Modeling Materials and Processes in Dye-Sensitized Solar Cells: Understanding the Mechanism, Improving the Efficiency

  • Mariachiara Pastore
  • Filippo De Angelis
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 352)


We present a review of recent first-principles computational modeling studies on dye-sensitized solar cells (DSCs), focusing on the materials and processes modeling aspects which are key to the functioning of this promising class of photovoltaic devices. Crucial to the DSCs functioning is the photoinduced charge separation occurring at the heterointerface(s) between a dye-sensitized nanocrystalline, mesoporous metal oxide electrode and a redox shuttle. Theoretical and computational modeling of isolated cell components (e.g., dye, semiconductor nanoparticles, redox shuttle, etc…) as well as of combined dye/semiconductor/redox shuttle systems can successfully assist the experimental research by providing basic design rules of new sensitizers and a deeper comprehension of the fundamental chemical and physical processes governing the cell functioning and its performances. A computational approach to DSCs modeling can essentially be cast into a stepwise problem, whereby one first needs to simulate accurately the individual DSCs components to move to relevant pair (or higher order) interactions characterizing the device functioning. This information can contribute to enhancing further the target DSCs characteristics, such as temporal stability and optimization of device components. After presenting selected results for isolated dyes, including the computational design of new dyes, and model semiconductors, including realistic nanostructure models, we focus in the remainder of this review on the interaction between dye-sensitizers and semiconductor oxides, covering organic as well as metallorganic dyes.


Aggregation Co-sensitized TiO2 DSCs FT/TDDFT Organic dyes Ruthenium dyes TiO2 ZnO 



We thank FP7-NMP-2009 project 246124 “SANS” and FP7-ENERGY-2010 project 261920 “ESCORT” for financial support.


  1. 1.
    O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740Google Scholar
  2. 2.
    Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798Google Scholar
  3. 3.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663Google Scholar
  4. 4.
    Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162Google Scholar
  5. 5.
    Moser JE (2010) Dynamics of interfacial and surface electron transfer processes. In: Kalyanasundarame K (ed) Dye-sensitized solar cells. EPFL, Lausanne, pp 403–456Google Scholar
  6. 6.
    Lanzafame JM, Palese S, Wang D, Miller RJD, Muenter AA (1994) Ultrafast nonlinear optical studies of surface reaction dynamics: mapping the electron trajectory. J Phys Chem 98(43):11020–11033Google Scholar
  7. 7.
    Clifford JN, Forneli A, Chen H, Torres T, Tan S, Palomares E (2011) Co-sensitized DSCs: dye selection criteria for optimized device Voc and efficiency. J Mater Chem 21(6):1693–1696Google Scholar
  8. 8.
    Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol Energy Mater Sol Cells 80(1):47–71Google Scholar
  9. 9.
    Martínez-Díaz MV, de la Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46(38):7090–7108Google Scholar
  10. 10.
    Chen Y, Zeng Z, Li C, Wang W, Wang X, Zhang B (2005) Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J Chem 29(6):773–776Google Scholar
  11. 11.
    Yum J-H, Jang S-R, Walter P, Geiger T, Nüesch F, Kim S, Ko J, Grätzel M, Nazeeruddin MK (2007) Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem Commun (44):4680–4682Google Scholar
  12. 12.
    Lan C-M, Wu H-P, Pan T-Y, Chang C-W, Chao W-S, Chen C-T, Wang C-L, Lin C-Y, Diau EW-G (2012) Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ Sci 5(4):6460–6464Google Scholar
  13. 13.
    Yum J-H, Baranoff E, Wenger S, Nazeeruddin MK, Grätzel M (2011) Panchromatic engineering for dye-sensitized solar cells. Energy Environ Sci 4(3):842–857Google Scholar
  14. 14.
    Brown MD, Parkinson P, Torres T, Miura H, Herz LM, Snaith HJ (2011) Surface energy relay between cosensitized molecules in solid-state dye-sensitized solar cells. J Phys Chem C 115(46):23204–23208Google Scholar
  15. 15.
    Siegers C, Würfel U, Zistler M, Gores H, Hohl-Ebinger J, Hinsch A, Haag R (2008) Overcoming kinetic limitations of electron injection in the dye solar cell via coadsorption and FRET. Chem Phys Chem 9(5):793–798Google Scholar
  16. 16.
