Skip to main content

Control of Asymmetry in the Radical Addition Approach to Chiral Amine Synthesis

  • Chapter
  • First Online:
Stereoselective Formation of Amines

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 343))

Abstract

The state-of-the-science in asymmetric free radical additions to imino compounds is presented, beginning with an overview of methods involving stereocontrol by various chiral auxiliary approaches. Chiral N-acylhydrazones are discussed with respect to their use as radical acceptors for Mn-mediated intermolecular additions, from design to scope surveys to applications to biologically active targets. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and a variety of alkyl iodides may be employed as radical precursors, as discussed in a critical review of the functional group compatibility of the reaction. Applications to amino acid and alkaloid synthesis are presented to illustrate the synthetic potential of these versatile stereocontrolled carbon–carbon bond construction reactions. Asymmetric catalysis is discussed, from seminal work on the stereocontrol of radical addition to imino compounds by non-covalent interactions with stoichiometric amounts of catalysts, to more recent examples demonstrating catalyst turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friestad GK (2009) Addition of carbanions to azomethines. In: Enders D, Shaumann E (eds) Science of synthesis Vol 40a: Compounds with one saturated carbon-heteroatom bond: amines and ammonium salts. Thieme, Stuttgart

    Google Scholar 

  2. Yamada K-I, Tomioka K (2008) Chem Rev 108:2874–2886

    CAS  Google Scholar 

  3. Friestad GK, Mathies AK (2007) Tetrahedron 63:2541–2569

    CAS  Google Scholar 

  4. Ding H, Friestad GK (2005) Synthesis 2815–2829

    Google Scholar 

  5. Alvaro G, Savoia D (2002) Synlett 651–673

    Google Scholar 

  6. Kobayashi S, Ishitani H (1999) Chem Rev 99:1069–1094

    CAS  Google Scholar 

  7. Bloch R (1998) Chem Rev 98:1407–1438

    CAS  Google Scholar 

  8. Davis FA, Zhou P, Chen B-C (1998) Chem Soc Rev 27:13–18

    CAS  Google Scholar 

  9. Enders D, Reinhold U (1997) Tetrahedron Asymmetr 8:1895–1946

    CAS  Google Scholar 

  10. Denmark SE, Nicaise OJ-C (1996) J Chem Soc Chem Commun 999–1004

    Google Scholar 

  11. Stork G, Dowd SR (1963) J Am Chem Soc 85:2178–2180

    CAS  Google Scholar 

  12. Wittig G, Frommeld HD, Suchanek P (1963) Angew Chem Int Ed Engl 2:683

    Google Scholar 

  13. Guerrier L, Royer J, Grierson DS, Husson H-P (1983) J Am Chem Soc 105:7754–7755

    CAS  Google Scholar 

  14. Enders D, Diez E, Fernandez R, Martin-Zamora E, Munoz JM, Pappalardo RR, Lassaletta JM (1999) J Org Chem 64:6329–6336

    CAS  Google Scholar 

  15. Ischay MA, Yoon TP (2012) Eur J Org Chem 3359–3372

    Google Scholar 

  16. Rowlands GJ (2009) Tetrahedron 65:8603–8655

    CAS  Google Scholar 

  17. Renaud P, Sibi M (eds) (2001) Radicals in organic synthesis. Wiley-VCH, New York

    Google Scholar 

  18. Curran DP, Porter NA, Giese B (1995) Stereochemistry of radical reactions: concepts guidelines and synthetic applications. Wiley-VCH, New York

    Google Scholar 

  19. Jasperse CP, Curran DP, Fevig TL (1991) Chem Rev 91:1237–1286

    CAS  Google Scholar 

  20. Giese B (1986) Radicals in organic synthesis: formation of carbon–carbon bonds. Pergamon, New York

    Google Scholar 

  21. Hart DJ (1984) Science 223:883–887

    CAS  Google Scholar 

  22. Friestad GK (2012) In: Gansauer A, Heinrich M (eds) Topics in current chemistry: radicals in synthesis III, vol 320. Springer, Berlin, pp 61–92

    Google Scholar 

  23. Friestad GK (2010) In: Nugent T (ed) Chiral amine synthesis. Methods, developments and applications. Wiley-VCH, Weinheim, pp 51–74

    Google Scholar 

  24. Miyabe H, Yoshioka E, Kohtani S (2010) Curr Org Chem 14:1254–1264

    CAS  Google Scholar 

  25. Friestad GK (2001) Tetrahedron 57:5461–5496

    CAS  Google Scholar 

  26. Friestad GK (2005) Eur J Org Chem 3157–3172

    Google Scholar 

  27. Fallis AG, Brinza IM (1997) Tetrahedron 53:17543–17594

    CAS  Google Scholar 

  28. Nishiyama H, Kitajima T, Matsumoto M, Itoh K (1984) J Org Chem 49:2298–2300

    CAS  Google Scholar 

  29. Stork G, Kahn M (1985) J Am Chem Soc 107:500–501

    CAS  Google Scholar 

  30. Cusak A (2012) Chem Eur J 18:5800–5824

    CAS  Google Scholar 

  31. Gauthier DR Jr, Zandi KS, Shea KJ (1998) Tetrahedron 54:2289–2338

    CAS  Google Scholar 

  32. Fensterbank L, Malacria M, Sieburth SM (1997) Synthesis 813–854

    Google Scholar 

  33. Fleming I, Barbero A, Walter D (1997) Chem Rev 97:2063–2192

    CAS  Google Scholar 

  34. Bols M, Skrydstrup T (1995) Chem Rev 95:1253–1277

    CAS  Google Scholar 

  35. Friestad GK (1999) Org Lett 1:1499–1501

    CAS  Google Scholar 

  36. Friestad GK, Massari SE (2000) Org Lett 2:4237–4240

    CAS  Google Scholar 

  37. Friestad GK, Jiang T, Fioroni GM (2003) Tetrahedron Asymmetr 14:2853–2856

    CAS  Google Scholar 

  38. Friestad GK, Massari SE (2004) J Org Chem 69:863–875

    CAS  Google Scholar 

  39. Friestad GK, Fioroni GM (2005) Org Lett 7:2393–2396

    CAS  Google Scholar 

  40. Friestad GK, Jiang T, Mathies AK (2007) Tetrahedron 63:3964–3972

    CAS  Google Scholar 

  41. Friestad GK, Mathies AK (2007) Tetrahedron 63:9373–9381 (Corrigendum: Friestad GK, Mathies AK (2007) Tetrahedron 63:13039)

    CAS  Google Scholar 

  42. Friestad GK, Jiang T, Mathies AK (2007) Org Lett 9:777–780

    CAS  Google Scholar 

  43. Friestad GK, Jiang T, Fioroni GM (2008) Tetrahedron 64:11549–11557

    CAS  Google Scholar 

  44. Friestad GK (2005) Eur J Org Chem 3157–3172

    Google Scholar 

  45. Hart DJ, Seely FL (1988) J Am Chem Soc 110:1631–1633

    CAS  Google Scholar 

  46. Hart DJ, Krishnamurthy R, Pook LM, Seely FL (1993) Tetrahedron Lett 34:7819–7822

    CAS  Google Scholar 

  47. Bhat B, Swayze EE, Wheeler P, Dimock S, Perbost M, Sanghvi YS (1996) J Org Chem 61:8186–8199

    CAS  Google Scholar 

  48. Hanamoto T, Inanaga J (1991) Tetrahedron Lett 32:3555–3556

    CAS  Google Scholar 

  49. Russell GA, Yao C-F, Rajaratnam R, Kim BH (1991) J Am Chem Soc 113:373–375

    CAS  Google Scholar 

  50. Russell GA, Wang L, Rajaratnam R (1996) J Org Chem 61:8988–8991

    CAS  Google Scholar 

  51. Miyabe H, Shibata R, Ushiro C, Naito T (1998) Tetrahedron Lett 39:631–634

    CAS  Google Scholar 

  52. Miyabe H, Shibata R, Sangawa M, Ushiro C, Naito T (1998) Tetrahedron 54:11431–11444

    CAS  Google Scholar 

  53. Miyabe H, Ushiro C, Naito T (1997) J Chem Soc Chem Commun 1789–1790

    Google Scholar 

  54. Miyabe H, Ushiro C, Ueda M, Yamakawa K, Naito T (2000) J Org Chem 65:176–185

    CAS  Google Scholar 

  55. McNabb SB, Ueda M, Naito T (2004) Org Lett 6:1911–1914

    CAS  Google Scholar 

  56. Bertrand MP, Feray L, Nouguier R, Stella L (1998) Synlett 780–782

    Google Scholar 

  57. Bertrand MP, Feray L, Nouguier R, Perfetti P (1999) Synlett 1148–1150

    Google Scholar 

  58. Bertrand MP, Coantic S, Feray L, Nouguier R, Perfetti P (2000) Tetrahedron 56:3951–3961

    CAS  Google Scholar 

  59. Bertrand M, Feray L, Gastaldi S (2002) Comptes Rend Acad Sci Paris Chimie 5:623–638

    CAS  Google Scholar 

  60. Zhou P, Chen B, Davis FA (2004) Tetrahedron 60:8003–8030

    CAS  Google Scholar 

  61. Ellman JA, Owens TD, Tang TP (2002) Acc Chem Res 35:984–995

    CAS  Google Scholar 

  62. Akindele T, Yamamoto Y, Maekawa M, Umeki H, Yamada K, Tomioka K (2006) Org Lett 8:5729–5732

    CAS  Google Scholar 

  63. Kindele T, Yamada K, Sejima T, Maekawa M, Yamamoto Y, Nakano M, Tomioka K (2010) Chem Pharm Bull 58:265–269

    Google Scholar 

  64. Yamada K, Konishi T, Nakano M, Fujii S, Cadou R, Yamamoto Y, Tomioka K (2012) J Org Chem 77:1547–1553

    CAS  Google Scholar 

  65. Miyabe H, Ueda M, Naito T (2004) Synlett 1140–1157

    Google Scholar 

  66. Booth SE, Jenkins PR, Swain CJ, Sweeney JB (1994) J Chem Soc Perkin Trans 1:3499–3508

    Google Scholar 

  67. Booth SE, Jenkins PR, Swain CJ (1998) J Braz Chem Soc 9:389–395 [Chemical Abstracts 130:38274]

    CAS  Google Scholar 

  68. Renaud P, Gerster M (1998) Angew Chem Int Ed 37:2563–2579

    Google Scholar 

  69. Guerin B, Ogilvie WW, Guindon Y (2001) In: Renaud P, Sibi M (eds) Radicals in organic synthesis. Wiley-VCH, New York

    Google Scholar 

  70. Burk MJ, Feaster JE (1992) J Am Chem Soc 114:6266–6267

    CAS  Google Scholar 

  71. Sturino CF, Fallis AG (1994) J Am Chem Soc 116:7447–7448

    CAS  Google Scholar 

  72. Evans DA, Kim AS (1995) In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis, vol 1. Wiley, New York

    Google Scholar 

  73. Kim M, White JD (1977) J Am Chem Soc 99:1172–1180

    CAS  Google Scholar 

  74. Ciufolini MA, Shimizu T, Swaminathan S, Xi N (1997) Tetrahedron Lett 38:4947–4950

    CAS  Google Scholar 

  75. Evans DA, Johnson DS (1999) Org Lett 1:595–598

    CAS  Google Scholar 

  76. Hynes J Jr, Doubleday WW, Dyckman AJ, Godfrey JD Jr, Grosso JA, Kiau S, Leftheris K (2004) J Org Chem 69:1368–1371

    CAS  Google Scholar 

  77. Friestad GK, Ji A (2008) Org Lett 10:2311–2313

    CAS  Google Scholar 

  78. Shen Y, Friestad GK (2002) J Org Chem 67:6236–6239

    CAS  Google Scholar 

  79. Friestad GK, Qin J (2000) J Am Chem Soc 122:8329–8330

    CAS  Google Scholar 

  80. Friestad GK, Draghici C, Soukri M, Qin J (2005) J Org Chem 70:6330–6338

    CAS  Google Scholar 

  81. Qin J, Friestad GK (2003) Tetrahedron 59:6393–6402

    CAS  Google Scholar 

  82. Lim D, Coltart DM (2008) Angew Chem Int Ed 47:5207–5210

    CAS  Google Scholar 

  83. Nozaki K, Oshima K, Utimoto K (1991) Bull Chem Soc Jpn 64:403–409

    CAS  Google Scholar 

  84. Brown HC, Midland MM (1972) Angew Chem Int Ed Engl 11:692–700

    CAS  Google Scholar 

  85. Fernández M, Alonso R (2003) Org Lett 5:2461–2464

    Google Scholar 

  86. Kim S, Lee IY, Yoon J-Y, Oh DH (1996) J Am Chem Soc 118:5138–5139

    CAS  Google Scholar 

  87. Kim S, Yoon J-Y (1997) J Am Chem Soc 119:5982–5983

    CAS  Google Scholar 

  88. Ryu I, Kuriyama H, Minakata S, Komatsu M, Yoon J-Y, Kim S (1999) J Am Chem Soc 121:12190–12191

    CAS  Google Scholar 

  89. Jeon G-H, Yoon J-Y, Kim S, Kim SS (2000) Synlett 128–130

    Google Scholar 

  90. Kim S, Kim N, Yoon J-Y, Oh DH (2000) Synlett 1148–1150

    Google Scholar 

  91. Kim S, Song H-J, Choi T-L, Yoon J-Y (2001) Angew Chem Int Ed 40:2524–2526

    CAS  Google Scholar 

  92. Kim S, Kavali R (2002) Tetrahedron Lett 43:7189–7191

    CAS  Google Scholar 

  93. Pauson PL (1995) In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis, vol 2. Wiley, New York

    Google Scholar 

  94. Meyer TJ, Caspar JV (1985) Chem Rev 85:187

    CAS  Google Scholar 

  95. Gilbert BC, Parsons AF (2002) J Chem Soc Perkin Trans 2:367–387

    Google Scholar 

  96. Herrick RS, Herrinton TR, Walker HW, Brown TL (1985) Organometallics 4:42–45

    CAS  Google Scholar 

  97. Giese B, Thoma G (1991) Helv Chim Acta 74:1135–1142

    CAS  Google Scholar 

  98. Gilbert BC, Kalz W, Lindsay CI, McGrail PT, Parsons AF, Whittaker DTE (1999) Tetrahedron Lett 40:6095–6098

    CAS  Google Scholar 

  99. Gilbert BC, Lindsay CI, McGrail PT, Parsons AF, Whittaker DTE (1999) Synth Commun 29:2711–2718

    CAS  Google Scholar 

  100. Gilbert BC, Kalz W, Lindsay CI, McGrail PT, Parsons AF, Whittaker DTE (2000) J Chem Soc Perkin Trans 1:1187–1194

    Google Scholar 

  101. Friestad GK, Qin J (2001) J Am Chem Soc 123:9922–9923

    CAS  Google Scholar 

  102. Friestad GK, Qin J, Suh Y, Marié J-C (2006) J Org Chem 71:7016–7027

    CAS  Google Scholar 

  103. Callaghan O, Lampard C, Kennedy AR, Murphy JA (1999) J Chem Soc Perkin Trans 1:995–1001

    Google Scholar 

  104. Jahn U, Muller M, Aussieker S (2000) J Am Chem Soc 122:5212–5213

    CAS  Google Scholar 

  105. Harrowven DC, Lucas MC, Howes PD (2001) Tetrahedron 57:791–804

    CAS  Google Scholar 

  106. Rivkin A, Nagashima T, Curran DP (2003) Org Lett 5:419–422

    CAS  Google Scholar 

  107. Denes F, Chemla F, Normant JF (2003) Angew Chem Int Ed 42:4043–4046

    CAS  Google Scholar 

  108. Bazin S, Feray L, Vanthuyne N, Bertrand MP (2005) Tetrahedron 61:4261–4274

    CAS  Google Scholar 

  109. Ueda M, Miyabe H, Sugino H, Miyata O, Naito T (2005) Angew Chem Int Ed 44:6190–6193

    CAS  Google Scholar 

  110. Denes F, Cutri S, Perez-Luna A, Chemla F (2006) Chem Eur J 12:6506–6513

    CAS  Google Scholar 

  111. Maruyama T, Mizuno Y, Shimizu I, Suga S (2007) J Am Chem Soc 129:1902–1903

    CAS  Google Scholar 

  112. Miyata O, Takahashi S, Tamura A, Ueda M, Naito T (2008) Tetrahedron 64:1270–1284

    CAS  Google Scholar 

  113. Friestad GK, Banerjee K (2009) Org Lett 11:1095–1098

    CAS  Google Scholar 

  114. Enders D, Tiebes J (1993) Liebigs Ann Chem 173–177

    Google Scholar 

  115. Yamazaki N, Kibayashi C (1997) Tetrahedron Lett 38:4623–4626

    CAS  Google Scholar 

  116. Reding MT, Buchwald SL (1998) J Org Chem 63:6344–6347

    CAS  Google Scholar 

  117. Wilkinson TJ, Stehle NW, Beak P (2000) Org Lett 2:155–158

    CAS  Google Scholar 

  118. Kim YH, Choi JY (1996) Tetrahedron Lett 37:5543–5546

    CAS  Google Scholar 

  119. Korapala CS, Qin J, Friestad GK (2007) Org Lett 9:4246–4249

    Google Scholar 

  120. Friestad GK, Ji A, Baltrusaitis J, Korapala CS, Qin J (2012) J Org Chem 77:3159–3180

    CAS  Google Scholar 

  121. Ordonez M, Cativiela C (2007) Tetrahedron Asymmetr 18:3–99

    CAS  Google Scholar 

  122. Trabocchi A, Guarna F, Guarna A (2005) Curr Org Chem 9:1127–1153

    CAS  Google Scholar 

  123. Matthew S, Schupp PJ, Leusch H (2008) J Nat Prod 71:1113–1116

    CAS  Google Scholar 

  124. Kunze B, Bohlendorf B, Reichenbach H, Hofle G (2008) J Antibiot 61:18–26

    CAS  Google Scholar 

  125. Oh D-C, Strangman WK, Kauffman CA, Jensen PR, Fenical W (2007) Org Lett 9:1525–1528

    CAS  Google Scholar 

  126. Milanowski DJ, Gustafson KR, Rashid MA, Pannell LK, McMahon JB, Boyd MR (2004) J Org Chem 69:3036–3042

    CAS  Google Scholar 

  127. Williams PG, Luesch H, Yoshida WY, Moore RE, Paul VJ (2003) J Nat Prod 66:595–598

    CAS  Google Scholar 

  128. Horgen FD, Kazmierski EB, Westenburg HE, Yoshida WY, Scheuer PJ (2002) J Nat Prod 65:487–491

    CAS  Google Scholar 

  129. Dado GP, Gellman SH (1994) J Am Chem Soc 116:1054–1062

    CAS  Google Scholar 

  130. Hanessian S, Luo X, Schaum R, Michnick S (1998) J Am Chem Soc 120:8569–8570

    CAS  Google Scholar 

  131. Sanjayan GJ, Stewart A, Hachisu S, Gonzalez R, Watterson MP, Fleet GWJ (2003) Tetrahedron Lett 44:5847–5851

    CAS  Google Scholar 

  132. Seebach D, Schaeffer L, Brenner M, Hoyer D (2003) Angew Chem Int Ed 42:776–778

    CAS  Google Scholar 

  133. Farrera-Sinfreu J, Zaccaro L, Vidal D, Salvatella X, Giralt E, Pons M, Albericio F, Royo M (2004) J Am Chem Soc 126:6048–6057

    CAS  Google Scholar 

  134. Vasudev PG, Ananda K, Chatterjee S, Aravinda S, Shamala N, Balaram P (2007) J Am Chem Soc 129:4039–4048

    CAS  Google Scholar 

  135. Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H (2000) J Antibiot 53:879–885

    CAS  Google Scholar 

  136. Höfle G, Glaser N, Leibold T, Karama U, Sasse F, Steinmetz H (2003) Pure Appl Chem 75:167–178

    Google Scholar 

  137. Friestad GK, Deveau AM, Marié J-C (2004) Org Lett 6:3249–3252

    CAS  Google Scholar 

  138. Lin CH (1993) Synth React Inorg Met Org Chem 23:1097–1106

    CAS  Google Scholar 

  139. Salazar J, Lopez SE, Rebollo O (2003) J Fluorine Chem 124:111–113

    CAS  Google Scholar 

  140. Iranpoor N, Zeynizadeh B (1999) J Chem Res (S) 124–125

    Google Scholar 

  141. Prashad M, Hu B, Har D, Repic O, Blacklock TJ (2000) Tetrahedron Lett 41:9957–9961

    CAS  Google Scholar 

  142. Allylation of the α-carbon of 15 established correlation with a known derivative. Schaum R (1998) PhD Thesis, Université de Montreal, Montreal, Canada

    Google Scholar 

  143. Torrente S, Alonso R (2001) Org Lett 3:1985–1987

    CAS  Google Scholar 

  144. Miyabe H, Yamaoka Y, Takemoto Y (2005) J Org Chem 70:3324–3327

    CAS  Google Scholar 

  145. Ramon DJ, Yus M (2004) Curr Org Chem 8:149–183

    CAS  Google Scholar 

  146. Obrecht D, Bohdal U, Broger C, Bur D, Lehmann C, Ruffieux R, Schönholzer P, Spiegler C, Müller K (1995) Helv Chim Acta 78:563–580

    CAS  Google Scholar 

  147. Enders D (1984) In: Morrison JD (ed) Asymmetric synthesis. Academic, New York

    Google Scholar 

  148. Husson H-P, Royer J (1999) Chem Soc Rev 28:383–394

    CAS  Google Scholar 

  149. Halland N, Jørgensen KA (2001) J Chem Soc Perkin Trans 1:1290–1295

    Google Scholar 

  150. Friestad GK, Shen Y, Ruggles EL (2003) Angew Chem Int Ed 42:5061–5063

    CAS  Google Scholar 

  151. Cho DH, Jang DO (2006) Chem Commun 5045–5046

    Google Scholar 

  152. Jang DO, Kim SY (2008) J Am Chem Soc 130:16152–16153

    CAS  Google Scholar 

  153. Lee S, Kim S (2009) Tetrahedron Lett 50:3345–3348

    CAS  Google Scholar 

Download references

Acknowledgment

The generous support by NSF (CHE-0096803 and CHE-0749850) and NIH (R01-GM67187) of our radical addition chemistry method development and applications to natural product synthesis is acknowledged with gratitude. Portions of this chapter are excerpted from a previous Topics in Current Chemistry volume: Gregory K. Friestad “Asymmetric Radical Addition to Chiral Hydrazones.” In Topics in Current Chemistry: Radicals in Synthesis III. Gansauer A, Heinrich M (eds). Springer-Verlag: Berlin, 2012, vol. 320, pp. 61–92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory K. Friestad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friestad, G.K. (2013). Control of Asymmetry in the Radical Addition Approach to Chiral Amine Synthesis. In: Li, W., Zhang, X. (eds) Stereoselective Formation of Amines. Topics in Current Chemistry, vol 343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_481

Download citation

Publish with us

Policies and ethics