  57. Murakami H, Kawabuchi A, Matsumoto R, Ido T, Nakashima N (2005) A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. J Am Chem Soc 127:15891

    Article  CAS  Google Scholar 

  58. Dawson RE, Maniam S, Lincoln SF, Easton CJ (2008) Synthesis of alpha-cyclodextrin [2]-rotaxanes using chlorotriazine capping reagents. Org Biomol Chem 6:1814

    Article  CAS  Google Scholar 

  59. Qu D-H, Wang Q-C, Tian H (2005) A half adder based on a photochemically driven [2]rotaxane. Angew Chem Int Ed 44:5296

    Article  CAS  Google Scholar 

  60. Li H, Fahrenbach AC, Coskun A, Zhu Z, Barin G, Zhao Y-L, Botros YY, Sauvage J-P, Stoddart JF (2011) A light-stimulated molecular switch driven by radical–radical interactions in water. Angew Chem Int Ed 50:6782

    Article  CAS  Google Scholar 

  61. Balzani V, Clemente-León M, Credi A, Semeraro M, Venturi M, Tseng H-R, Wenger S, Saha S, Stoddart JF (2006) A comparison of shuttling mechanisms in two constitutionally isomeric bistable rotaxane-based sunlight-powered nanomotors. Aust J Chem 59:193

    Article  CAS  Google Scholar 

  62. Davidson GJE, Loeb SJ, Passaniti P, Silvi S, Credi A (2006) Wire-type ruthenium(II) complexes with terpyridine-containing [2]rotaxanes as ligands: synthesis, characterization, and photophysical properties. Chem Eur J 12:3233

    Article  CAS  Google Scholar 

  63. Kosower EM, Cotter JL (1964) Stable free radicals. II. the reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. J Am Chem Soc 86:5524

    Article  CAS  Google Scholar 

  64. Watanabe T, Honda K (1982) Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J Phys Chem 86:2617

    Article  CAS  Google Scholar 

  65. Champin B, Mobian P, Sauvage J-P (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358

    Article  CAS  Google Scholar 

  66. Ashton PR, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe MCT, Gandolfi MT, Gomez-Lopez M, Martinez-Diaz M-V, Piersanti A, Spencer N, Stoddart JF, Venturi M, White AJP, Williams DJ (1998) Acidbase controllable molecular shuttles. J Am Chem Soc 120:11932

    Article  CAS  Google Scholar 

  67. Jiménez MC, Dietrich-Buchecker C, Sauvage J-P (2000) Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem Int Ed 39:3284

    Article  Google Scholar 

  68. Wu J, Leung KC-F, Benitez D, Han J-Y, Cantrill SJ, Fang L, Stoddart JF (2008) An acid-base-controllable [c2]daisy chain. Angew Chem Int Ed 47:7470

    Article  CAS  Google Scholar 

  69. Fang L, Hmadeh M, Wu J, Olson MA, Spruell JM, Trabolsi A, Yang Y-W, Elhabiri M, Albrecht-Gary A-M, Stoddart JF (2009) Acid–base actuation of [c2]daisy chains. J Am Chem Soc 131:7126

    Article  CAS  Google Scholar 

  70. Du G, Moulin E, Jouault N, Buhler E, Giuseppone N (2012) Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew Chem Int Ed 51:12504

    Article  CAS  Google Scholar 

  71. Dawson RE, Lincoln SF, Easton CJ (2008) The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. Chem Commun 3980

    Google Scholar 

  72. Astumian RD (2007) Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. PhysChemChemPhys 9:5067

    CAS  Google Scholar 

  73. Chatterjee MN, Kay ER, Leigh DA (2006) Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J Am Chem Soc 128:4058

    Article  CAS  Google Scholar 

  74. Serreli V, Lee C-F, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523

    Article  CAS  Google Scholar 

  75. Avellini T, Li H, Coskun A, Barin G, Trabolsi A, Basuray AN, Dey SK, Credi A, Silvi S, Stoddart JF, Venturi M (2012) Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. Angew Chem Int Ed 51:1611

    Article  CAS  Google Scholar 

  76. Balzani V, Credi A, Venturi M (2003) Molecular logic circuits. ChemPhysChem 3:49

    Article  Google Scholar 

  77. Credi A (2007) Molecules that make decisions. Angew Chem Int Ed 46:5472

    Article  CAS  Google Scholar 

  78. Coskun A, Friedman DC, Li H, Patel K, Khatib HA, Stoddart JF (2009) A light-gated STOP−GO molecular shuttle. J Am Chem Soc 131:2493

    Article  CAS  Google Scholar 

  79. Liu Y, Flood AH, Bonvallett PA, Vignon SA, Northrop BH, Tseng H-R, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho CM, Stoddart JF (2005) Linear artificial molecular muscles. J Am Chem Soc 127:9745

    Article  CAS  Google Scholar 

  80. van der Molen SJ, Liljeroth P (2010) Charge transport through molecular switches. J Phys Condens Matter 22:133001

    Article  Google Scholar 

  81. Hirose K, Shiba Y, Ishibashi K, Doi Y, Tobe Y (2008) A shuttling molecular machine with reversible brake function. Chem Eur J 14:3427

    Article  CAS  Google Scholar 

  82. Mann S (2008) Life as a nanoscale phenomenon. Angew Chem Int Ed 47:5306

    Article  CAS  Google Scholar 

  83. Saha S, Leung KCF, Nguyen TD, Stoddart JF, Zink JI (2007) Nanovalves. Adv Funct Mater 17:685

    Article  CAS  Google Scholar 

  84. Park JW, Song HJ, Cho YJ, Park KK (2007) Thermodynamics and kinetics of formation of orientationally isomeric [2]pseudorotaxanes between α-cyclodextrin and aliphatic chain-linked aromatic donor-viologen acceptor compounds. J Phys Chem C 111:18605

    Article  CAS  Google Scholar 

  85. Mourtzis N, Eliadou K, Yannakopoulou K (2004) Influence of host's substitution on the orientation of the guest: pseudo-rotaxanes of charged cyclodextrins with methyl orange in solution. Supramol Chem 16:587

    Article  CAS  Google Scholar 

  86. Oshikiri T, Yamaguchi H, Takashima Y, Harada A (2009) Face selective translation of a cyclodextrin ring along an axle. Chem Commun 5515

    Google Scholar 

  87. Kelly TR, de Silva H, Silva RA (1999) Unidirectional rotary motion in a molecular system. Nature 401:150

    Article  CAS  Google Scholar 

  88. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:120

    Article  Google Scholar 

  89. Simmel FC (2009) Processive motion of bipedal DNA walkers. ChemPhysChem 10:2593

    Article  CAS  Google Scholar 

  90. von Delius M, Geertsema EM, Leigh DA (2010) A synthetic small molecule that can walk down a track. Nat Chem 2:96

    Article  Google Scholar 

  91. Baroncini M, Silvi S, Venturi M, Credi A (2010) Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring–axle molecular system. Chem Eur J 16:11580

    Article  CAS  Google Scholar 

  92. Tokunaga Y, Akasaka K, Hashimoto N, Yamanaka S, Hisada K, Shimomura Y, Kakuchi S (2009) Using photoresponsive end-closing and end-opening reactions for the synthesis and disassembly of [2]rotaxanes: implications for dynamic covalent chemistry. J Org Chem 74:2374

    Article  CAS  Google Scholar 

  93. Ogoshi T, Yamafuji D, Aoki T, Yamagishi T (2011) Photoreversible transformation between seconds and hours time-scales: threading of pillar[5]arene onto the azobenzene-end of a viologen derivative. J Org Chem 76:9497

    Article  CAS  Google Scholar 

  94. Baroncini M, Silvi S, Venturi M, Credi A (2012) Photoactivated directionally controlled transit of a non-symmetric molecular axle through a macrocycle. Angew Chem Int Ed 51:4223

    Article  CAS  Google Scholar 

  95. Ashton PR, Campbell PJ, Chrystal EJT, Glink PT, Menzer S, Philp D, Spencer N, Stoddart JF, Tasker PA, Williams DJ (1995) Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew Chem Int Ed 34:1865

    Article  CAS  Google Scholar 

  96. Takeda Y, Kudo Y, Fujiwara S (1985) Thermodynamic study for complexation reactions of dibenzo-24-crown-8 with alkali metal ions in acetonitrile. Bull Chem Soc Jpn 58:1315

    Article  CAS  Google Scholar 

  97. Arduini A, Credi A, Faimani G, Massera C, Pochini A, Secchi A, Semeraro M, Silvi S, Ugozzoli F (2008) Self-assembly of a double calix[6]arene pseudorotaxane in oriented channels. Chem Eur J 14:98

    Article  CAS  Google Scholar 

  98. Arduini A, Bussolati R, Credi A, Faimani G, Garaudee S, Pochini A, Secchi A, Semeraro M, Silvi S, Venturi M (2009) Towards controlling the threading direction of a calix[6]arene wheel by using nonsymmetric axles. Chem Eur J 15:3230

    Article  CAS  Google Scholar 

  99. Credi A, Dumas S, Silvi S, Venturi M, Arduini A, Pochini A, Secchi A (2004) Viologen-calix[6]arene pseudorotaxanes. Ion-pair recognition and threading/dethreading molecular motions. J Org Chem 69:5881

    Article  CAS  Google Scholar 

  100. Arduini A, Ciesa F, Fragassi M, Pochini A, Secchi A (2005) Selective synthesis of two constitutionally isomeric oriented calix[6]arene-based rotaxanes. Angew Chem Int Ed 44:278

    Article  CAS  Google Scholar 

  101. van Duynhoven JPM, Janssen RG, Verboom W, Franken SM, Casnati A, Pochini A, Ungaro R, De Mendoza J, Nieto PM, Prados P, Reinhoudt DN (1994) Control of calix[6]arene conformations by self-inclusion of 1,3,5-tri-O-alkyl substituents: synthesis and NMR studies. J Am Chem Soc 116:5814

    Article  Google Scholar 

  102. Arduini A, Bussolati R, Credi A, Monaco S, Secchi A, Silvi S, Venturi M (2012) Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel. Chem Eur J 18:16203

    Article  CAS  Google Scholar 

  103. Ashton PR, Baxter I, Fyfe MCT, Raymo FM, Spencer N, Stoddart JF, White AJP, Williams DJ (1998) Rotaxane or pseudorotaxane? That is the question! J Am Chem Soc 120:2297

    Article  CAS  Google Scholar 

  104. Affeld A, Hubner GM, Seel C, Schalley CA (2001) Rotaxane or pseudorotaxane? Effects of small structural variations on the deslipping kinetics of rotaxanes with stopper groups of intermediate size. Eur J Org Chem 15:2877

    Article  Google Scholar 

  105. Berna J, Leigh DA, Lubomska M, Mendoza SM, Perez EM, Rudolf P, Teobaldi G, Zerbetto F (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4:704

    Article  CAS  Google Scholar 

  106. Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng HR, Stoddart JF, Heath JR (2007) A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimetre. Nature 445:414

    Article  CAS  Google Scholar 

  107. Wang C, Li ZX, Cao D, Zhao YL, Gaines JW, Bozdemir OA, Ambrogio MW, Frasconi M, Botros YY, Zink JI, Stoddart JF (2012) Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles. Angew Chem Int Ed 51:5460

    Article  CAS  Google Scholar 

  108. Kudernac T, Ruangsupapichat N, Parschau M, Macia B, Katsonis N, Harutyunyan SR, Ernst KH, Feringa BL (2011) Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479:208

    Article  CAS  Google Scholar 

  109. Ceroni P, Credi A, Venturi M, Balzani V (2010) Light-powered molecular devices and machines. Photochem Photobiol Sci 9:1561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Credi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Credi, A., Silvi, S., Venturi, M. (2014). Light-Operated Machines Based on Threaded Molecular Structures. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_509

Download citation

Publish with us

Policies and ethics