    Clifford JN, Palomares E, Nazeeruddin MK, Thampi R, Grätzel M, Durrant JR (2004) Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J Am Chem Soc 126(18):5670–5671Google Scholar
  17. 17.
    Fan S-Q, Kim C, Fang B, Liao K-X, Yang G-J, Li C-J, Kim J-J, Ko J (2011) Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode. J Phys Chem C 115(15):7747–7754Google Scholar
  18. 18.
    Ogura RY, Nakane S, Morooka M, Orihashi M, Suzuki Y, Noda K (2009) High-performance dye-sensitized solar cell with a multiple dye system. Appl Phys Lett 94(7):073308Google Scholar
  19. 19.
    Ozawa H, Shimizu R, Arakawa H (2012) Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye. RSC Adv 2(8):3198–3200Google Scholar
  20. 20.
    Kuang D, Walter P, Nüesch F, Kim S, Ko J, Comte P, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2007) Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23(22):10906–10909Google Scholar
  21. 21.
    Nguyen LH, Mulmudi HK, Sabba D, Kulkarni SA, Batabyal SK, Nonomura K, Grätzel M, Mhaisalkar SG (2012) A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells. Phy Chem Chem Phys. doi: 10.1039/C2CP42959D Google Scholar
  22. 22.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634Google Scholar
  23. 23.
    Rühle S, Cahen D (2004) Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J Phys Chem B 108(46):17946–17951Google Scholar
  24. 24.
    Liu J, Zhou D, Xu M, Jing X, Wang P (2011) The structure–property relationship of organic dyes in mesoscopic titania solar cells: only one double-bond difference. Energy Environ Sci 4:3545–3551Google Scholar
  25. 25.
    Xu M, Zhang M, Pastore M, Li R, De Angelis F, Wang P (2012) Joint electrical, photophysical and computational studies on D-p-A dye sensitized solar cells: the impacts of dithiophene rigidification. Chem Sci 3:976–983Google Scholar
  26. 26.
    Dualeh A, De Angelis F, Fantacci S, Moehl T, Yi C, Kessler F, Baranoff E, Nazeeruddin MK, Grätzel M (2012) Influence of donor groups of organic D-π-A dyes on open-circuit voltage in solid-state dye-sensitized solar cells. J Phys Chem C 116:1572–1578Google Scholar
  27. 27.
    Howie WH, Claeyssens F, Miura H, Peter LM (2008) Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes. J Am Chem Soc 130(4):1367–1375Google Scholar
  28. 28.
    De Angelis F, Vitillaro G, Kavan L, Nazeeruddin MK, Grätzel M (2012) Modeling ruthenium-dye-sensitized TiO2 surfaces exposing the (001) or (101) faces: a first-principles investigation. J Phys Chem C 116(34):18124–18131Google Scholar
  29. 29.
    Griffith MJ, James M, Triani G, Wagner P, Wallace GG, Officer DL (2011) Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. Langmuir 27(21):12944–12950Google Scholar
  30. 30.
    O’Regan BC, Walley K, Juozapavicius M, Anderson AY, Matar F, Ghaddar T, Zakeeruddin SM, Klein C, Durrant JR (2009) Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. J Am Chem Soc 131(10):3541–3548Google Scholar
  31. 31.
    Miyashita M, Sunahara K, Nishikawa K, Uemura Y, Koumura N, Hara K, Mori A, Abe T, Suzuki E, Mori S (2008) Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes. J Am Chem Soc 130:17874–17881Google Scholar
  32. 32.
    Planells M, Pellejà L, Clifford JN, Pastore M, De Angelis F, López N, Marder SR, Palomares E (2011) Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor π-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy Environ Sci 4:1820–1829Google Scholar
  33. 33.
    Pastore M, Mosconi E, De Angelis F (2012) Computational investigation of dye–iodine interactions in organic dye-sensitized solar cells. J Phys Chem C 116(9):5965–5973Google Scholar
  34. 34.
    Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P (2011) Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. J Am Chem Soc 133(30):11442–11445. doi: 10.1021/ja203708k Google Scholar
  35. 35.
