Electronic and Optical Properties of Dye-Sensitized TiO2 Interfaces

  • Mariachiara Pastore
  • Annabella Selloni
  • Simona Fantacci
  • Filippo De Angelis
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 347)

Abstract

Dye-sensitized solar cells (DSCs) represent a promising approach to the direct conversion of sunlight to electrical energy at low cost and high efficiency. DSCs are based on a film of anatase TiO2 nanoparticles covered by adsorbed molecular dyes and immersed in a liquid redox electrolyte. Upon photoexcitation of the chemisorbed dye, electrons are injected into the TiO2 conduction band and can travel across the nanostructured film to reach the counter-electrode, while the oxidized dye is regenerated by the redox electrolyte. In this review we present a summary of recent computational studies of the electronic and optical properties of dye-sensitized TiO2 interfaces, with the aim of providing the basic understanding of the operation principles of DSCs and establishing the conceptual basis for their design and optimization.

We start with a discussion of isolated dyes in solution, focusing on the dye’s atomic structure, ground and excited state oxidation potentials, and optical absorption spectra. We examine both Ru(II)-polypyridyl complexes and organic “push-pull” dyes with a D-π-A structure, where the donor group (D) is an electron-rich unit, linked through a conjugated linker (π) to the electron-acceptor group (A). We show that a properly calibrated computational approach based on Density Functional Theory (DFT) combined with Time Dependent DFT (TD-DFT) can provide a good description of both the absorption spectra and ground and excited state oxidation potential values of the Ru(II) complexes. On the other hand, organic push-pull dyes are not well described by the standard DFT/TD-DFT approach. For these dyes, an excellent description of the electronic structure in gas phase can be obtained by the many body perturbation theory GW method, which has, however, a much higher computational cost.

We next consider interacting dye/semiconductor systems. Key properties are the dye adsorption structure onto the semiconductor, the nature and localization of the dye@semiconductor excited states, and the alignment of ground and excited state energy levels at the dye/semiconductor heterointerface. These properties, along with an estimate of the electronic coupling, constitute the fundamental parameters that determine the electron injection and dye regeneration processes. For metallorganic dyes, standard DFT/TDDFT methods are again found to reproduce accurately most of the relevant electronic and optical properties. For highly conjugated organic dyes, characterized by a high degree of charge transfer excited states, instead, the problems associated to the charge-transfer nature of their excited states extend to their interaction with TiO2 and translate into an erroneous description of the relative energetics of dye/semiconductor excited states. A full description of push-pull organic dyes/semiconductor excited states, which is essential for modeling the key process of electron injection in DSCs, still represents a challenge which should be addressed by next generation DFT or post-DFT methods.

Keywords

DFT/TDDFT DSCs Excited states GW Organic dyes Ruthenium dyes TiO2 

References

  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740Google Scholar
  2. 2.
    Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798Google Scholar
  3. 3.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663Google Scholar
  4. 4.
    Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162Google Scholar
  5. 5.
    Pastore M, De Angelis F (2013) Intermolecular interactions in dye-sensitized solar cells: a computational modeling perspective. J Phys Chem Lett 4:956–974. doi:10.1021/jz302147v Google Scholar
  6. 6.
    Moser JE (2010) Dynamics of interfacial and surface electron transfer processes. In: Kalyanasundaram EK (ed) Dye-sensitized solar cells. EPFL, Lausanne, pp 403–456Google Scholar
  7. 7.
    Lanzafame JM, Palese S, Wang D, Miller RJD, Muenter AA (1994) Ultrafast nonlinear optical studies of surface reaction dynamics: mapping the electron trajectory. J Phys Chem 98(43):11020–11033Google Scholar
  8. 8.
    Clifford JN, Forneli A, Chen H, Torres T, Tan S, Palomares E (2011) Co-sensitized DSCs: dye selection criteria for optimized device Voc and efficiency. J Mater Chem 21(6):1693–1696Google Scholar
  9. 9.
    Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol Energy Mater Sol Cells 80(1):47–71Google Scholar
  10. 10.
    Martínez-Díaz MV, de la Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46(38):7090–7108Google Scholar
  11. 11.
    Chen Y, Zeng Z, Li C, Wang W, Wang X, Zhang B (2005) Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J Chem 29(6):773–776Google Scholar
  12. 12.
    Yum J-H, Jang S-R, Walter P, Geiger T, Nüesch F, Kim S, Ko J, Grätzel M, Nazeeruddin MK (2007) Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem Commun 44:4680–4682Google Scholar
  13. 13.
    Lan C-M, Wu H-P, Pan T-Y, Chang C-W, Chao W-S, Chen C-T, Wang C-L, Lin C-Y, Diau EW-G (2012) Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energ Environ Sci 5(4):6460–6464Google Scholar
  14. 14.
    Yum J-H, Baranoff E, Wenger S, Nazeeruddin MK, Grätzel M (2011) Panchromatic engineering for dye-sensitized solar cells. Energ Environ Sci 4(3):842–857Google Scholar
  15. 15.
    Brown MD, Parkinson P, Torres T, Miura H, Herz LM, Snaith HJ (2011) Surface energy relay between cosensitized molecules in solid-state dye-sensitized solar cells. J Phys Chem C 115(46):23204–23208Google Scholar
  16. 16.
    Siegers C, Würfel U, Zistler M, Gores H, Hohl-Ebinger J, Hinsch A, Haag R (2008) Overcoming kinetic limitations of electron injection in the dye solar cell via coadsorption and FRET. Chem Phys Chem 9(5):793–798Google Scholar
  17. 17.
    Clifford JN, Palomares E, Nazeeruddin MK, Thampi R, Grätzel M, Durrant JR (2004) Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J Am Chem Soc 126(18):5670–5671Google Scholar
  18. 18.
    Fan S-Q, Kim C, Fang B, Liao K-X, Yang G-J, Li C-J, Kim J-J, Ko J (2011) Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode. J Phys Chem C 115(15):7747–7754Google Scholar
  19. 19.
    Ogura RY, Nakane S, Morooka M, Orihashi M, Suzuki Y, Noda K (2009) High-performance dye-sensitized solar cell with a multiple dye system. Appl Phys Lett 94(7):073308Google Scholar
  20. 20.
    Ozawa H, Shimizu R, Arakawa H (2012) Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye. RSC Adv 2(8):3198–3200Google Scholar
  21. 21.
    Kuang D, Walter P, Nüesch F, Kim S, Ko J, Comte P, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2007) Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23(22):10906–10909Google Scholar
  22. 22.
    Nguyen LH, Mulmudi HK, Sabba D, Kulkarni SA, Batabyal SK, Nonomura K, Grätzel M, Mhaisalkar SG (2012) A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells. Phys Chem Chem Phys. doi:10.1039/C2CP42959D Google Scholar
  23. 23.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III) based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634. doi:10.1126/science.1209688 Google Scholar
  24. 24.
    Rühle S, Cahen D (2004) Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J Phys Chem B 108(46):17946–17951Google Scholar
  25. 25.
    Liu J, Zhou D, Xu M, Jing X, Wang P (2011) The structure–property relationship of organic dyes in mesoscopic titania solar cells: only one double-bond difference. Energ Environ Sci 4:3545–3551Google Scholar
  26. 26.
    De Angelis F, Fantacci S, Sgamellotti A (2007) An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor Chem Accounts 117(5–6):1093–1104Google Scholar
  27. 27.
    Lee DH, Lee MJ, Song HM, Song BJ, Seo KD, Pastore M, Anselmi C, Fantacci S, De Angelis F, Nazeeruddin MK, Gräetzel M, Kim HK (2011) Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells. Dyes Pigments 91(2):192–198Google Scholar
  28. 28.
    Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125:7989–7997Google Scholar
  29. 29.
    Stier W, Prezhdo OV (2002) Nonadiabatic molecular dynamics simulation of light-induced electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J Phys Chem B 106(33):8047–8054Google Scholar
  30. 30.
    Kondov I, Čížek M, Benesch C, Wang H, Thoss M (2007) Quantum dynamics of photoinduced electron-transfer reactions in dye−semiconductor systems: first-principles description and application to coumarin 343–TiO2. J Phys Chem C 111(32):11970–11981Google Scholar
  31. 31.
    Meng S, Ren J, Kaxiras E (2008) Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. Nano Lett 8(10):3266–3272Google Scholar
  32. 32.
    Abuabara SG, Rego LGC, Batista VS (2005) Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. J Am Chem Soc 127:18234–18242Google Scholar
  33. 33.
    Li J, Wang H, Persson P, Thoss M (2012) Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups. J Chem Phys 137(22):529–516Google Scholar
  34. 34.
    Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin−TiO2 interface. J Am Chem Soc 127(21):7941–7951Google Scholar
  35. 35.
    Marques MAL, López X, Varsano D, Castro A, Rubio A (2003) Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein. Phys Rev Lett 90(25):258101–258104Google Scholar
  36. 36.
    Meng S, Kaxiras E (2010) Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends. Nano Lett 10:1238–1247Google Scholar
  37. 37.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrode. J Am Chem Soc 115(14):6382–6390Google Scholar
  38. 38.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847Google Scholar
  39. 39.
    Nazeeruddin MK, Péchy P, Grätzel M (1997) Efficient panchromatic sensitization of nanocrystallineTiO2 films by a black dye based on atrithiocyanato–ruthenium complex. Chem Commun (18):1705–1706Google Scholar
  40. 40.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624Google Scholar
  41. 41.
    Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energ Environ Sci 5(3):6057–6060Google Scholar
  42. 42.
    Wang P, Zakeeruddin SM, Exnar I, Grätzel M (2002) High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun (24):2972–2973Google Scholar
  43. 43.
    Chen C-Y, Wu S-J, Wu C-G, Chen J-G, Ho K-C (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45(35):5822–5825Google Scholar
  44. 44.
    Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728Google Scholar
  45. 45.
    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934Google Scholar
  46. 46.
    Bomben PG, Koivisto BD, Berlinguette CP (2010) Cyclometalated Ru complexes of type [RuII(NN)2(CN)]z: physicochemical response to substituents installed on the anionic ligand. Inorg Chem 49(11):4960–4971Google Scholar
  47. 47.
    Mishra A, Fischer M, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499Google Scholar
  48. 48.
    Pastore M, Mosconi E, Fantacci S, De Angelis F (2012) Computational investigations on organic sensitizers for dye- sensitized solar cells. Curr Org Synth 9(2):215–232Google Scholar
  49. 49.
    Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925Google Scholar
  50. 50.
    Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells. Energ Environ Sci 3(7):949–955Google Scholar
  51. 51.
    Chang Y-C, Wang C-L, Pan T-Y, Hong S-H, Lan C-M, Kuo H-H, Lo C-F, Hsu H-Y, Lin C-Y, Diau EW-G (2011) A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem Commun 47(31):8910–8912Google Scholar
  52. 52.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634Google Scholar
  53. 53.
    Kümmel S, Kronik L (2008) Orbital-dependent density functionals: theory and applications. Rev Mod Phys 80(1):3–60Google Scholar
  54. 54.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652Google Scholar
  55. 55.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170Google Scholar
  56. 56.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868Google Scholar
  57. 57.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474Google Scholar
  58. 58.
    Burke K, Werschnik J, Gross EKU (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123(6):062206–062209Google Scholar
  59. 59.
    Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659Google Scholar
  60. 60.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000Google Scholar
  61. 61.
    Grimme S, Parac M (2003) Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. Chem Phys Chem 4(3):292–295Google Scholar
  62. 62.
    Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorina and bacteriochlorophylla spheroidene complexes. J Am Chem Soc 126(12):4007Google Scholar
  63. 63.
    Marom N, Moussa JE, Ren X, Tkatchenko A, Chelikowsky JR (2011) Electronic structure of dye-sensitized TiO2 clusters from many-body perturbation theory. Phys Rev B 84(24):245115Google Scholar
  64. 64.
    Körzdörfer T, Marom N (2011) Strategy for finding a reliable starting point for G0W0 demonstrated for molecules. Phys Rev B 86(4):041110Google Scholar
  65. 65.
    Marom N, Caruso F, Ren X, Hofmann OT, Körzdörfer T, Chelikowsky JR, Rubio A, Scheffler M, Rinke P (2012) Benchmark of GW methods for azabenzenes. Phys Rev B 86(24):245127Google Scholar
  66. 66.
    Umari P, Giacomazzi L, De Angelis F, Pastore M, Baroni S (2013) Energy-level alignment in organic dye-sensitized TiO2 from GW calculations. J Chem Phys 139(1):014709Google Scholar
  67. 67.
    Fantacci S, De Angelis F, Selloni A (2003) Absorption spectrum and solvatochromism of the [Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] molecular dye by time dependent density functional theory. J Am Chem Soc 125(14):4381–4387Google Scholar
  68. 68.
    De Angelis F, Fantacci S, Selloni A (2004) Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)(2)(NCS)(2)] in water solution: influence of the pH. Chem Phys Lett 389(1–3):204Google Scholar
  69. 69.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377Google Scholar
  70. 70.
    Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115(10):4708–4717Google Scholar
  71. 71.
    Rensmo H, Södergren S, Patthey L, Westermark K, Vayssieres L, Kohle O, Brühwiler PA, Hagfeldt A, Siegbahn H (1997) The electronic structure of the cis-bis(4,4′-dicarboxy-2,2′-bipyridine)-bis(isothiocyanato)ruthenium(II) complex and its ligand 2,2′-bipyridyl-4,4′-dicarboxylic acid studied with electron spectroscopy. Chem Phys Lett 274(1–3):51–57Google Scholar
  72. 72.
    Monat JE, Rodriguez JH, McCusker JK (2002) Ground- and excited-state electronic structures of the solar cell sensitizer bis(4,4′-dicarboxylato-2,2′-bipyridine)bis(isothiocyanato)ruthenium(II). J Phys Chem A 106:7399–7406Google Scholar
  73. 73.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Gorelsky SI, Lever ABP, Grätzel M (2000) Synthesis, spectroscopic and a ZINDO study of cis- and trans-(X2)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) complexes (X=Cl−, H2O, NCS−). Coord Chem Rev 208(1):213–225Google Scholar
  74. 74.
    Guillemoles J-F, Barone V, Joubert L, Adamo C (2002) A theoretical investigation of the ground and excited states of selected Ru and Os polypyridyl molecular dyes. J Phys Chem A 106(46):11354–11360Google Scholar
  75. 75.
    De Angelis F, Fantacci S, Selloni A (2005) Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COO–2,2′-bpy)(2)(X)(2)](4-) (X = NCS, Cl) dyes in water solution. Chem Phys Lett 415(1–3):115–120Google Scholar
  76. 76.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129(46):14156–14157Google Scholar
  77. 77.
    Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 177:347Google Scholar
  78. 78.
    Wolfbauer G, Bond AM, Deacon GB, MacFarlane DR, Spiccia L (1999) Experimental and theoretical investigations of the effect of deprotonation on electronic spectra and reversible potentials of photovoltaic sensitizers: deprotonation of cis-L2RuX2 (L=2,2‚-bipyridine-4,4‚-dicarboxylic acid; X=CN-, NCS-) by electrochemical reduction at platinum electrodes. J Am Chem Soc 122(1):130–142. doi:10.1021/ja992402g Google Scholar
  79. 79.
    Aiga F, Tada T (2003) Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO2 solar cells. J Mol Struct 658(1–2):25–32Google Scholar
  80. 80.
    Ghosh S, Chaitanya GK, Bhanuprakash K, Nazeeruddin MK, Grätzel M, Yella RP (2006) Electronic structures and absorption spectra of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′:6,2″-terpyridine) ruthenium(II) complexes: a DFT study. Inorg Chem 45(19):7600–7611Google Scholar
  81. 81.
    Li M-X, Zhou X, Xia B-H, Zhang H-X, Pan Q-J, Liu T, Fu H-G, Sun C-C (2008) Theoretical studies on structures and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, [Ru(Hmtcterpy)(NCS)3]’ (m = 0, 1, 2, and 3; n = 4, 3, 2, and 1). Inorg Chem 47(7):2312–2324Google Scholar
  82. 82.
    Li M-X, Zhang H-X, Zhou X, Pan Q-J, Fu H-G, Sun C-C (2007) Theoretical studies of the electronic structure and spectroscopic properties of [Ru(Htcterpy)(NCS)3]3. Eur J Inorg Chem 2007:2171–2180Google Scholar
  83. 83.
    Govindasamy A, Lv C, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, Del Carpio CA, Miyamoto A (2007) Theoretical investigation of the photophysical properties of black dye sensitizer [(H3-tctpy)M(NCS)3]- (M=Fe, Ru, Os) in dye sensitized solar cells. Jpn J Appl Phys 46:2655–2660Google Scholar
  84. 84.
    Kusama H, Sugihara H, Sayama K (2011) Theoretical study on the interactions between black dye and iodide in dye-sensitized solar cells. J Phys Chem C 115(18):9267–9275Google Scholar
  85. 85.
    Bang SY, Ko MJ, Kim K, Kim JH, Jang I-H, Park N-G (2012) Evaluation of dye aggregation and effect of deoxycholic acid concentration on photovoltaic performance of N749-sensitized solar cell. Synthetic Met 162(17–18):1503–1507Google Scholar
  86. 86.
    Sodeyama K, Sumita M, O’Rourke C, Terranova U, Islam A, Han L, Bowler DR, Tateyama Y (2012) Protonated carboxyl anchor for stable adsorption of Ru N749 dye (black dye) on a TiO2 anatase (101) surface. J Phys Chem Lett 3(4):472–477Google Scholar
  87. 87.
    Liu S-H, Fu H, Cheng Y-M, Wu K-L, Ho S-T, Chi Y, Chou P-T (2012) Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. J Phys Chem C 116(31):16338–16345Google Scholar
  88. 88.
    Chen J, Bai F-Q, Wang J, Hao L, Xie Z-F, Pan Q-J, Zhang H-X (2012) Theoretical studies on spectroscopic properties of ruthenium sensitizers adsorbed to TiO2 film surface with connection mode for DSSC. Dyes Pigments 94(3):459–468Google Scholar
  89. 89.
    Fantacci S, Lobello MG, De Angelis F (2013) Everything you always wanted to know about the black dye (but were afraid to ask): a DFT/TDDFT investigation. Chimia 67:121–128. doi:10.2533/chimia.2013.1 Google Scholar
  90. 90.
    Pastore M, Mosconi E, De Angelis F, Grätzel M (2010) A computational investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J Phys Chem C 114(15):7205–7212Google Scholar
  91. 91.
    Pastore M, Fantacci S, De Angelis F (2010) Ab initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells. J Phys Chem C 114(51):22742–22750Google Scholar
  92. 92.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42(2):326–334Google Scholar
  93. 93.
    Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theor Comput 4(1):123–135Google Scholar
  94. 94.
    Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943–2946Google Scholar
  95. 95.
    Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys 119(24):12697–12699Google Scholar
  96. 96.
    Dev P, Agrawal S, English NJ (2012) Determining the appropriate exchange-correlation functional for time-dependent density functional theory studies of charge-transfer excitations in organic dyes. J Chem Phys 136:224301Google Scholar
  97. 97.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433Google Scholar
  98. 98.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. J Chem Phys 122(23):234111Google Scholar
  99. 99.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544Google Scholar
  100. 100.
    Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106Google Scholar
  101. 101.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57Google Scholar
  102. 102.
    Pastore M, Fantacci S, De Angelis F (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117(8):3685–3700Google Scholar
  103. 103.
    Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128(51):16701–16707Google Scholar
  104. 104.
    Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17(7):813–815Google Scholar
  105. 105.
    Horiuchi T, Miura H, Uchida S (2003) Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem Commun 3036–3037Google Scholar
  106. 106.
    Magyar RJ, Tretiak S (2007) Dependence of spurious charge-transfer excited states on orbital exchange in TDDFT: large molecules and clusters. J Chem Theor Comput 3:976–987Google Scholar
  107. 107.
    Preat J, Michaux C, Jacquemin D, Perpete EA (2009) Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J Phys Chem C 113:16821–16833Google Scholar
  108. 108.
    Hagberg DP, Marinado T, Karlsson KM, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun L (2007) Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J Org Chem 72(25):9550–9556Google Scholar
  109. 109.
    Wiggins P, Williams J, Tozer D (2009) Excited state surfaces in density functional theory: a new twist on an old problem. J Chem Phys 131:091101–4Google Scholar
  110. 110.
    Plotner J, Dreuw A (2008) Pigment yellow 101: a showcase for photo-initiated processes in medium-sized molecules. Chem Phys 347:472–482. doi:10.1016/j.chemphys.2007.10.020 Google Scholar
  111. 111.
    Plotner J, Tozer DJ, Dreuw A (2010) Dependence of excited state potential energy surfaces on the spatial overlap of the Kohn–Sham orbitals and the amount of nonlocal Hartree–Fock exchange in time-dependent density functional theory. J Chem Theory Comput 1–10Google Scholar
  112. 112.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104(21):4811Google Scholar
  113. 113.
    Abbotto A, Barolo C, Bellotto L, De Angelis F, Grätzel M, Manfredi N, Marinzi C, Fantacci S, Yum J, Nazeeruddin MK (2008) Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chem Commun 42:5318–5320. doi:10.1039/b811378e Google Scholar
  114. 114.
    Hedin L (1965) New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796–A823Google Scholar
  115. 115.
    Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34(8):5390–5413Google Scholar
  116. 116.
    Salpeter EE, Bethe HA (1951) A relativistic equation for bound-state problems. Phys Rev 84(6):1232–1242Google Scholar
  117. 117.
    Rohlfing M, Louie SG (2000) Electron–hole excitations and optical spectra from first principles. Phys Rev B 62(8):4927–4944Google Scholar
  118. 118.
    Faber C, Duchemin I, Deutsch T, Blase X (2012) Many-body Green’s function study of coumarins for dye-sensitized solar cells. Phys Rev B 86(15):155–315Google Scholar
  119. 119.
    Patrick CE, Giustino F (2012) Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces. Phys Rev Lett 109(11):116801Google Scholar
  120. 120.
    Umari P, Stenuit G, Baroni S (2010) GW quasiparticle spectra from occupied states only. Phys Rev B 81(11):115104–115109Google Scholar
  121. 121.
    Umari P, Stenuit G, Baroni S (2009) Optimal representation of the polarization propagator for large-scale GW calculations. Phys Rev B 79(20):201104Google Scholar
  122. 122.
    Umari P, Giacomazzi L, De Angelis F, Pastore M, Baroni S (2013) Energy-level alignment in organic dye-sensitized TiO2 from GW calculations. J Chem Phys 139:014709–9Google Scholar
  123. 123.
    Bruneval F (2009) GW approximation of the many-body problem and changes in the particle number. Phys Rev Lett 103(17):176403Google Scholar
  124. 124.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Frates G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umaril P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502Google Scholar
  125. 125.
    Marinado T, Hagberg D, Hedlund M, Edvinsson T, Johansson E, Boschloo G, Rensmo H, Brinck T, Sun L, Hagfeldt A (2009) Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance. Phys Chem Chem Phys 11(1):133–141Google Scholar
  126. 126.
    Hahlin M, Johansson E, Plogmaker S, Odelius M, Sun L, Siegbahn H, Rensmo H (2010) Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Phys Chem Chem Phys 12:1507–1517Google Scholar
  127. 127.
    De Angelis F, Fantacci S, Selloni A, Graetzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7(10):3189–3195Google Scholar
  128. 128.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2010) First-principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J Phys Chem C 114(13):6054–6061. doi:10.1021/jp911663k Google Scholar
  129. 129.
    De Angelis F, Fantacci S, Mosconi E, Nazeeruddin MK, Grätzel M (2011) Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models. J Phys Chem C 115(17):8825–8831Google Scholar
  130. 130.
    Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63(15):155409Google Scholar
  131. 131.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681Google Scholar
  132. 132.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Revision B05 edn. Gaussian Inc., PittsburghGoogle Scholar
  133. 133.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344Google Scholar
  134. 134.
    Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723. doi:10.1021/ja954172l Google Scholar
  135. 135.
    Rice CR, Ward MD, Nazeeruddin MK, Gratzel M (2000) Catechol as an efficient anchoring group for attachment of ruthenium-polypyridine photosensitisers to solar cells based on nanocrystalline TiO2 films. New J Chem 24(9):651–652. doi:10.1039/b003823g Google Scholar
  136. 136.
    Moser J, Punchihewa S, Infelta PP, Graetzel M (1991) Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7(12):3012–3018. doi:10.1021/la00060a018 Google Scholar
  137. 137.
    Connor PA, Dobson KD, McQuillan AJ (1995) New sol–gel attenuated total reflection infrared spectroscopic method for analysis of adsorption at metal oxide surfaces in aqueous solutions. Chelation of TiO2, ZrO2, and Al2O3 surfaces by catechol, 8-quinolinol, and acetylacetone. Langmuir 11(11):4193–4195. doi:10.1021/la00011a003 Google Scholar
  138. 138.
    Janković IA, Šaponjić ZV, Čomor MI, Nedeljković JM (2009) Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. J Phys Chem C 113(29):12645–12652. doi:10.1021/jp9013338 Google Scholar
  139. 139.
    Araujo PZ, Mendive CB, Rodenas LAG, Morando PJ, Regazzoni AE, Blesa MA, Bahnemann D (2005) FT-IR-ATR as a tool to probe photocatalytic interfaces. Colloid Surface Physicochem Eng Aspect 265(1–3):73–80, doi:http://dx.doi.org/10.1016/j.colsurfa.2004.10.137 Google Scholar
  140. 140.
    Persson P, Bergstrom R, Lunell S (2000) Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles. J Phys Chem B 104(44):10348–10351Google Scholar
  141. 141.
    Redfern PC, Zapol P, Curtiss LA, Rajh T, Thurnauer MC (2003) Computational studies of catechol and water interactions with titanium oxide nanoparticles. J Phys Chem B 107(41):11419–11427. doi:10.1021/jp0303669 Google Scholar
  142. 142.
    Sánchez-de-Armas R, Oviedo J, San Miguel MÁ, Sanz JF (2011) Direct vs indirect mechanisms for electron injection in dye-sensitized solar cells. J Phys Chem C 115(22):11293–11301. doi:10.1021/jp201233y Google Scholar
  143. 143.
    Duncan WR, Prezhdo OV (2007) Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu Rev Phys Chem 58:143–184Google Scholar
  144. 144.
    Gundlach L, Ernstorfer R, Willig F (2007) Dynamics of photoinduced electron transfer from adsorbed molecules into solids. Appl Phys A 88:481–495Google Scholar
  145. 145.
    Li S-C, J-g W, Jacobson P, Gong XQ, Selloni A, Diebold U (2009) Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO2(110). J Am Chem Soc 131(3):980–984. doi:10.1021/ja803595u Google Scholar
  146. 146.
    Li S-C, Chu L-N, Gong X-Q, Diebold U (2010) Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 328(5980):882–884Google Scholar
  147. 147.
    Liu L-M, Li S-C, Cheng H, Diebold U, Selloni A (2011) Growth and organization of an organic molecular monolayer on TiO2: catechol on anatase (101). J Am Chem Soc 133(20):7816–7823. doi:10.1021/ja200001r Google Scholar
  148. 148.
    Li S-C, Losovyj Y, Diebold U (2011) Adsorption-site-dependent electronic structure of catechol on the anatase TiO2(101) surface. Langmuir 27(14):8600–8604. doi:10.1021/la201553k Google Scholar
  149. 149.
    Syres KL, Thomas AG, Flavell WR, Spencer BF, Bondino F, Malvestuto M, Preobrajenski A, Gratzel M (2012) Adsorbate-induced modification of surface electronic structure: pyrocatechol adsorption on the anatase TiO2 (101) and rutile TiO2 (110) surfaces. J Phys Chem C 116(44):23515–23525. doi:10.1021/jp308614k Google Scholar
  150. 150.
    Rangan S, Theisen J, Bersch E, Bartynski R (2010) Energy level alignment of catechol molecular orbitals on ZnO(1 1 (2)over-bar 0) and TiO2(110) surfaces. Appl Surf Sci 256(15):4829–4833Google Scholar
  151. 151.
    Thomas AG, Syres KL (2012) Observation of UV-induced auger features in catechol adsorbed on anatase TiO[sub 2] (101) single crystal surface. Appl Phys Lett 100(17):171603–171604Google Scholar
  152. 152.
    Xu Y, Chen W-K, Liu S-H, Cao M-J, Li J-Q (2007) Interaction of photoactive catechol with TiO2 anatase (1 0 1) surface: a periodic density functional theory study. Chem Phys 331(2):275–282, doi:http://dx.doi.org/10.1016/j.chemphys.2006.10.018 Google Scholar
  153. 153.
    Risplendi F, Cicero G, Mallia G, Harrison NM (2013) A quantum-mechanical study of the adsorption of prototype dye molecules on rutile-TiO2(110): a comparison between catechol and isonicotinic acid. Phys Chem Chem Phys 15(1):235–243. doi:10.1039/c2cp42078c Google Scholar
  154. 154.
    Xiong G, Shao R, Droubay TC, Joly AG, Beck KM, Chambers SA, Hess WP (2007) Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv Func Mater 17(13):2133–2138. doi:10.1002/adfm.200700146 Google Scholar
  155. 155.
    Franking R, Kim H, Chambers SA, Mangham AN, Hamers RJ (2012) Photochemical grafting of organic alkenes to single-crystal TiO2 surfaces: a mechanistic study. Langmuir 28(33):12085–12093. doi:10.1021/la302169k Google Scholar
  156. 156.
    Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582, doi:http://dx.doi.org/10.1016/j.surfrep.2008.10.001 Google Scholar
  157. 157.
    Srimath Kandada AR, Fantacci S, Guarnera S, Polli D, Lanzani G, De Angelis F, Petrozza A (2013) Role of hot singlet excited states in charge generation at the black dye/TiO2 interface. ACS Appl Mater Interfaces 5(10):4334–4339. doi:10.1021/am400530v Google Scholar
  158. 158.
    Redmond G, Fitzmaurice D (1993) Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. J Phys Chem 97(7):1426–1430Google Scholar
  159. 159.
    Rothenberger G, Fitzmaurice D, Grätzel M (1992) Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films. J Phys Chem 96(14):5983–5986Google Scholar
  160. 160.
    Kang W, Hybertsen MS (2010) Quasiparticle and optical properties of rutile and anatase TiO2. Phys Rev B 82(8):085203Google Scholar
  161. 161.
    Chiodo L, Garcia-Lastra JM, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A (2010) Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases. Phys Rev B 82(4):045207Google Scholar
  162. 162.
    Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter 24:195–503Google Scholar
  163. 163.
    Park YR, Kim KJ (2005) Structural and optical properties of rutile and anatase TiO2 thin films: effects of co doping. Thin Solid Films 484(1, Äì2):34–38, doi:http://dx.doi.org/10.1016/j.tsf.2005.01.039 Google Scholar
  164. 164.
    Ping Y, Rocca D, Galli G (2013) Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem Soc Rev 42(6):2437–2469. doi:10.1039/c3cs00007a Google Scholar
  165. 165.
    Pastore M, De Angelis F (2012) Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes. Electronic structure and implication for electron injection/recombination. Phys Chem Chem Phys 14(2):920–928Google Scholar
  166. 166.
    Neaton JB, Hybertsen MS, Louie SG (2006) Renormalization of molecular electronic levels at metal-molecule interfaces. Phys Rev Lett 97(21):216405Google Scholar
  167. 167.
    Muscat JP, Newns DM (1978) Chemisorption on metals. Prog Surf Sci 9(1):1–43Google Scholar
  168. 168.
    Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theory Comput 2(2):441–451Google Scholar
  169. 169.
    Martsinovich N, Troisi A (2011) High-throughput computational screening of chromophores for dye-sensitized solar cells. J Phys Chem C 115(23):11781–11792Google Scholar
  170. 170.
    Lundqvist MJ, Nilsing M, Persson P, Lunel S (2006) DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int J Quantum Chem 106(15):3214–3234Google Scholar
  171. 171.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967Google Scholar
  172. 172.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38(6):3098–3100Google Scholar
  173. 173.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824Google Scholar
  174. 174.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A.1 edn. Gaussian, Inc., WallingfordGoogle Scholar
  175. 175.
    Chen P, Yum JH, De Angelis F, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett 9(6):2487–2492Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mariachiara Pastore
    • 1
  • Annabella Selloni
    • 2
  • Simona Fantacci
    • 1
  • Filippo De Angelis
    • 1
  1. 1.Computational Laboratory for Hybrid Organic Photovoltaics (CLHYO)Istituto CNR di Scienze e Tecnologie MolecolariPerugiaItaly
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations