Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds

  • Yan-Mei He
  • Feng-Tao Song
  • Qing-Hua Fan
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 343)


Transition metal-catalyzed asymmetric hydrogenation of heteroaromatic compounds is undoubtedly a straightforward and environmentally friendly method for the synthesis of a wide range of optically active heterocyclic compounds, which are widespread and ubiquitous in naturally occurring and artificial bioactive molecules. Over the past decade, a number of transition metal (Ir, Rh, Ru, and Pd) catalysts bearing chiral phosphorus ligands, amine-tosylamine ligands, and N-heterocyclic carbene ligands have been developed for such challenging transformation. This review will describe the significant contributions concerning the transition metal-catalyzed asymmetric hydrogenation of N-, O-, and S-containing heteroaromatic compounds, with emphasis on the evolution of different chiral ligands, related catalyst immobilization, and mechanism investigations.


Asymmetric hydrogenation Heteroaromatic Heterocycles Homogeneous catalysis Transition metal 



We are grateful for the financial support from the National Basic Research Program of China (973 Program, Nos. 2010CB833300 and 2011CB808600) and the National Natural Science Foundation of China (No 21232008).


  1. 1.
    Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Ojima I (ed) (2000) Catalytic asymmetric synthesis, 2nd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Jacobson EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vol 2. Springer, BerlinGoogle Scholar
  4. 4.
    Lin G, Li Y, Chan ASC (2001) Principles and applications of asymmetric synthesis. Wiley-Interscience, New YorkGoogle Scholar
  5. 5.
    Tang W-J, Zhang X-M (2003) Chem Rev 103:3029–3070Google Scholar
  6. 6.
    Nugent TC, El-Shazly M (2010) Adv Synth Catal 352:753–819Google Scholar
  7. 7.
    Xie J-H, Zhu S-F, Zhou Q-L (2011) Chem Rev 111:1713–1760Google Scholar
  8. 8.
    Dyson PJ (2003) Dalton Trans 2964–2974Google Scholar
  9. 9.
    Glorius F (2005) Org Biomol Chem 3:4171–4175Google Scholar
  10. 10.
    Lu S-M, Han X-W, Zhou Y-G (2005) Chin J Org Chem 25:634–636Google Scholar
  11. 11.
    Zhou Y-G (2007) Acc Chem Res 40:1357–1366Google Scholar
  12. 12.
    Kuwano R (2008) Heterocycles 76:909–922Google Scholar
  13. 13.
    Wang D-S, Chen Q-A, Lu S-M, Zhou Y-G (2012) Chem Rev 112:2557–2590Google Scholar
  14. 14.
    Church TL, Andersson PG (2010) In: Nugent TC (ed) Chiral amine synthesis. New York, Wiley, Chapter 6, 179–223Google Scholar
  15. 15.
    Besson M, Pinel C (2003) Top Catal 25:43–61Google Scholar
  16. 16.
    Rueping M, Sugiono E, Schoepke FR (2010) Synlett 6:852–865Google Scholar
  17. 17.
    You S-L (2007) Chem Asian J 2:820–827Google Scholar
  18. 18.
    Katritzky AR, Rachwal S, Rachwal B (1996) Tetrahedron 52:15031–15070Google Scholar
  19. 19.
    Scott JD, Williams RM (2002) Chem Rev 102:1669–1730Google Scholar
  20. 20.
    Sridharan V, Suryavanshi PA, Menéndez JC (2010) Chem Rev 111:7157–7259Google Scholar
  21. 21.
    Wang W-B, Lu S-M, Yang P-Y, Han X-W, Zhou Y-G (2003) J Am Chem Soc 125:10536–10537Google Scholar
  22. 22.
    Lu S-M, Wang Y-Q, Han X-W, Zhou Y-G (2006) Angew Chem Int Ed 45:2260–2263Google Scholar
  23. 23.
    Yu Z, Jin W, Jiang Q (2012) Angew Chem Int Ed 51:6060–6072Google Scholar
  24. 24.
    Zhou H-F, Li Z-W, Wang Z-J, Wang T-L, Xu L-J, He Y-M, Fan Q-H, Pan J, Gu L-Q, Chan ASC (2008) Angew Chem Int Ed 47:8464–8467Google Scholar
  25. 25.
    He Y-M, Fan Q-H (2010) Org Biomol Chem 8:2497–2504Google Scholar
  26. 26.
    Shimizu H, Nagasaki I, Saito T (2005) Tetrahedron 61:5405–5432Google Scholar
  27. 27.
    Yang P-Y, Zhou Y-G (2004) Tetrahedron Asymmetry 15:1145–1149Google Scholar
  28. 28.
    Wang D-W, Wang X-B, Wang D-S, Lu S-M, Zhou Y-G, Li Y-X (2009) J Org Chem 74:2780–2787Google Scholar
  29. 29.
    Xu L-J, Lam KH, Ji J-X, Wu J, Fan Q-H, Lo WH, Chan ASC (2005) Chem Commun 1390–1392Google Scholar
  30. 30.
    Tang W-J, Tan J, Xu L-J, Lam KH, Fan Q-H, Chan ASC (2010) Adv Synth Catal 352:1055–1062Google Scholar
  31. 31.
    Tang W-J, Sun Y-W, Xu L-J, Wang T-L, Fan Q-H, Lam KH, Chan ASC (2010) Org Biomol Chem 8:3464–3471Google Scholar
  32. 32.
    Zhang D-Y, Wang D-S, Wang M-C, Yu C-B, Gao K, Zhou Y-G (2011) Synthesis 2796–2802Google Scholar
  33. 33.
    Zhang D-Y, Yu C-B, Wang M-C, Gao K, Zhou Y-G (2012) Tetrahedron Lett 53:2556–2559Google Scholar
  34. 34.
    Qiu L-Q, Kwong FY, Wu J, Lam WH, Chan S-S, Yu W-Y, Li Y-M, Guo R-W, Zhou Z-Y, Chan ASC (2006) J Am Chem Soc 128:5955–5965Google Scholar
  35. 35.
    Jahjah M, Alame M, Pellet-Rostaing S, Lemaire M (2007) Tetrahedron Asymmetry 18:2305–2312Google Scholar
  36. 36.
    Gou F-R, Li W, Zhang X-M, Liang Y-M (2010) Adv Synth Catal 352:2441–2444Google Scholar
  37. 37.
    Maj AM, Suisse I, Méliet C, Hardouin C, Niedercorn FA (2012) Tetrahedron Lett 53:4747–4750Google Scholar
  38. 38.
    Wu J, Chan ASC (2006) Acc Chem Res 39:711–720Google Scholar
  39. 39.
    Yamagata T, Tadaoka H, Nagata M, Hirao T, Kataoka Y, Vidal VR, Genet JP, Mashima K (2006) Organometallics 25:2505–2513Google Scholar
  40. 40.
    Deport C, Buchotte M, Abecassis K, Tadaoka H, Ayad T, Ohshima T, Genet JP, Mashima K, Vidal VR (2007) Synlett 2743–2747Google Scholar
  41. 41.
    Tadaoka H, Cartigny D, Nagano T, Gosavi T, Ayad T, Genêt JP, Ohshima T, Vidal VR, Mashima K (2009) Chem Eur J 15:9990–9994Google Scholar
  42. 42.
    Wang D-S, Zhou Y-G (2010) Tetrahedron Lett 51:3014–3017Google Scholar
  43. 43.
    van Leeuwen PWNM, Kamer PCJ, Claver C, Pàmies O, Diéguez M (2011) Chem Rev 111:2077–2118Google Scholar
  44. 44.
    Fernández-Pérez H, Etayo P, Panossian A, Vidal-Ferran A (2011) Chem Rev 111:2119–2176Google Scholar
  45. 45.
    Teichert JF, Feringa BL (2010) Angew Chem Int Ed 49:2486–2528Google Scholar
  46. 46.
    Roseblade SJ, Pfaltz A (2007) Acc Chem Res 40:1402–1411Google Scholar
  47. 47.
    Lam KH, Xu L-J, Feng L-C, Fan Q-H, Lam FL, Lo WH, Chan ASC (2005) Adv Synth Catal 347:1755–1758Google Scholar
  48. 48.
    Tang W-J, Zhu S-F, Xu L-J, Zhou Q-L, Fan Q-H, Zhou H-F, Lam K, Chan ASC (2007) Chem Commun 613–615Google Scholar
  49. 49.
    Reetz MT, Li X-G (2006) Chem Commun 2159–2160Google Scholar
  50. 50.
    Rico JLN, Pérez HF, Buchholz JB, Ferran AV (2010) Organometallics 29:6627–6631Google Scholar
  51. 51.
    Rubio M, Pizzano A (2010) Molecules 15:7732–7741Google Scholar
  52. 52.
    Eggenstein M, Thomas A, Theuerkauf J, Franciò G, Leitner W (2009) Adv Synth Catal 351:725–732Google Scholar
  53. 53.
    Mršić N, Lefort L, Boogers JAF, Minnaard AJ, Feringa BL, de Vries JG (2008) Adv Synth Catal 350:1081–1089Google Scholar
  54. 54.
    Lu S-M, Han X-W, Zhou Y-G (2004) Adv Synth Catal 346:909–912Google Scholar
  55. 55.
    Zhao Y-J, Wang Y-Q, Zhou Y-G (2005) Chin J Catal 26:737–739Google Scholar
  56. 56.
    Wang D-S, Zhou J, Wang D-W, Guo Y-L, Zhou Y-G (2010) Tetrahedron Lett 51:525–528Google Scholar
  57. 57.
    Lu S-M, Bolm C (2008) Adv Synth Catal 350:1101–1105Google Scholar
  58. 58.
    Hammerer T, Weisgerber L, Schenk S, Stelzer O, Englert U, Leitner W, Franciò G (2012) Tetrahedron Asymmetry 23:53–59Google Scholar
  59. 59.
    Xie J-H, Zhou Q-L (2008) Acc Chem Res 41:581–593Google Scholar
  60. 60.
    Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Chem Rev 100:2159–2232Google Scholar
  61. 61.
    Noyori R, Hashigushi S (1997) Acc Chem Res 30:97–102Google Scholar
  62. 62.
    Gladiali S, Alberico E (2006) Chem Soc Rev 35:226–236Google Scholar
  63. 63.
    Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Sandoval CA, Noyori R (2006) J Am Chem Soc 128:8724–8725Google Scholar
  64. 64.
    Sandoval CA, Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Noyori R (2006) Chem Asian J 1:102–110Google Scholar
  65. 65.
    Wang T-L, Zhuo L-G, Li Z-W, Chen F, Ding Z-Y, He Y-M, Fan Q-H, Xiang J-F, Yu Z-X, Chan ASC (2011) J Am Chem Soc 133:9878–9891Google Scholar
  66. 66.
    Walsh PJ, Li H, de Parrodi CA (2007) Chem Rev 107:2503–2545Google Scholar
  67. 67.
    Wang Z-J, Zhou H-F, Wang T-L, He Y-M, Fan Q-H (2009) Green Chem 11:767–769Google Scholar
  68. 68.
    Wang T-L, Ouyang G-H, He Y-M, Fan Q-H (2011) Synlett 939–942Google Scholar
  69. 69.
    Li Z-W, Wang T-L, He Y-M, Wang Z-J, Fan Q-H, Pan J, Xu L-J (2008) Org Lett 10:5265–5268Google Scholar
  70. 70.
    Rueping M, Koenigs R (2011) Chem Commun 304–306Google Scholar
  71. 71.
    Shi L, Ye Z-S, Cao L-L, Guo R-N, Hu Y, Zhou Y-G (2012) Angew Chem Int Ed 51:8286–8289Google Scholar
  72. 72.
    Murata S, Sugimoto T, Matsuura S (1987) Heterocycles 26:763–766Google Scholar
  73. 73.
    Bianchini C, Barbaro P, Scapacci G, Farnetti E, Grazian M (1998) Organometallics 17:3308–3310Google Scholar
  74. 74.
    Bianchini C, Barbaro P, Scapacci G (2001) J Organomet Chem 621:26–33Google Scholar
  75. 75.
    Cobley CJ, Henschke JP (2003) Adv Synth Catal 345:195–201Google Scholar
  76. 76.
    Henschke JP, Burk MJ, Malan CG, Herzberg D, Peterson JA, Wildsmith AJ, Cobley CJ, Casy G (2003) Adv Synth Catal 345:300–307Google Scholar
  77. 77.
    Tang W-J, Xu L-J, Fan Q-H, Wang J, Fan B-M, Zhou Z-Y, Lam KH, Chan ASC (2009) Angew Chem Int Ed 48:9135–9138Google Scholar
  78. 78.
    Mršić N, Jerphagnon T, Minnaard AJ, Feringa BL, de Vries JG (2009) Adv Synth Catal 351:2549–2552Google Scholar
  79. 79.
    Cartigny D, Nagano T, Ayad T, Genêt JP, Oshima T, Mashima K, Vidal VR (2010) Adv Synth Catal 352:1886–1891Google Scholar
  80. 80.
    Cartigny D, Berhal F, Nagano T, Phansavath P, Ayad T, Genêt JP, Oshima T, Mashima K, Vidal VR (2012) J Org Chem 77:4544–4556Google Scholar
  81. 81.
    Nagano T, Iimuro A, Schwenk R, Oshima T, Kita Y, Togni A, Mashima K (2012) Chem Eur J 18:11578–11592Google Scholar
  82. 82.
    Chang G, Didiuk MT, Finneman JI, Garigipati RS, Kelley RM, Perry DA, Ruggeri RB, Bechle BM, Pollastri MP (2004) 1,2,4-Substituted 1,2,3,4-tetrahydro- and 1,2-dihydro-quinoline and 1,2,3,4-tetrahydro-quinoxaline derivatives as CETP inhibitors for the treatment of atherosclerosis and obesity. WO/2004/085,401; PCT/IB2004/000,836. Pfizer Products IncGoogle Scholar
  83. 83.
    Qin J, Chen F, Ding Z-Y, He Y-M, Xu L-J, Fan Q-H (2011) Org Lett 13:6568–6571Google Scholar
  84. 84.
    Urban S, Ortega N, Glorius F (2011) Angew Chem Int Ed 50:3803–3806Google Scholar
  85. 85.
    Chen Q-A, Wang D-S, Zhou Y-G, Duan Y, Fan HJ, Yang Y, Zhang Z (2011) J Am Chem Soc 133:6126–6129Google Scholar
  86. 86.
    Rubiralta M, Giralt E, Diez A (1991) Piperidines: structure, preparation, reactivity and synthetic applications of piperidine and its derivatives. Elsevier, AmsterdamGoogle Scholar
  87. 87.
    Studer M, Exl CW, Spindler F, Blaser HU (2000) Monatshefte für Chemie 131:1335–1343Google Scholar
  88. 88.
    Legault CY, Charette AB (2005) J Am Chem Soc 127:8966–8967Google Scholar
  89. 89.
    Legault CY, Charette AB, Cozzi PG (2008) Heterocycles 76:1271–1283Google Scholar
  90. 90.
    Ye Z-S, Chen M-W, Chen Q-A, Shi L, Duan Y, Zhou Y-G (2012) Angew Chem Int Ed 51:10181–10184Google Scholar
  91. 91.
    Xiao D, Lavey BJ, Palani A, Wang C, Aslanian RG, Kozlowski JA, Shih N-Y, McPhail AT, Randolph GP, Lachowicz JE, Duffy RA (2005) Tetrahedron Lett 46:7653–7656Google Scholar
  92. 92.
    Sheikh NS, Leonori D, Barker G, Firth JD, Campos KR, Meijer AJHM, Brien PO, Coldham I (2012) J Am Chem Soc 134:5300–5308Google Scholar
  93. 93.
    Wang X-B, Zeng W, Zhou Y-G (2008) Tetrahedron Lett 49:4922–4924Google Scholar
  94. 94.
    Fattorusso E, Taglialatela-Scafati O (2008) Modern alkaloids: structure, isolation: synthesis and biology. Wiley-VCH, WeinheimGoogle Scholar
  95. 95.
    Kuwano R, Sato K, Kurokawa T, Karube D, Ito Y (2000) J Am Chem Soc 122:7614–7615Google Scholar
  96. 96.
    Kuwano R, Kaneda K, Ito T, Sato K, Kurokawa T, Ito Y (2004) Org Lett 6:2213–2215Google Scholar
  97. 97.
    Kuwano R, Kashiwabara M, Sato K, Ito T, Kaneda K, Ito Y (2006) Tetrahedron Asymmetry 17:521–535Google Scholar
  98. 98.
    Maj AM, Suisse I, Méliet C, Niedercorn FA (2010) Tetrahedron Asymmetry 21:2010–2014Google Scholar
  99. 99.
    Mršić N, Jerphagnon T, Minnaard AJ, Feringa BL, de Vries JG (2010) Tetrahedron Asymmetry 21:7–10Google Scholar
  100. 100.
    Kuwano R, Kashiwabara M (2006) Org Lett 8:2653–2655Google Scholar
  101. 101.
    Kuwano R, Kashiwabara M, Ohsumi M, Kusano H (2008) J Am Chem Soc 130:808–809Google Scholar
  102. 102.
    Wierenga W (1981) J Am Chem Soc 103:5621–5623Google Scholar
  103. 103.
    Baeza A, Pfaltz A (2010) Chem Eur J 16:2036–2039Google Scholar
  104. 104.
    Abe H, Amii H, Uneyama K (2001) Org Lett 3:313–315Google Scholar
  105. 105.
    Yang Q, Shang G, Gao W, Deng J, Zhang X (2006) Angew Chem Int Ed 45:3832–3835Google Scholar
  106. 106.
    Wang Y-Q, Lu S-M, Zhou Y-G (2007) J Org Chem 72:3729–3734Google Scholar
  107. 107.
    Goulioukina NS, Shergold IA, Bondarenko GN, Ilyin MM, Davankov VA, Beletskaya IP (2012) Adv Synth Catal 354:2727–2733Google Scholar
  108. 108.
    Yu C-B, Gao K, Wang D-S, Shi L, Zhou Y-G (2011) Chem Commun 5052–5054Google Scholar
  109. 109.
    Yu C-B, Gao K, Chen Q-A, Chen M-W, Zhou Y-G (2012) Tetrahedron Lett 53:2560–2563Google Scholar
  110. 110.
    Wang Y-Q, Lu S-M, Zhou Y-G (2005) Org Lett 7:3235–3238Google Scholar
  111. 111.
    Wang D-S, Chen Q-A, Li W, Yu C-B, Zhou Y-G, Zhang X-M (2010) J Am Chem Soc 132:8909–8911Google Scholar
  112. 112.
    Wang D-S, Tang J, Zhou Y-G, Chen M-W, Yu C-B, Duan Y, Jiang G-F (2011) Chem Sci 2:803–806Google Scholar
  113. 113.
    Duan Y, Chen M-W, Ye Z-S, Wang D-S, Chen Q-A, Zhou Y-G (2011) Chem Eur J 17:7193–7197Google Scholar
  114. 114.
    Duan Y, Chen M-W, Chen Q-A, Yu C-B, Zhou Y-G (2012) Org Biomol Chem 10:1235–1238Google Scholar
  115. 115.
    Wang D-S, Ye Z-S, Chen Q-A, Zhou Y-G, Yu C-B, Fan H-J, Duan Y (2011) J Am Chem Soc 133:8866–8869Google Scholar
  116. 116.
    Polyak F, Dorofeeva T, Zelchan G (1995) Synth Commun 25:2895–2900Google Scholar
  117. 117.
    Sebek M, Holz J, Börner A, Jähnisch K (2009) Synlett 3:461–465Google Scholar
  118. 118.
    Ohta T, Miyake T, Seido N, Kumobayashi H, Takaya H (1995) J Org Chem 60:357–363Google Scholar
  119. 119.
    Feiertag P, Albert M, Nettekoven U, Spindler F (2006) Org Lett 8:4133–4135Google Scholar
  120. 120.
    Kaiser S, Smidt SP, Pfaltz A (2006) Angew Chem Int Ed 45:5194–5197Google Scholar
  121. 121.
    Bell S, Wüstenberg B, Kaiser S, Menges F, Netscher T, Pfaltz A (2006) Science 311:642–644Google Scholar
  122. 122.
    Ortega N, Urban S, Beiring B, Glorius F (2012) Angew Chem Int Ed 51:1710–1713Google Scholar
  123. 123.
    Benetti S, Risi CD, Pollini GP, Zanirato V (2012) Chem Rev 112:2129–2163Google Scholar
  124. 124.
    Urban S, Beiring B, Ortega N, Paul D, Glorius F (2012) J Am Chem Soc 134:15241–15244Google Scholar
  125. 125.
    Kuwano R, Kameyama N, Ikeda R (2011) J Am Chem Soc 133:7312–7315Google Scholar
  126. 126.
    Fan Q-H, Li Y-M, Chan ASC (2002) Chem Rev 102:3385–3466Google Scholar
  127. 127.
    Trindade AF, Gois PMP, Afonso CAM (2009) Chem Rev 109:418–514Google Scholar
  128. 128.
    Wang Z, Chen G, Ding K (2009) Chem Rev 109:322–359Google Scholar
  129. 129.
    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732–4762Google Scholar
  130. 130.
    de Vos DE, Vankelekom IFJ, Jacobs PA (eds) (2000) Chiral catalyst immobilization and recycling. Wiley-VCH, WeinheimGoogle Scholar
  131. 131.
    Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  132. 132.
    Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Green Chem 7:64–82Google Scholar
  133. 133.
    Zhou H-F, Fan Q-H, He Y-M, Gu L-Q, Chan ASC (2007) Prog Chem 19:1517–1528Google Scholar
  134. 134.
    Chan SH, Lam KH, Li Y-M, Xu L-J, Tang W-J, Lam FL, Lo WH, Yu W-Y, Fan Q-H, Chan ASC (2007) Tetrahedron Asymmetry 18:2625–2631Google Scholar
  135. 135.
    Bergbreiter DE (2002) Chem Rev 102:3345–3384Google Scholar
  136. 136.
    Dickerson TJ, Reed NN, Janda KD (2002) Chem Rev 102:3325–3344Google Scholar
  137. 137.
    Wang X-B, Zhou Y-G (2008) J Org Chem 73:5640–5642Google Scholar
  138. 138.
    Oosterom GE, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2001) Angew Chem Int Ed 40:1828–1849Google Scholar
  139. 139.
    Astruc D, Chardac F (2001) Chem Rev 101:2991–3024Google Scholar
  140. 140.
    Kassube JK, Gade LH (2006) Top Organomet Chem 20:61–96Google Scholar
  141. 141.
    Fan Q-H, Deng G-J, Feng Y, He Y-M (2008) In: Ding K, Uozumi Y (eds) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, Weinheim, pp 131–180Google Scholar
  142. 142.
    Ma B, Fan Q-H (2010) Sci Sinica Chim 40:827–836Google Scholar
  143. 143.
    Fan Q-H, Ding K (2011) Top Organomet Chem 36:207–246Google Scholar
  144. 144.
    Fan Q-H, Chen Y-M, Chen X-M, Jiang D-Z, Xi F, Chan ASC (2000) Chem Commun 789–790Google Scholar
  145. 145.
    Wang Z-J, Deng G-J, Li Y, He Y-M, Tang W-J, Fan Q-H (2007) Org Lett 9:1243–1246Google Scholar
  146. 146.
    Dupont J, de Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3692Google Scholar
  147. 147.
    Hallett JP, Welton T (2011) Chem Rev 111:3508–3576Google Scholar
  148. 148.
    Song CE (2004) Chem Commun 1033–1043Google Scholar
  149. 149.
    Durand J, Teuma E, Gómez M (2007) C R Chimie 10:152–177Google Scholar
  150. 150.
    Luo S, Zhang L, Cheng J-P (2009) Chem Asian J 4:1184–1195Google Scholar
  151. 151.
    Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852–7872Google Scholar
  152. 152.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863–4890Google Scholar
  153. 153.
    Schätz A, Reiser O, Stark WJ (2010) Chem Eur J 16:8950–8967Google Scholar
  154. 154.
    Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Chem Rev 111:3036–3075Google Scholar
  155. 155.
    Zhu Y, Stubbs LP, Ho F, Liu R, Ship CP, Maguire JA, Hosmane NS (2010) ChemCatChem 2:365–374Google Scholar
  156. 156.
    Wu L, He Y-M, Fan Q-H (2011) Adv Synth Catal 353:2915–2919Google Scholar
  157. 157.
    Yamakawa M, Ito H, Noyori R (2000) J Am Chem Soc 122:1466–1478Google Scholar
  158. 158.
    Yamakawa M, Yamada I, Noyori R (2001) Angew Chem Int Ed 40:2818–2821Google Scholar
  159. 159.
    Ding Z-Y, Chen F, Qin J, He Y-M, Fan Q-H (2012) Angew Chem Int Ed 51:5706–5710Google Scholar
  160. 160.
    Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH (2011) J Am Chem Soc 133:7547–7562Google Scholar
  161. 161.
    Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382–390Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry and Graduate SchoolChinese Academy of Sciences (CAS)BeijingP. R. China

Personalised recommendations