    Tuikka M, Hirva P, Rissanen K, Korppi-Tommola J, Haukka M (2011) Halogen bonding—a key step in charge recombination of the dye-sensitized solar cell. Chem Commun 47:4499–4501Google Scholar
  36. 36.
    Li X, Reynal A, Barnes P, Humphry-Baker R, Zakeeruddin SM, De Angelis F, O'Regan BC (2012) Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells. Phy Chem Chem Phys 14(44):15421–15428Google Scholar
  37. 37.
    Mosconi E, Yum J-H, Kessler F, García CJG, Zuccaccia C, Cinti A, Nazeeruddin MK, Grätzel M, De Angelis F (2012) Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J Am Chem Soc 134(47):19438–19453Google Scholar
  38. 38.
    Rothenberger G, Fitzmaurice D, Grätzel M (1992) Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films. J Phys Chem 96(14):5983–5986Google Scholar
  39. 39.
    O'Regan B, Grätzel M, Fitzmaurice D (1991) Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode. J Phys Chem 95(26):10525–10528Google Scholar
  40. 40.
    Boschloo G, Fitzmaurice D (1999) Electron accumulation in nanostructured TiO2 (anatase) electrodes. J Phys Chem B 103(37):7860–7868Google Scholar
  41. 41.
    Redmond G, Fitzmaurice D (1993) Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. J Phys Chem 97(7):1426–1430Google Scholar
  42. 42.
    Enright B, Redmond G, Fitzmaurice D (1994) Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems. J Phys Chem 98:6195–6200Google Scholar
  43. 43.
    Westermark K, Henningsson A, Rensmo H, Södergren S, Siegbahn H, Hagfeldt A (2002) Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy. Chem Phys 285(1):157–165Google Scholar
  44. 44.
    Rühle S, Greenshtein M, Chen S-G, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J Phys Chem B 109(40):18907–18913Google Scholar
  45. 45.
    Yan SG, Hupp JT (1996) Semiconductor-based interfacial electron-transfer reactivity: decoupling kinetics from pH-dependent band energetics in a dye-sensitized titanium dioxide aqueous solution system. J Phys Chem 100(17):6867–6870Google Scholar
  46. 46.
    De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7(10):3189–3195Google Scholar
  47. 47.
    Pastore M, De Angelis F (2012) Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes electronic structure and implication for electron injection/recombination. Phy Chem Chem Phys 14(2):920–928Google Scholar
  48. 48.
    Kusama H, Orita H, Sugihara H (2008) TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24(8):4411–4419Google Scholar
  49. 49.
    Tachibana Y, Haque SA, Mercer IP, Moser JE, Klug DR, Durrant JR (2001) Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias. J Phys Chem B 105(31):7424–7431Google Scholar
  50. 50.
    Chen P, Yum JH, De Angelis F, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett 9(6):2487–2492Google Scholar
  51. 51.
    O’Regan BC, Durrant JR (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42(11):1799–1808Google Scholar
  52. 52.
    De Angelis F, Fantacci S, Sgamellotti A (2007) An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor Chem Acc 117(5–6):1093–1104Google Scholar
  53. 53.
    Lee DH, Lee MJ, Song HM, Song BJ, Seo KD, Pastore M, Anselmi C, Fantacci S, De Angelis F, Nazeeruddin MK, Gräetzel M, Kim HK (2011) Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells 91(2):192–198Google Scholar
  54. 54.
    Stier W, Prezhdo OV (2002) Nonadiabatic molecular dynamics simulation of light-induced electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J Phys Chem B 106(33):8047–8054Google Scholar
  55. 55.
    Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125(7989–7997)Google Scholar
  56. 56.
    Kondov I, Čížek M, Benesch C, Wang H, Thoss M (2007) Quantum dynamics of photoinduced electron-transfer reactions in dye−semiconductor systems: first-principles description and application to coumarin 343–TiO2. J Phys Chem C 111(32):11970–11981Google Scholar
  57. 57.
    Meng S, Ren J, Kaxiras E (2008) Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. Nano Lett 8(10):3266–3272Google Scholar
  58. 58.
    Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125:7989–7997Google Scholar
  59. 59.
    Abuabara SG, Rego LGC, Batista VS (2005) Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. J Am Chem Soc 127:18234–18242Google Scholar
  60. 60.
    Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin−TiO2 interface. J Am Chem Soc 127(21):7941–7951Google Scholar
  61. 61.
    Li J, Wang H, Persson P, Thoss M (2012) Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups. J Chem Phys 137:22A529Google Scholar
  62. 62.
    Marques MAL, López X, Varsano D, Castro A, Rubio A (2003) Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein. Phys Rev Lett 90(25):258101–258104Google Scholar
  63. 63.
    Meng S, Kaxiras E (2010) Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends. Nano Lett 10:1238–1247Google Scholar
  64. 64.
    Fantacci S, De Angelis F, Selloni A (2003) Absorption spectrum and solvatochromism of the [Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] molecular dye by time dependent density functional theory. J Am Chem Soc 125(14):4381–4387Google Scholar
  65. 65.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805Google Scholar
  66. 66.
    Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115(10):4708–4717Google Scholar
  67. 67.
    Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210Google Scholar
  68. 68.
    Kristyán S, Pulay P (1994) Can (semi)local density functional theory account for the london dispersion forces? Che Phys Lett 229(3):175–180Google Scholar
  69. 69.
    Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2010) Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bulletin 35(6):435–442Google Scholar
  70. 70.
    Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22(12):1127–1135Google Scholar
  71. 71.
    Johnson ERJ, Wolkow RA, DiLabio GA (2004) Application of 25 density functionals to dispersion-bound homomolecular dimers. Chem Phys Lett 394:334–338Google Scholar
  72. 72.
    Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901Google Scholar
  73. 73.
    Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theor Comp 1(3):415–432Google Scholar
  74. 74.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theor Comp 2(2):364–382Google Scholar
  75. 75.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241Google Scholar
  76. 76.
    Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116(2):515Google Scholar
  77. 77.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comp Chem 25(12):1463–1473Google Scholar
  78. 78.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149Google Scholar
  79. 79.
    Zimmerli U, Parrinello M, Koumoutsakos P (2004) Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys 120(6):2693Google Scholar
  80. 80.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104Google Scholar
  81. 81.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27(15):1787–1799Google Scholar
  82. 82.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620Google Scholar
  83. 83.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comp Chem 32(7):1456–1465Google Scholar
  84. 84.
    Pastore M, De Angelis F (2012) First-principles computational modeling of fluorescence resonance energy transfer in co-sensitized dye solar cells. J Phys Chem Lett 3(16):2146–2153Google Scholar
  85. 85.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrode. J Am Chem Soc 115(14):6382–6390Google Scholar
  86. 86.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847Google Scholar
  87. 87.
    Nazeeruddin MK, Péchy P, Grätzel M (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex. Chem Commun (18):1705–1706Google Scholar
  88. 88.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624Google Scholar
  89. 89.
    Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ Sci 5(3):6057–6060Google Scholar
  90. 90.
    Wang P, Zakeeruddin SM, Exnar I, Grätzel M (2002) High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun (24):2972–2973Google Scholar
  91. 91.
    Chen C-Y, Wu S-J, Wu C-G, Chen J-G, Ho K-C (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45(35):5822–5825Google Scholar
  92. 92.
    Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728Google Scholar
  93. 93.
    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934Google Scholar
  94. 94.
    Bomben PG, Koivisto BD, Berlinguette CP (2010) Cyclometalated Ru complexes of type [RuII(NN)2(CN)]z: physicochemical response to substituents installed on the anionic ligand. Inorg Chem 49(11):4960–4971Google Scholar
  95. 95.
    Mishra A, Fischer M, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499Google Scholar
  96. 96.
    Pastore M, Mosconi E, Fantacci S, De Angelis F (2012) Computational investigations on organic sensitizers for dye-sensitized solar cells. Curr Org Synth 9(2):215–232Google Scholar
  97. 97.
    Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925Google Scholar
  98. 98.
    Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Design and characterization of porphyrin sensitizers with a push–pull framework for highly efficient dye-sensitized solar cells. Energy Environ Sci 3(7):949–955Google Scholar
  99. 99.
    Chang Y-C, Wang C-L, Pan T-Y, Hong S-H, Lan C-M, Kuo H-H, Lo C-F, Hsu H-Y, Lin C-Y, Diau EW-G (2011) A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem Commun 47(31):8910–8912Google Scholar
  100. 100.
    Rensmo H, Södergren S, Patthey L, Westermark K, Vayssieres L, Kohle O, Brühwiler PA, Hagfeldt A, Siegbahn H (1997) The electronic structure of the cis-bis(4,4′-dicarboxy-2, 2′-bipyridine)-bis(isothiocyanato)ruthenium(II) complex and its ligand 2,2′-bipyridyl-4, 4′-dicarboxylic acid studied with electron spectroscopy. Chem Phys Lett 274(1–3):51–57Google Scholar
  101. 101.
    Monat JE, Rodriguez JH, McCusker JK (2002) Ground- and excited-state electronic structures of the solar cell sensitizer bis(4,4′-dicarboxylato-2,2′-bipyridine)bis(isothiocyanato)ruthenium(II). J Phys Chem A 106:7399–7406Google Scholar
  102. 102.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Gorelsky SI, Lever ABP, Grätzel M (2000) Synthesis, spectroscopic and a ZINDO study of cis- and trans-(X2)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) complexes (X=Cl−, H2O, NCS−). Coord Chemi Rev 208(1):213–225Google Scholar
  103. 103.
    Guillemoles J-F, Barone V, Joubert L, Adamo C (2002) A theoretical investigation of the ground and excited states of selected Ru and Os polypyridyl molecular dyes. J Phys Chem A 106(46):11354–11360Google Scholar
  104. 104.
    De Angelis F, Fantacci S, Selloni A (2005) Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COO–2,2′-bpy)(2)(X)(2)](4-) (X=NCS, Cl) dyes in water solution. Chem Phys Lett 415(1–3):115–120Google Scholar
  105. 105.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129(46):14156–14157Google Scholar
  106. 106.
    De Angelis F, Fantacci S, Selloni A (2004) Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)(2)(NCS)(2)] in water solution: influence of the pH. Chem Phys Lett 389(1–3):204Google Scholar
  107. 107.
    Aiga F, Tada T (2003) Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO2 solar cells. J Mol Struc 658(1–2):25–32Google Scholar
  108. 108.
    Ghosh S, Chaitanya GK, Bhanuprakash K, Nazeeruddin MK, Grätzel M, Yella RP (2006) Electronic structures and absorption spectra of linkage isomers of trithiocyanato (4,4',4''-tricarboxy-2,2':6,2''-terpyridine) ruthenium(II) complexes: a DFT Study. Inorg Chem 45(19):7600–7611Google Scholar
  109. 109.
    Li M-X, Zhou X, Xia B-H, Zhang H-X, Pan Q-J, Liu T, Fu H-G, Sun C-C (2008) Theoretical studies on structures and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, [Ru(Hmtcterpy)(NCS)3]n- (m = 0, 1, 2, and 3; n = 4, 3, 2, and 1). Inorg Chem 47(7):2312–2324Google Scholar
  110. 110.
    Li M-X, Zhang H-X, Zhou X, Pan Q-J, Fu H-G, Sun C-C (2007) Theoretical studies of the electronic structure and spectroscopic properties of [Ru(Htcterpy)(NCS)3]3–. Eur J Inorg Chem 2171–2180Google Scholar
  111. 111.
    Govindasamy A, Lv C, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, Del Carpio CA, Miyamoto A (2007) Theoretical investigation of the photophysical properties of black dye sensitizer [(H3-tctpy)M(NCS)3]− (M = Fe, Ru, Os) in dye sensitized solar cells. Jpn J Appl Phys 46:2655–2660Google Scholar
  112. 112.
    Kusama H, Sugihara H, Sayama K (2011) Theoretical study on the interactions between black dye and iodide in dye-sensitized solar cells. J Phys Chem C 115(18):9267–9275Google Scholar
  113. 113.
    Bang SY, Ko MJ, Kim K, Kim JH, Jang I-H, Park N-G (2012) Evaluation of dye aggregation and effect of deoxycholic acid concentration on photovoltaic performance of N749-sensitized solar cell. Synth Metals 162(17–18):1503–1507Google Scholar
  114. 114.
    Sodeyama K, Sumita M, O’Rourke C, Terranova U, Islam A, Han L, Bowler DR, Tateyama Y (2012) Protonated carboxyl anchor for stable adsorption of Ru N749 dye (black dye) on a TiO2 anatase (101) surface. J Phys Chem Lett 3(4):472–477Google Scholar
  115. 115.
    Liu S-H, Fu H, Cheng Y-M, Wu K-L, Ho S-T, Chi Y, Chou P-T (2012) Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. J Phys Chem C 116(31):16338–16345Google Scholar
  116. 116.
    Chen J, Bai F-Q, Wang J, Hao L, Xie Z-F, Pan Q-J, Zhang H-X (2012) Theoretical studies on spectroscopic properties of ruthenium sensitizers adsorbed to TiO2 film surface with connection mode for DSSC. Dyes Pigm 94(3):459–468Google Scholar
  117. 117.
    Kusama H, Sugihara H, Sayama K (2011) Effect of cations on the interactions of Ru dye and iodides in dye-sensitized solar cells: a density functional theory study. J Phys Chem C 115(5):2544–2552Google Scholar
  118. 118.
    Fantacci S, Lobello MG, De Angelis F (2013) Everything you always wanted to know about the black dye (but were afraid to ask): a DFT/TDDFT investigation. Chimia. doi: 10.2533/chimia.2013.1
  119. 119.
    Lee C-W, Lu H-P, Lan C-M, Huang Y-L, Liang Y-R, Yen W-N, Liu Y-C, Lin Y-S, Diau EW-G, Yeh C-Y (2009) Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chem Eur J 15(6):1403–1412Google Scholar
  120. 120.
    Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EW-G, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew Chem Int Ed 49(37):6646–6649Google Scholar
  121. 121.
    Wang Q, Campbell WM, Bonfantani EE, Jolley KW, Officer DL, Walsh PJ, Gordon K, Humphry-Baker R, Nazeeruddin MK, Grätzel M (2005) Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J Phys Chem B 109(32):15397–15409Google Scholar
  122. 122.
    Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) A DFT study of the optical properties of substituted Zn(II)TPP complexes. J Mol Struct THEOCHEM 759(1–3):17–24Google Scholar
  123. 123.
    Santhanamoorthi N, Lo C-M, Jiang J-C (2013) Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study. J Phys Chem Let 4(3):524–530Google Scholar
  124. 124.
    Lind SJ, Gordon KC, Gambhir S, Officer DL (2009) A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes. Phys Chem Chem Phys 11(27):5598–5607Google Scholar
  125. 125.
    Hsieh C-P, Lu H-P, Chiu C-L, Lee C-W, Chuang S-H, Mai C-L, Yen W-N, Hsu S-J, Diau EW-G, Yeh C-Y (2010) Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J Mater Chem 20(6):1127–1134Google Scholar
  126. 126.
    Ma R, Guo P, Cui H, Zhang X, Nazeeruddin MK, Grätzel M (2009) Substituent effect on the meso-substituted porphyrins: theoretical screening of sensitizer candidates for dye-sensitized solar cells. J Phys Chem A 113(37):10119–10124Google Scholar
  127. 127.
    Orbelli Biroli A, Tessore F, Pizzotti M, Biaggi C, Ugo R, Caramori S, Aliprandi A, Bignozzi CA, De Angelis F, Giorgi G, Licandro E, Longhi E (2011) A multitechnique physicochemical investigation of various factors controlling the photoaction spectra and of some aspects of the electron transfer for a series of push–pull Zn(II) porphyrins acting as dyes in DSSCs. J Phys Chem C 115(46):23170–23182Google Scholar
  128. 128.
    Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10(33):5121–5127Google Scholar
  129. 129.
    Pastore M, Mosconi E, De Angelis F, Grätzel M (2010) A computational investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J Phys Chem C 114(15):7205–7212Google Scholar
  130. 130.
    Pastore M, Fantacci S, De Angelis F (2010) Ab Initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells. J Phys Chem C 114(51):22742–22750Google Scholar
  131. 131.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42(2):326–334Google Scholar
  132. 132.
    Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theor Comp 4(1):123–135Google Scholar
  133. 133.
    Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943–2946Google Scholar
  134. 134.
    Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys 119(24):12697–12699Google Scholar
  135. 135.
    Dev P, Agrawal S, English NJ (2012) Determining the appropriate exchange-correlation functional for time-dependent density functional theory studies of charge-transfer excitations in organic dyes. J Chem Phys 136:224301Google Scholar
  136. 136.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433Google Scholar
  137. 137.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. J Chem Phys 122(23):234111Google Scholar
  138. 138.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544Google Scholar
  139. 139.
    Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106Google Scholar
  140. 140.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57Google Scholar
  141. 141.
    Pastore M, Fantacci S, De Angelis F (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117(8):3685–3700Google Scholar
  142. 142.
    Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128(51):16701–16707Google Scholar
  143. 143.
    Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17(7):813–815Google Scholar
  144. 144.
    Horiuchi T, Miura H, Uchida S (2003) Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem Commun 3036–3037Google Scholar
  145. 145.
    Magyar RJ, Tretiak S (2007) Dependence of spurious charge-transfer excited states on orbital exchange in TDDFT: large molecules and clusters. J Chem Theor Comp 3:976–987Google Scholar
  146. 146.
    Preat J, Michaux C, Jacquemin D, Perpete EA (2009) Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J Phys Chem C 113:16821–16833Google Scholar
  147. 147.
    Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progr Photovoltaics 15:603–612Google Scholar
  148. 148.
    Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6):065707Google Scholar
  149. 149.
    Saito M, Fujihara S (2008) Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ Sci 1(2):280–283Google Scholar
  150. 150.
    Keis K, Lindgren J, Lindquist S-E, Hagfeldt A (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16(10):4688–4694Google Scholar
  151. 151.
    Ferrere S, Zaban A, Gregg BA (1997) Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J Phys Chem B 101(23):4490–4493Google Scholar
  152. 152.
    Kay A, Grätzel M (2002) Dye-sensitized core−shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater 14(7):2930–2935Google Scholar
  153. 153.
    Vittadini A, Casarin M, Selloni A (2007) Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor Chem Acc 117(5–6):663–671Google Scholar
  154. 154.
    Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61(22):15019–15027Google Scholar
  155. 155.
    Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342(3–4):397–401Google Scholar
  156. 156.
    Di Valentin C, Pacchioni G, Selloni A (2006) Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys Rev Lett 97(16):166803–166806Google Scholar
  157. 157.
    De Angelis F, Tilocca A, Selloni A (2004) Time-dependent DFT study of [Fe(CN)6](4-) sensitization of TiO2 nanoparticles. J Am Chem Soc 126(46):15024–15025Google Scholar
  158. 158.
    Lundqvist MJ, Nilsing M, Persson P, Lunel S (2006) DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int J Quantum Chem 106(15):3214–3234Google Scholar
  159. 159.
    van de Lagemaat J, Park N-G, Frank AJ (2000) Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J Phys Chem B 104(9):2044–2052Google Scholar
  160. 160.
    Schlichthörl G, Park NG, Frank AJ (1999) Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 103(5):782–791Google Scholar
  161. 161.
    Cao F, Oskam G, Meyer GJ, Searson PC (1996) Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. J Phys Chem B 100(42):17021–17027Google Scholar
  162. 162.
    Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101(49):10281–10289Google Scholar
  163. 163.
    Solbrand A, Lindström H, Rensmo H, Hagfeldt A, Lindquist S-E (1997) Electron transport in the nanostructured TiO2 – electrolyte system studied with time-resolved photocurrents. J Phys Chem B 101(14):2514–2518Google Scholar
  164. 164.
    Kopidakis N, Schiff EA, Park N-G, van de Lagemaat J, Frank AJ (2000) Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. J Phys Chem B 104(16):3930–3936Google Scholar
  165. 165.
    Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107(3):758–768Google Scholar
  166. 166.
    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea EM, Palomares E (2008) A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg Chim Acta 361(3):684–698Google Scholar
  167. 167.
    Montero JM, Bisquert J (2011) Trap origin of field-dependent mobility of the carrier transport in organic layers. Solid-State Electron 55(1):1–4Google Scholar
  168. 168.
    Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S (2009) Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem C 113(40):17278–17290Google Scholar
  169. 169.
    Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J Phys Chem B 106(34):8774–8782Google Scholar
  170. 170.
    Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108(24):8106–8118Google Scholar
  171. 171.
    Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Chem Phys Chem 4(8):859–864Google Scholar
  172. 172.
    Bailes M, Cameron PJ, Lobato K, Peter LM (2005) Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells. J Phys Chem B 109(32):15429–15435Google Scholar
  173. 173.
    Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38(1):115–164Google Scholar
  174. 174.
    Hagfeldt A, Peter L (2010) Dye-sensitized solar cells dye-sensitized solar cells. EPFL, LausanneGoogle Scholar
  175. 175.
    Moser JE (2010) Dye-sensitized solar cells dye-sensitized solar cells. EPFL, LausanneGoogle Scholar
  176. 176.
    Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453Google Scholar
  177. 177.
    Diebold U, Ruzycki N, Herman GS, Selloni A (2003) One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal Today 85(2–4):93–100Google Scholar
  178. 178.
    Vittadini A, Selloni A, Rotzinger FP, Grätzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phy Rev Lett 81(14):2954–2957Google Scholar
  179. 179.
    Diebold U (2003) Surf Sci Rep 48:53–229Google Scholar
  180. 180.
    Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO(2): comparison of standard GGA, GGA plus U, and hybrid DFT calculations. J Chem Phys 129(15):154113Google Scholar
  181. 181.
    Finazzi E, Di Valentin C, Pacchioni G (2009) Nature of Ti interstitials in reduced bulk anatase and rutile TiO2. J Phys Chem C 113(9):3382–3385Google Scholar
  182. 182.
    Krüger P, Bourgeois S, Domenichini B, Magnan H, Chandesris D, Le Fèvre P, Flank AM, Jupille J, Floreano L, Cossaro A, Verdini A, Morgante A (2008) Defect states at the TiO2 (110) surface probed by resonant photoelectron diffraction. Phys Rev Lett 100(5):055501Google Scholar
  183. 183.
    Barnard AS, Erdin S, Lin Y, Zapol P, Halley JW (2006) Modeling the structure and electronic properties of TiO2 nanoparticles. Phys Rev B 73(20):205405Google Scholar
  184. 184.
    Li Y-F, Liu Z-P (2011) Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J Am Chem Soc 133(39):15743–15752Google Scholar
  185. 185.
    Zhang JF, Hughes T, Steigerwald M, Brus LA, Friesner R (2012) Realistic cluster modeling of electron transport and trapping in solvated TiO2 nanoparticles. J Am Chem Soc 134(29):12028–12042Google Scholar
  186. 186.
    Koparde VN, Cummings PT (2008) Phase transformations during sintering of titania nanoparticles. ACS Nano 2(8):1620–1624Google Scholar
  187. 187.
    Alimohammadi M, Fichthorn KA (2009) Molecular dynamics simulation of the aggregation of titanium dioxide nanocrystals: preferential alignment. Nano Lett 9(12):4198–4203Google Scholar
  188. 188.
    Nunzi F, Mosconi E, Storchi L, Ronca E, Selloni A, Gratzel M, De Angelis F (2013) Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering. Energy Environ Sci 6:1221–1229Google Scholar
  189. 189.
    Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem Phys 2:41–51Google Scholar
  190. 190.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99(6):391–403Google Scholar
  191. 191.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Frates G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umaril P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502Google Scholar
  192. 192.
    Bisquert J, Zaban A, Greenshtein M, Mora-Serò I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126(41):13550–13559Google Scholar
  193. 193.
    Monticone S, Tufeu R, Kanaev AV (1998) Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B 102(16):2854–2862Google Scholar
  194. 194.
    van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B 104(8):1715–1723Google Scholar
  195. 195.
    Kahn ML, Cardinal T, Bousquet B, Monge M, Jubera V, Chaudret B (2006) Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. Chem Phys Chem 7(11):2392–2397Google Scholar
  196. 196.
    Schrier J, Demchenko DO, Wang L-W, Alivisatos AP (2007) Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett 7(8):2377–2382Google Scholar
  197. 197.
    Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110(33):16159–16161Google Scholar
  198. 198.
    Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041Google Scholar
  199. 199.
    Martinson ABF, