Skip to main content

A Theoretical and Experimental Chemist’s Joint View on Hydrogen Bonding in Ionic Liquids and Their Binary Mixtures

  • Chapter
  • First Online:
Electronic Effects in Organic Chemistry

Abstract

A combined experimental and theoretical approach including quantum chemistry tools and computational simulation techniques can provide a holistic description of the nature of the interactions present in ionic liquid media. The nature of hydrogen bonding in ionic liquids is an especially intriguing aspect, and it is affected by all types of interactions occurring in this media. Overall, these interactions represent a delicate balance of forces that influence the structure and dynamics, and hence the properties of ionic liquids. An understanding of the fundamental principles can be achieved only by a combination of computations and experimental work. In this contribution we show recent results shedding light on the nature of hydrogen bonding, for certain cases the formation of a three-dimensional network of hydrogen bonding, and its dynamics by comparing 1-ethyl-3-methylimidazolium based acetate, chloride and thiocyanate ionic liquids.

A particularly interesting case to study hydrogen bonding and other interactions is the investigation of binary mixtures of ionic liquids of the type [cation1][anion1]/[cation1][anion2]. In these mixtures, competing interactions are to be expected. We present both a thorough property meta-analysis of the literature and new data covering a wide range of anions, i.e., mixtures of 1-ethyl-3-methylimidazolium acetate with either trifluoroacetate, tetrafluoroborate, methanesulfonate, or bis(trifluoromethanesulfonyl)imide. In most cases, ideal mixing behavior is found, a surprising result considering the multitude of interactions present. However, ideal mixing behavior allows for the prediction of properties such as density, refractive index, surface tension, and, in most cases, viscosity as function of molar composition. Furthermore, we show that the prediction of properties such as the density of binary ionic liquid mixtures is possible by making use of group contribution methods which were originally developed for less complex non-ionic molecules. Notwithstanding this ideal mixing behavior, several exciting applications are discussed where preferential solvation via hydrogen bonding gives rise to non-additive effects leading to performance improvements. The assessment of the excess properties and 1H NMR spectroscopic studies provide information on these structural changes and preferential interactions occurring in binary mixtures of ionic liquid, that clearly support the conclusions drawn from the computational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[C n mim]+ :

1-Alkyl-3-methylimidazolium cation

[C n mpy]+ :

N-Alkyl-3-methylpyridinium cation

[C n mpyr]+ :

N-Alkyl-N-methylpyrrolidinium cation

[EtNH3]+ :

Ethylammonium cation

[NTf2] :

Bis(trifluoromethanesulfonyl)imide anion

[OAc] :

Acetate anion

[SCN] :

Thiocyanate anion

AIMD:

Ab initio molecular dynamics

CDF:

Combined distribution function

DFT:

Density functional theory

IR:

Infra red

MD:

Molecular dynamics

MP2:

Møller–Plesset perturbation theory

NMR:

Nuclear magnetic resonance

u:

Uncertainty

References

  1. Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123

    CAS  Google Scholar 

  2. Howlett PC, MacFarlane DR, Hollenkamp AF (2004) Electrochem Solid State Lett 7

    Google Scholar 

  3. Markevich E, Baranchugov V, Aurbach D (2006) Electrochem Commun 8:1331

    CAS  Google Scholar 

  4. Shin JH, Henderson WA, Scaccia S, Prosini PP, Passerini S (2006) J Power Sources 156:560

    CAS  Google Scholar 

  5. Dai Q, Menzies DB, MacFarlane DR, Batten SR, Forsyth S, Spiccia L, Cheng YB, Forsyth M (2006) C R Chim 9:617

    CAS  Google Scholar 

  6. Kuang D, Wang P, Ito S, Zakeeruddin SM, Grätzel M (2006) J Am Chem Soc 128:7732

    CAS  Google Scholar 

  7. Oda T, Tanaka S, Hayase S (2006) Solar Energy Mater Solar Cells 90:2696

    CAS  Google Scholar 

  8. Wei D (2010) Int J Mol Sci 11:1103

    CAS  Google Scholar 

  9. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nat Mat 8:621

    CAS  Google Scholar 

  10. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Int J Hydrogen Energy 34:4889

    CAS  Google Scholar 

  11. Jiménez AE, Bermúdez MD (2010) Tribol Lett 37:431

    Google Scholar 

  12. Palacio M, Bhushan B (2010) Tribol Lett 40:247

    CAS  Google Scholar 

  13. Zhou F, Liang Y, Liu W (2009) Chem Soc Rev 38:2590

    CAS  Google Scholar 

  14. Campbell PS, Podgorsek A, Gutel T, Santini CC, Padua AAH, Costa Gomes MF, Bayard F, Fenet B, Chauvin Y (2010) J Phys Chem B 114:8156

    CAS  Google Scholar 

  15. Campbell PS, Santini CC, Chauvin Y (2010) Chim Oggi Chem Today 28:36

    CAS  Google Scholar 

  16. Olivier-Bourbigou H, Magna L, Morvan D (2010) Appl Catal A Gen 373:1

    CAS  Google Scholar 

  17. Podgorsek A, Salas G, Campbell PS, Santini CC, Padua AAH, Costa Gomes MF, Fenet B, Chauvin Y (2011) J Phys Chem B 115:12150

    CAS  Google Scholar 

  18. Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780

    CAS  Google Scholar 

  19. Greaves TL, Drummond CJ (2008) Chem Soc Rev 37:1709

    CAS  Google Scholar 

  20. Ohno H, Fukaya Y (2009) Chem Lett 38:2

    CAS  Google Scholar 

  21. Bernard UL, Izgorodina EI, MacFarlane DR (2010) J Phys Chem C 114:20472

    CAS  Google Scholar 

  22. Grimme S, Hujo W, Kirchner B (2011) Phys Chem Chem Phys 14:4875

    Google Scholar 

  23. Hunt PA, Gould IR, Kirchner B (2007) Aust J Chem 60:9

    CAS  Google Scholar 

  24. Izgorodina EI (2011) Phys Chem Chem Phys 13:4189

    CAS  Google Scholar 

  25. Izgorodina EI, MacFarlane DR (2011) J Phys Chem B 115:14659

    CAS  Google Scholar 

  26. Li H, Ibrahim M, Agberemi I, Kobrak MN (2008) J Chem Phys 129:124507

    Google Scholar 

  27. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474

    CAS  Google Scholar 

  28. Tsuzuki S, Tokuda H, Mikami M (2007) Phys Chem Chem Phys 9:4780

    CAS  Google Scholar 

  29. Zahn S, Bruns G, Thar J, Kirchner B (2008) Phys Chem Chem Phys 10:6921

    CAS  Google Scholar 

  30. Zahn S, Uhlig F, Thar J, Spickermann C, Kirchner B (2008) Angew Chem Int Ed 47:3639

    CAS  Google Scholar 

  31. Lehmann SBC, Roatsch M, Schöppke M, Kirchner B (2010) Phys Chem Chem Phys 12:7473

    CAS  Google Scholar 

  32. Thar J, Brehm M, Seitsonen AP, Kirchner B (2009) J Phys Chem B 113:15129

    CAS  Google Scholar 

  33. Wendler K, Thar J, Zahn S, Kirchner B (2010) J Phys Chem A 114:9529

    CAS  Google Scholar 

  34. Goswami M, Arunan E (2009) Phys Chem Chem Phys 11:8974

    CAS  Google Scholar 

  35. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637

    CAS  Google Scholar 

  36. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619

    CAS  Google Scholar 

  37. Pimentel GC, McCleallan AL (1960) The hydrogen bond. W. H. Freeman and Co., San Francisco

    Google Scholar 

  38. Qiao B, Krekeler C, Berger R, Delle Site L, Holm C (2008) J Phys Chem B 112:1743

    CAS  Google Scholar 

  39. Skarmoutsos I, Dellis D, Matthews RP, Welton T, Hunt PA (2012) J Phys Chem B 116:4921

    CAS  Google Scholar 

  40. Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2012) Phys Chem Chem Phys 14:5030

    CAS  Google Scholar 

  41. Spickermann C, Thar J, Lehmann SBC, Zahn S, Hunger J, Buchner R, Hunt PA, Welton T, Kirchner B (2008) J Chem Phys 129

    Google Scholar 

  42. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  43. Abdul Sada AK, Greenway AM, Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA (1986) J Chem Soc Chem Commun 1986:1753

    Google Scholar 

  44. Bowron DT, D'Agostino C, Gladden LF, Hardacre C, Holbrey JD, Lagunas MC, McGregor J, Mantle MD, Mullan CL, Youngs TGA (2010) J Phys Chem B 114:7760

