Skip to main content

Asymmetric Transformations via C–C Bond Cleavage

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 346))

Abstract

Catalytic asymmetric transformations operating by carbon–carbon (C–C) bonds cleavages have emerged as intriguing strategies to access transient organometallic species from different reaction pathways. The reactions and the applicable substrate range have expanded considerably over the last decade. This overview covers the main developments in this field. A major focus is placed on β-carbon eliminations of strained tert-alcohols and related processes which have been shown to be particularly versatile in a broad range of transformations. Furthermore, exciting developments of asymmetric processes based on direct oxidative C–C bond insertion reactions, for instance into the acyl C–C bond of ketones or the C–CN bond of nitriles, are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

acac:

Acetylacetonate

Ac:

Acetyl

Alk:

Alkyl

Ar:

Aryl

BARF:

Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate

Binap:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

Bn:

BENZYL

cod:

Cyclooctadiene

Cp:

Cyclopentadienyl

d:

Day(s)

dba:

Tris(dibenzylideneacetone)

dppb:

1,4-Bis(diphenylphosphino)butane

dr:

Diastereomer ratio

DCE:

Dichloroethane

DME:

Dimethoxy ethane

DMF:

Dimethyl formamide

DMPU:

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone

DTBM:

3,5-Di-tert-butyl-4-methoxyphenyl

ee :

Enantiomeric excess

equiv:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

iPr:

Isopropyl

L:

Ligand

LA:

Lewis acid

mol:

Mole(s)

M:

Metal

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl

MS:

Molecular sieve

Np:

Naphthyl

Ph:

Phenyl

PMB:

4-Methoxyphenyl

quant:

Quantitative

tBu:

tert-butyl

tert :

Tertiary

TBS:

tert-Butyldiphenylsilyl

Tol:

4-Methylphenyl

Ts:

Tosyl, 4-toluenesulfonyl

References

  1. Jun C-H (2004) Transition metal-catalyzed carbon–carbon bond activation. Chem Soc Rev 33(9):610–618. doi:10.1039/b308864m

    Article  CAS  Google Scholar 

  2. Muzart J (2005) Palladium-catalysed reactions of alcohols. Part D: rearrangements, carbonylations, carboxylations and miscellaneous reactions. Tetrahedron 61(40):9423–9463. doi:10.1016/j.tet.2005.06.103

    Article  CAS  Google Scholar 

  3. Murakami M, Makino M, Ashida S, Matsuda T (2006) Construction of carbon frameworks through beta-carbon elimination mediated by transition metals. Bull Chem Soc Jpn 79(9):1315–1321. doi:10.1246/bcsj.79.1315

    Article  CAS  Google Scholar 

  4. Park YJ, Park J-W, Jun C-H (2008) Metal–organic cooperative catalysis in C–H and C–C bond activation and its concurrent recovery. Acc Chem Res 41(2):222–234. doi:10.1021/ar700133y

    Article  CAS  Google Scholar 

  5. Khoury PR, Goddard JD, Tam W (2004) Ring strain energies: substituted rings, norbornanes, norbornenes and norbornadienes. Tetrahedron 60(37):8103–8112. doi:10.1016/j.tet.2004.06.100

    Article  CAS  Google Scholar 

  6. Russo A, De Fusco C, Lattanzi A (2012) Organocatalytic asymmetric oxidations with hydrogen peroxide and molecular oxygen. ChemCatChem 4(7):901–916. doi:10.1002/cctc.201200139

    Article  CAS  Google Scholar 

  7. Leisch H, Morley K, Lau PCK (2011) Baeyer–Villiger monooxygenases: more than just green chemistry. Chem Rev 111(7):4165–4222. doi:10.1021/cr1003437

    Article  CAS  Google Scholar 

  8. Bolm C (2007) Asymmetric Baeyer-Villiger. In: Asymmetric synthesis – the essentials. Wiley-VCH, Weinheim, pp 62–66

    Google Scholar 

  9. ten Brink GJ, Arends IWCE, Sheldon RA (2004) The Baeyer–Villiger reaction: new developments toward greener procedures. Chem Rev 104(9):4105–4124. doi:10.1021/cr030011l

    Article  CAS  Google Scholar 

  10. Kirmse W (2002) 100 years of the Wolff rearrangement. Eur J Org Chem 2002(14):2193–2256. doi:10.1002/1099-0690(200207)2002:14<2193::aid-ejoc2193>3.0.co;2-d

    Article  Google Scholar 

  11. Seiser T, Saget T, Tran DN, Cramer N (2011) Cyclobutanes in catalysis. Angew Chem Int Ed 50(34):7740–7752. doi:10.1002/anie.201101053

    Article  CAS  Google Scholar 

  12. Seiser T, Cramer N (2009) Enantioselective metal-catalyzed activation of strained rings. Org Biomol Chem 7(14):2835–2840. doi:10.1039/b904405a

    Article  CAS  Google Scholar 

  13. Winter C, Krause N (2009) Rhodium(I)-catalyzed enantioselective C–C bond activation. Angew Chem Int Ed 48(14):2460–2462. doi:10.1002/anie.200805578

    Article  CAS  Google Scholar 

  14. Murakami M (2010) Rhodium-catalyzed restructuring of carbon frameworks. Chem Rec 10(5):326–331. doi:10.1002/tcr.201000023

    Article  CAS  Google Scholar 

  15. Murakami M, Matsuda T (2011) Metal-catalysed cleavage of carbon–carbon bonds. Chem Commun 47(4):1100–1105. doi:10.1039/c0cc02566f

    Article  CAS  Google Scholar 

  16. Huffman MA, Liebeskind LS, Pennington WT (1990) Synthesis of metallacyclopentenones by insertion of rhodium into cyclobutenones. Organometallics 9(8):2194–2196. doi:10.1021/om00158a009

    Article  CAS  Google Scholar 

  17. Huffman MA, Liebeskind LS (1990) Insertion of (.eta.5-indeny)cobalt(I) into cyclobutenones: the first synthesis of phenols from isolated vinylketene complexes. J Am Chem Soc 112(23):8617–8618. doi:10.1021/ja00179a075

    Article  CAS  Google Scholar 

  18. Huffman MA, Liebeskind LS (1991) Nickel(0)-catalyzed synthesis of substituted phenols from cyclobutenones and alkynes. J Am Chem Soc 113(7):2771–2772. doi:10.1021/ja00007a072

    Article  CAS  Google Scholar 

  19. Huffman MA, Liebeskind LS, Pennington WT (1992) Reaction of cyclobutenones with low-valent metal reagents to form.eta.4- and.eta.2-vinylketene complexes. Reaction of.eta.4-vinylketene complexes with alkynes to form phenols. Organometallics 11(1):255–266. doi:10.1021/om00037a047

    Article  CAS  Google Scholar 

  20. Kondo T, Taguchi Y, Kaneko Y, Niimi M, Mitsudo TA (2004) Ru- and Rh-catalyzed C–C bond cleavage of cyclobutenones: reconstructive and selective synthesis of 2-pyranones, cyclopentenes, and cyclohexenones. Angew Chem Int Ed 43(40):5369–5372. doi:10.1002/anie.200461002

    Article  CAS  Google Scholar 

  21. Kondo T, Mitsudo TA (2005) Ruthenium-catalyzed reconstructive synthesis of functional organic molecules via cleavage of carbon–carbon bonds. Chem Lett 34(11):1462–1467

    Article  CAS  Google Scholar 

  22. Kondo T, Niimi M, Nomura M, Wada K, Mitsudo TA (2007) Rhodium-catalyzed rapid synthesis of substituted phenols from cyclobutenones and alkynes or alkenes via C–C bond cleavage. Tetrahedron Lett 48(16):2837–2839, http://dx.doi.org/10.1016/j.tetlet.2007.02.091

    Article  CAS  Google Scholar 

  23. Kondo T (2008) On inventing catalytic reactions via ruthena- or rhodacyclic intermediates for atom economy. Synlett 5:629–644. doi:10.1055/s-2008-1042807

    Article  Google Scholar 

  24. Xu T, Dong G (2012) Rhodium-catalyzed regioselective carboacylation of olefins: a C–C bond activation approach for accessing fused-ring systems. Angew Chem Int Ed 51(30):7567–7571. doi:10.1002/anie.201202771

    Article  CAS  Google Scholar 

  25. Xu T, Ko HM, Savage NA, Dong G (2012) Highly enantioselective Rh-catalyzed carboacylation of olefins: efficient syntheses of chiral poly-fused rings. J Am Chem Soc 134(49):20005–20008. doi:10.1021/ja309978c

    Article  CAS  Google Scholar 

  26. Miura M, Satoh T (2005) Catalytic processes involving β-carbon elimination. In: Tsuji J (ed) Palladium in organic synthesis, vol 14, Topics in organometallic chemistry. Springer, Berlin, Heidelberg, pp 1–20. doi:10.1007/b104133

    Google Scholar 

  27. Cramer N, Seiser T (2011) Beta-carbon elimination from cyclobutanols: a clean access to alkylrhodium intermediates bearing a quaternary stereogenic center. Synlett 4:449–460. doi:10.1055/s-0030-1259536

    Article  Google Scholar 

  28. Murakami M, Amii H, Ito Y (1994) Selective activation of carbon–carbon bonds next to a carbonyl group. Nature 370(6490):540–541. doi:10.1038/370540a0

    Article  CAS  Google Scholar 

  29. Matsuda T, Fujimoto A, Ishibashi M, Murakami M (2004) Eight-membered ring formation via olefin insertion into a carbon–carbon single bond. Chem Lett 33(7):876–877

    Article  CAS  Google Scholar 

  30. Murakami M, Itahashi T, Ito Y (2002) Catalyzed intramolecular olefin insertion into a carbon−carbon single bond. J Am Chem Soc 124(47):13976–13977. doi:10.1021/ja021062n

    Article  CAS  Google Scholar 

  31. Kumar P, Zhang K, Louie J (2012) An expeditious route to eight-membered heterocycles by nickel-catalyzed cycloaddition: low-temperature C sp2-C sp3 bond cleavage. Angew Chem Int Ed 51(34):8602–8606. doi:10.1002/anie.201203521

    Article  CAS  Google Scholar 

  32. Ishida N, Yuhki T, Murakami M (2012) Synthesis of enantiopure dehydropiperidinones from α-amino acids and alkynes via azetidin-3-ones. Org Lett 14(15):3898–3901. doi:10.1021/ol3016447

    Article  CAS  Google Scholar 

  33. Ashida S, Murakami M (2008) Nickel-catalyzed 4+2+2 -type annulation reaction of cyclobutanones with diynes and enynes. Bull Chem Soc Jpn 81(7):885–893. doi:10.1246/bcsj.81.885

    Article  CAS  Google Scholar 

  34. Murakami M, Ashida S, Matsuda T (2006) Eight-membered ring construction by [4+2+2] annulation involving β-carbon elimination. J Am Chem Soc 128(7):2166–2167. doi:10.1021/ja0552895

    Article  CAS  Google Scholar 

  35. Murakami M, Ashida S, Matsuda T (2005) Nickel-catalyzed intermolecular alkyne insertion into cyclobutanones. J Am Chem Soc 127(19):6932–6933. doi:10.1021/ja050674f

    Article  CAS  Google Scholar 

  36. Murakami M, Ashida S (2006) Nickel-catalysed intramolecular alkene insertion into cyclobutanones. Chem Commun 44:4599–4601. doi:10.1039/b611522e

    Article  Google Scholar 

  37. Liu L, Ishida N, Murakami M (2012) Atom- and step-economical pathway to chiral benzobicyclo[2.2.2]octenones through carbon–carbon bond cleavage. Angew Chem Int Ed 51(10):2485–2488. doi:10.1002/anie.201108446

    Article  CAS  Google Scholar 

  38. Matsuda T, Shigeno M, Makino M, Murakami M (2006) Enantioselective C–C bond cleavage creating chiral quaternary carbon centers. Org Lett 8(15):3379–3381. doi:10.1021/ol061359g

    Article  CAS  Google Scholar 

  39. Matsuda T, Shigeno M, Murakami M (2007) Asymmetric synthesis of 3,4-dihydrocoumarins by rhodium-catalyzed reaction of 3-(2-hydroxyphenyl)cyclobutanones. J Am Chem Soc 129(40):12086–12087. doi:10.1021/ja075141g

    Article  CAS  Google Scholar 

  40. Nishimura T, Ohe K, Uemura S (1999) Palladium(II)-catalyzed oxidative ring cleavage of tert-cyclobutanols under oxygen atmosphere. J Am Chem Soc 121(11):2645–2646. doi:10.1021/ja984259h

    Article  CAS  Google Scholar 

  41. Nishimura T, Uemura S (1999) Palladium-catalyzed arylation of tert-cyclobutanols with aryl bromide via C–C bond cleavage: new approach for the γ-arylated ketones. J Am Chem Soc 121(47):11010–11011. doi:10.1021/ja993023q

    Article  CAS  Google Scholar 

  42. Nishimura T, Matsumura S, Maeda Y, Uemura S (2002) Palladium-catalysed asymmetric arylation of tert-cyclobutanols via enantioselective C–C bond cleavage. Chem Commun 7(1):50–51. doi:10.1039/b107736h

    Article  Google Scholar 

  43. Matsumura S, Maeda Y, Nishimura T, Uemura S (2003) Palladium-catalyzed asymmetric arylation, vinylation, and allenylation of tert-cyclobutanols via enantioselective C–C bond cleavage. J Am Chem Soc 125(29):8862–8869. doi:10.1021/ja035293l

    Article  CAS  Google Scholar 

  44. Seiser T, Cramer N (2008) Enantioselective C–C bond activation of allenyl cyclobutanes: access to cyclohexenones with quaternary stereogenic centers. Angew Chem Int Ed 47(48):9294–9297. doi:10.1002/anie.200804281

    Article  CAS  Google Scholar 

  45. Seiser T, Cramer N (2010) Rhodium(I)-catalyzed enantioselective activation of cyclobutanols: formation of cyclohexane derivatives with quaternary stereogenic centers. Chem-Eur J 16(11):3383–3391. doi:10.1002/chem.200903225

    Article  CAS  Google Scholar 

  46. Seiser T, Roth OA, Cramer N (2009) Enantioselective synthesis of indanols from tert-cyclobutanols using a rhodium-catalyzed C–C/C–H activation sequence. Angew Chem Int Ed 48(34):6320–6323. doi:10.1002/anie.200903189

    Article  CAS  Google Scholar 

  47. Shigeno M, Yamamoto T, Murakami M (2009) Stereoselective restructuring of 3-arylcyclobutanols into 1-indanols by sequential breaking and formation of carbon–carbon bonds. Chem-Eur J 15(47):12929–12931. doi:10.1002/chem.200902593

    Article  CAS  Google Scholar 

  48. Seiser T, Cathomen G, Cramer N (2010) Enantioselective construction of indanones from cyclobutanols using a rhodium-catalyzed C–C/C–H/C–C bond activation process. Synlett 11:1699–1703. doi:10.1055/s-0029-1219959

    Google Scholar 

  49. Seiser T, Cramer N (2010) Rhodium(I)-catalyzed 1,4-silicon shift of unactivated silanes from aryl to alkyl: enantioselective synthesis of indanol derivatives. Angew Chem Int Ed 49(52):10163–10167. doi:10.1002/anie.201005399

    Article  CAS  Google Scholar 

  50. Seiser T, Cramer N (2010) Rhodium-catalyzed C–C bond cleavage: construction of acyclic methyl substituted quaternary stereogenic centers. J Am Chem Soc 132(15):5340–5341. doi:10.1021/ja101469t

    Article  CAS  Google Scholar 

  51. Ishida N, Sawano S, Murakami M (2012) Synthesis of 3,3-disubstituted α-tetralones by rhodium-catalysed reaction of 1-(2-haloaryl)cyclobutanols. Chem Commun 48(14):1973–1975. doi:10.1039/c2cc16907j

    Article  CAS  Google Scholar 

  52. Hayashi S, Hirano K, Yorimitsu H, Oshima K (2006) Palladium-catalyzed stereo- and regiospecific allylation of aryl halides with homoallyl alcohols via retro-allylation: selective generation and use of σ-allylpalladium. J Am Chem Soc 128(7):2210–2211. doi:10.1021/ja058055u

    Article  CAS  Google Scholar 

  53. Shintani R, Takatsu K, Hayashi T (2008) Rhodium-catalyzed kinetic resolution of tertiary homoallyl alcohols via stereoselective carbon − carbon bond cleavage. Org Lett 10(6):1191–1193. doi:10.1021/ol800120p

    Article  CAS  Google Scholar 

  54. Waibel M, Cramer N (2010) Palladium-catalyzed arylative ring-opening reactions of norbornenols: entry to highly substituted cyclohexenes, quinolines, and tetrahydroquinolines. Angew Chem Int Ed 49(26):4455–4458. doi:10.1002/anie.201001752

    Article  CAS  Google Scholar 

  55. Waibel M, Cramer N (2011) Desymmetrizations of meso-tert-norbornenols by rhodium(I)-catalyzed enantioselective retro-allylations. Chem Commun 47(1):346–348. doi:10.1039/c0cc01950j

    Article  CAS  Google Scholar 

  56. Terao Y, Wakui H, Nomoto M, Satoh T, Miura M, Nomura M (2003) Palladium-catalyzed arylation of α, α-disubstituted arylmethanols via cleavage of a C − C or a C − H bond to give biaryls. J Org Chem 68(13):5236–5243. doi:10.1021/jo0344034

    Article  CAS  Google Scholar 

  57. Zhao P, Incarvito CD, Hartwig JF (2006) Direct observation of β-aryl eliminations from Rh(I) alkoxides. J Am Chem Soc 128(10):3124–3125. doi:10.1021/ja058550q

    Article  CAS  Google Scholar 

  58. Nishimura T, Katoh T, Hayashi T (2007) Rhodium-catalyzed aryl transfer from trisubstituted aryl methanols to α, β-unsaturated carbonyl compounds. Angew Chem Int Ed 46(26):4937–4939. doi:10.1002/anie.200700902

    Article  CAS  Google Scholar 

  59. Nishimura T, Katoh T, Takatsu K, Shintani R, Hayashi T (2007) Rhodium-catalyzed asymmetric rearrangement of alkynyl alkenyl carbinols: synthetic equivalent to asymmetric conjugate alkynylation of enones. J Am Chem Soc 129(46):14158–14159. doi:10.1021/ja076346s

    Article  CAS  Google Scholar 

  60. Nemoto H, Yoshida M, Fukumoto K (1997) Allenylcyclobutanol, a versatile initiator for the palladium-catalyzed cascade reaction: a novel route to bicyclo[5.3.0] and -[6.3.0] frameworks. J Org Chem 62(19):6450–6451. doi:10.1021/jo9712310

    Article  CAS  Google Scholar 

  61. Trost BM, Yasukata T (2001) A catalytic asymmetric Wagner − Meerwein shift. J Am Chem Soc 123(29):7162–7163. doi:10.1021/ja010504c

    Article  CAS  Google Scholar 

  62. Trost BM, Xie J (2006) Palladium-catalyzed asymmetric ring expansion of allenylcyclobutanols: an asymmetric Wagner − Meerwein shift. J Am Chem Soc 128(18):6044–6045. doi:10.1021/ja0602501

    Article  CAS  Google Scholar 

  63. Trost BM, Xie J (2008) Palladium-catalyzed diastereo- and enantioselective Wagner − Meerwein shift: control of absolute stereochemistry in the C − C bond migration event. J Am Chem Soc 130(19):6231–6242. doi:10.1021/ja7111299

    Article  CAS  Google Scholar 

  64. Kleinbeck F, Toste FD (2009) Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. J Am Chem Soc 131(26):9178–9179. doi:10.1021/ja904055z

    Article  CAS  Google Scholar 

  65. Wender PA, Gamber GG, Williams TJ (2005) Rhodium(I)-catalyzed [5+2], [6+2], and [5+2+1] cycloadditions: new reactions for organic synthesis. In: Modern rhodium-catalyzed organic reactions. Wiley-VCH Verlag GmbH & Co. KGaA, pp 263–299. doi:10.1002/3527604693.ch13

    Google Scholar 

  66. Ylijoki KEO, Stryker JM (2012) [5+2] Cycloaddition reactions in organic and natural product synthesis. Chem Rev 113(3):2244–2266. doi:10.1021/cr300087g

    Article  Google Scholar 

  67. Wender PA, Haustedt LO, Lim J, Love JA, Williams TJ, Yoon J-Y (2006) Asymmetric catalysis of the [5+2] cycloaddition reaction of vinylcyclopropanes and π-systems. J Am Chem Soc 128(19):6302–6303. doi:10.1021/ja058590u

    Article  CAS  Google Scholar 

  68. Shintani R, Nakatsu H, Takatsu K, Hayashi T (2009) Rhodium-catalyzed asymmetric [5+2] cycloaddition of alkyne–vinylcyclopropanes. Chem Eur J 15(35):8692–8694. doi:10.1002/chem.200901463

    Article  CAS  Google Scholar 

  69. Brandi A, Cicchi S, Cordero FM, Goti A (2003) Heterocycles from alkylidenecyclopropanes. Chem Rev 103(4):1213–1270. doi:10.1021/cr010005u

    Article  CAS  Google Scholar 

  70. Rubin M, Rubina M, Gevorgyan V (2007) Transition metal chemistry of cyclopropenes and cyclopropanes. Chem Rev 107(7):3117–3179. doi:10.1021/cr050988l

    Article  CAS  Google Scholar 

  71. Masarwa A, Marek I (2010) Selectivity in metal-catalyzed carbon–carbon bond cleavage of alkylidenecyclopropanes. Chem Eur J 16(32):9712–9721. doi:10.1002/chem.201001246

    Article  CAS  Google Scholar 

  72. Suginome M, Matsuda T, Ito Y (2000) Palladium- and platinum-catalyzed silaboration of methylenecyclopropanes through selective proximal or distal C − C bond cleavage. J Am Chem Soc 122(44):11015–11016. doi:10.1021/ja002885k

    Article  CAS  Google Scholar 

  73. Ohmura T, Taniguchi H, Kondo Y, Suginome M (2007) Palladium-catalyzed asymmetric silaborative C − C cleavage of meso-methylenecyclopropanes. J Am Chem Soc 129(12):3518–3519. doi:10.1021/ja0703170

    Article  CAS  Google Scholar 

  74. Akai Y, Yamamoto T, Nagata Y, Ohmura T, Suginome M (2012) Enhanced catalyst activity and enantioselectivity with chirality-switchable polymer ligand PQXphos in Pd-catalyzed asymmetric silaborative cleavage of meso-methylenecyclopropanes. J Am Chem Soc 134(27):11092–11095. doi:10.1021/ja303506k

    Article  CAS  Google Scholar 

  75. Gulías M, Durán J, López F, Castedo L, Mascareñas JL (2007) Palladium-catalyzed [4+3] intramolecular cycloaddition of alkylidenecyclopropanes and dienes. J Am Chem Soc 129(36):11026–11027. doi:10.1021/ja0756467

    Article  Google Scholar 

  76. Mazumder S, Shang D, Negru DE, Baik M-H, Evans PA (2012) Stereoselective rhodium-catalyzed [3+2+1] carbocyclization of alkenylidenecyclopropanes with carbon monoxide: theoretical evidence for a trimethylenemethane metallacycle intermediate. J Am Chem Soc 134(51):20569–20572. doi:10.1021/ja305467x

    Article  CAS  Google Scholar 

  77. McKinney RJ (1992) The applications and chemistry of catalysis by soluble transition metal complexes. In: Homogeneous catalysis. Wiley, New York, pp 42–50

    Google Scholar 

  78. Tolman CA, Seidel WC, Druliner JD, Domaille PJ (1984) Catalytic hydrocyanation of olefins by nickel(0) phosphite complexes – effects of Lewis acids. Organometallics 3(1):33–38. doi:10.1021/om00079a008

    Article  CAS  Google Scholar 

  79. Nakao Y, Oda S, Hiyama T (2004) Nickel-catalyzed arylcyanation of alkynes. J Am Chem Soc 126(43):13904–13905. doi:10.1021/ja0448723

    Article  CAS  Google Scholar 

  80. Nakao Y, Yukawa T, Hirata Y, Oda S, Satoh J, Hiyama T (2006) Allylcyanation of alkynes: regio- and stereoselective access to functionalized di- or trisubstituted acrylonitriles. J Am Chem Soc 128(22):7116–7117. doi:10.1021/ja060519g

    Article  CAS  Google Scholar 

  81. Nakao Y, Yada A, Ebata S, Hiyama T (2007) A dramatic effect of Lewis-acid catalysts on nickel-catalyzed carbocyanation of alkynes. J Am Chem Soc 129(9):2428–2429. doi:10.1021/ja067364x

    Article  CAS  Google Scholar 

  82. Nakao Y, Hirata Y, Tanaka M, Hiyama T (2008) Nickel/BPh3-catalyzed alkynylcyanation of alkynes and 1,2-dienes: an efficient route to highly functionalized conjugated enynes. Angew Chem Int Ed 47(2):385–387. doi:10.1002/anie.200704095

    Article  CAS  Google Scholar 

  83. Nakao Y (2012) Nickel/Lewis acid-catalyzed carbocyanation of unsaturated compounds. Bull Chem Soc Jpn 85(7):731–745

    Article  CAS  Google Scholar 

  84. Watson MP, Jacobsen EN (2008) Asymmetric intramolecular arylcyanation of unactivated olefins via C − CN bond activation. J Am Chem Soc 130(38):12594–12595. doi:10.1021/ja805094j

    Article  CAS  Google Scholar 

  85. Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S (2008) Intramolecular arylcyanation of alkenes catalyzed by nickel/AlMe2Cl. J Am Chem Soc 130(39):12874–12875. doi:10.1021/ja805088r

    Article  CAS  Google Scholar 

  86. Nájera C, Sansano JM (2009) Asymmetric intramolecular carbocyanation of alkenes by C–C bond activation. Angew Chem Int Ed 48(14):2452–2456. doi:10.1002/anie.200805601

    Article  Google Scholar 

  87. Hsieh J-C, Ebata S, Nakao Y, Hiyama T (2010) Asymmetric synthesis of indolines bearing a benzylic quaternary stereocenter through intramolecular arylcyanation of alkenes. Synlett 2010(11):1709–1711. doi:10.1055/s-0029-1219964

    Article  Google Scholar 

  88. Murahashi S, Naota T, Nakajima N (1986) Palladium-catalyzed decarbonylation of acyl cyanides. J Org Chem 51(6):898–901. doi:10.1021/jo00356a029

    Article  CAS  Google Scholar 

  89. Yasui Y, Kamisaki H, Takemoto Y (2008) Enantioselective synthesis of 3,3-disubstituted oxindoles through Pd-catalyzed cyanoamidation. Org Lett 10(15):3303–3306. doi:10.1021/ol801168j

    Article  CAS  Google Scholar 

  90. Yasui Y, Kamisaki H, Ishida T, Takemoto Y (2010) Synthesis of 3,3-disubstituted oxindoles through Pd-catalyzed intramolecular cyanoamidation. Tetrahedron 66(11):1980–1989, http://dx.doi.org/10.1016/j.tet.2010.01.073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Cramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Souillart, L., Parker, E., Cramer, N. (2014). Asymmetric Transformations via C–C Bond Cleavage. In: Dong, G. (eds) C-C Bond Activation. Topics in Current Chemistry, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_505

Download citation

Publish with us

Policies and ethics