    CAS  Google Scholar 

  45. Dhumal NR, Kim HJ, Kiefer J (2009) J Phys Chem A 113:10397

    CAS  Google Scholar 

  46. Fumino K, Peppel T, Geppert-Rybczynska M, Zaitsau DH, Lehmann JK, Verevkin SP, Koeckerling M, Ludwig R (2011) Phys Chem Chem Phys 13:14064

    CAS  Google Scholar 

  47. Fumino K, Wulf A, Ludwig R (2008) Angew Chem Int Ed 47:8731

    CAS  Google Scholar 

  48. Fumino K, Wulf A, Ludwig R (2009) Phys Chem Chem Phys 11:8790

    CAS  Google Scholar 

  49. Gao Y, Zhang L, Wang Y, Li H (2010) J Phys Chem B 114:2828

    CAS  Google Scholar 

  50. Kempter V, Kirchner B (2010) J Mol Struct 972:22

    CAS  Google Scholar 

  51. Kiefer J, Obert K, Boesmann A, Seeger T, Wasserscheid P, Leipertz A (2008) ChemPhysChem 9:1317

    CAS  Google Scholar 

  52. Kiefer J, Obert K, Himmler S, Schulz PS, Wasserscheid P, Leipertz A (2008) ChemPhysChem 9:2207

    CAS  Google Scholar 

  53. Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Leipertz A (2010) Phys Chem Chem Phys 12:14153

    CAS  Google Scholar 

  54. Papanyan Z, Roth C, Paschek D, Ludwig R (2011) ChemPhysChem 12:2400

    CAS  Google Scholar 

  55. Peppel T, Roth C, Fumino K, Paschek D, Koeckerling M, Ludwig R (2011) Angew Chem Int Ed 50:6661

    CAS  Google Scholar 

  56. Roth C, Peppel T, Fumino K, Koeckerling M, Ludwig R (2010) Angew Chem Int Ed 49:10221

    CAS  Google Scholar 

  57. Stoimenovski J, Izgorodina EI, Macfarlane DR (2010) Phys Chem Chem Phys 12:10341

    CAS  Google Scholar 

  58. Wulf A, Fumino K, Ludwig R (2010) Angew Chem Int Ed 49:449

    CAS  Google Scholar 

  59. Wulf A, Fumino K, Michalik D, Ludwig R (2007) ChemPhysChem 8:2265

    CAS  Google Scholar 

  60. Xing DY, Peng N, Chung T (2011) J Memb Sci 380:87

    CAS  Google Scholar 

  61. Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D'Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Chem Sci 2:1594

    CAS  Google Scholar 

  62. Liu X, Zhao Y, Zhang X, Zhou G, Zhang S (2012) J Phys Chem B 116:4934

    CAS  Google Scholar 

  63. Mendez-Morales T, Carrete J, Cabeza O, Gallego LJ, Varela LM (2011) J Phys Chem B 115:11170

    CAS  Google Scholar 

  64. Podgorsek A, Macchiagodena M, Ramondo F, Gomes MFC, Padua AAH (2012) ChemPhysChem 13:1753

    CAS  Google Scholar 

  65. Rabideau BD, Ismail AE (2012) J Phys Chem B 116:9732

    CAS  Google Scholar 

  66. Mele A, Tran CD, De Paoli Lacerda SH (2003) Angew Chem Int Ed 42:4364

    CAS  Google Scholar 

  67. Dupont J (2004) J Braz Chem Soc 15:341

    CAS  Google Scholar 

  68. Suarez PAZ, Einloft S, Dullius JEL, de Souza RF, Dupont J (1998) J Chem Phys Phys Chim Biol 95:1626

    CAS  Google Scholar 

  69. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988

    CAS  Google Scholar 

  70. Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Inorg Chem 35:1168

    Google Scholar 

  71. Hunt PA (2007) J Phys Chem B 111:4844

    CAS  Google Scholar 

  72. Endo T, Kato T, Nishikawa K (2010) J Phys Chem B 114:9201

    CAS  Google Scholar 

  73. Bhargava BL, Balasubramanian S (2005) J Chem Phys 123:144505

    CAS  Google Scholar 

  74. Bhargava BL, Balasubramanian S, Klein ML (2008) Chem Comm 3339

    Google Scholar 

  75. Krekeler C, Schmidt J, Zhao YY, Qiao B, Berger R, Holm C, Delle Site L (2008) J Chem Phys 129:174503

    Google Scholar 

  76. Schmidt J, Krekeler C, Dommert F, Zhao YY, Berger R, Delle Site L, Holm C (2010) J Phys Chem C 114:6150

    CAS  Google Scholar 

  77. Hunt PA, Kirchner B, Welton T (2006) Chem Eur J 12:6762

    CAS  Google Scholar 

  78. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474

    CAS  Google Scholar 

  79. Hunt PA, Gould IR (2006) J Phys Chem A 110:2269

    CAS  Google Scholar 

  80. Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2013) Z Phys Chem 227:177

    CAS  Google Scholar 

  81. Becke A (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  82. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  83. Grimme S (2006) J Comput Chem 27:1787

    CAS  Google Scholar 

  84. Brüssel M, Brehm M, Pensado AS, Malberg F, Ramzan M, Stark A, Kirchner B (2012) Phys Chem Chem Phys 14:13204

    Google Scholar 

  85. Brüssel M, Brehm M, Voigt T, Kirchner B (2011) Phys Chem Chem Phys 13:13617

    Google Scholar 

  86. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974

    CAS  Google Scholar 

  87. Sellin M, Ondruschka B, Stark A (2010) In: Liebert TF and Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. American Chemical Society, Washington, DC

    Google Scholar 

  88. Stark A, Sellin M, Ondruschka B, Massonne K (2012) Sci China Chem 55:1663

    CAS  Google Scholar 

  89. Pensado AS, Brehm M, Thar J, Seitsonen AP, Kirchner B (2012) ChemPhysChem 13:1845

    CAS  Google Scholar 

  90. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909

    CAS  Google Scholar 

  91. Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) J Am Chem Soc 126:3845

    CAS  Google Scholar 

  92. Gilli P, Pretto L, Gilli G (2007) J Mol Struct 844:328

    Google Scholar 

  93. Seddon KR (1999) In: Boghosian S, Dracopoulos V, Kontoyannis CG, Voyiatzis GA (eds) The international George Papatheodorou symposium, Patras, p 131

    Google Scholar 

  94. Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T (2012) Chem Soc Rev 41:7780

    CAS  Google Scholar 

  95. Castiglione F, Raos G, Battista Appetecchi G, Montanino S, Passerini S, Moreno M, Famulari A, Mele A (2010) Phys Chem Chem Phys 12:1784

    CAS  Google Scholar 

  96. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974

    CAS  Google Scholar 

  97. Vagt U (2010) In: Wasserscheid P, Stark A, Anastas PT (eds) Handbook of green chemistry, vol 6. Wiley-VCH, Weinheim, p 123

    Google Scholar 

  98. Ebner G, Schihser S, Potthast A, Rosenau T (2008) Tetrahedron Lett 49:7322

    CAS  Google Scholar 

  99. Heinze T, Dorn S, Schoebitz M, Liebert T, Koehler S, Meister F (2008) Macromol Symp 262:8

    CAS  Google Scholar 

  100. Liebert T (2008) Macromol Symp 262:28

    CAS  Google Scholar 

  101. Bini R, Chiappe C, Marmugi E, Pieraccini D (2006) Chem Commun 897

    Google Scholar 

  102. Garcia S, Larriba M, Garcia J, Torrecilla JS, Rodriguez F (2012) Chem Eng J 180:210

    CAS  Google Scholar 

  103. Finotello A, Bara JE, Narayan S, Camper D, Noble RD (2008) J Phys Chem B 112:2335

    CAS  Google Scholar 

  104. Lungwitz R, Friedrich M, Linert W, Spange S (2008) New J Chem 32:1493

    CAS  Google Scholar 

  105. Lungwitz R, Spange S (2008) New J Chem 32:392

    CAS  Google Scholar 

  106. Canongia Lopes JN, Cordeiro TC, Esperanca JMSS, Guedes HJR, Huq S, Rebelo LPN, Seddon KR (2005) J Phys Chem B 109:3519

    Google Scholar 

  107. Navia P, Troncoso J, Romani L (2007) J Chem Eng Data 52:1369

    CAS  Google Scholar 

  108. Shiflett MB, Yokozeki A (2009) J Chem Eng Data 54:108

    CAS  Google Scholar 

  109. Stoppa A, Buchner R, Hefter G (2010) J Mol Liq 153:46

    CAS  Google Scholar 

  110. Ning H, Hou MQ, Mei QQ, Liu YH, Yang DZ, Han BX (2012) Sci China Chem 55:1509

    CAS  Google Scholar 

  111. Aparicio S, Atilhan M (2012) J Phys Chem B 116:2526

    CAS  Google Scholar 

  112. Larriba M, Garcia S, Navarro P, Garcia J, Rodriguez F (2012) J Chem Eng Data 57:1318

    CAS  Google Scholar 

  113. Fox ET, Weaver JEF, Henderson WA (2012) Phys Chem Chem Phys 116:5270

    CAS  Google Scholar 

  114. Tariq M, Freire MG, Saramago B, Coutinho JAP, Canongia Lopes JN, Rebelo LPN (2012) Chem Soc Rev 41:829

    CAS  Google Scholar 

  115. Stark A, Wild M, Ramzan M, Azim MM, Schmidt A (2013) In: Bröckel U, Wagner G, Meier W (eds) Product design and engineering, volume III: liquid, paste and gel formulations. Wiley-VCH, Weinheim

    Google Scholar 

  116. Navia P, Troncoso J, Romani L (2008) J Solut Chem 37:677

    CAS  Google Scholar 

  117. Annat G, Forsyth M, MacFarlane DR (2012) J Phys Chem C 116:8251

    CAS  Google Scholar 

  118. Shimizu K, Tariq M, Rebelo LPN, Canongia Lopes JN (2010) J Mol Liq 153:52

    CAS  Google Scholar 

  119. Deetlefs M, Seddon KR, Shara M (2006) Phys Chem Chem Phys 8:642

    CAS  Google Scholar 

  120. Macleod DB (1923) Trans Faraday Soc 38

    Google Scholar 

  121. Sudgen S (1924) J Chem Soc Trans 125:32

    Google Scholar 

  122. Knotts TA, Wilding WW, Oscarson JL, Rowley RL (2001) J Chem Eng Data 46:1007

    CAS  Google Scholar 

  123. Wildman SA, Crippen GM (1999) J Chem Inf Comput Sci 39:868

    CAS  Google Scholar 

  124. Gardas RL, Coutinho JAP (2012) Fluid Phase Equilib 263:26

    Google Scholar 

  125. Almeida HFD, Teles ARR, Lopes-da-Silva JA, Freire MG, Coutinho JAP (2012) J Chem Thermodyn 46:1007

    Google Scholar 

  126. Kilaru P, Baker GA, Scovazzo P (2007) J Chem Eng Data 52:2306

    CAS  Google Scholar 

  127. Every H, Bishop AG, Forsyth M, MacFarlane DR (2000) Electrochim Acta 45:127

    Google Scholar 

  128. Seddon KR, Stark A, Torres MJ (2000) Pure Appl Chem 72:2275

    CAS  Google Scholar 

  129. Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR (2007) Fluid Phase Equilib 261:427

    CAS  Google Scholar 

  130. Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR (2006) Chem Commun 2548

    Google Scholar 

  131. Brehm M, Kirchner B (2011) J Chem Inf Model 51:2007

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG, in particular by the projects KI-768/4-1 and KI-768/4-2 from the ERA-chemistry, KI-768/5-2, KI-768/5-3, STA-1027/2-1, STA-1027/2-2, and STA-1027/2-3 from the priority program on ionic liquids (SPP 1191). The participation of ASP was made possible by a postdoctoral fellowship granted by the DFG through SPP 1191. Computer time from the RZ Leipzig is gratefully acknowledged. Likewise, we would like to thank M. Ramzan, M. Reichelt, H. Rudzik, A. Foerster, C. Birkemeyer, and L. Hennig for experimental support. Figures 3, 4, 5 and 6 were visualised using TRAVIS [131].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret Stark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stark, A. et al. (2013). A Theoretical and Experimental Chemist’s Joint View on Hydrogen Bonding in Ionic Liquids and Their Binary Mixtures. In: Kirchner, B. (eds) Electronic Effects in Organic Chemistry. Topics in Current Chemistry, vol 351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_485

Download citation

Publish with us

Policies and ethics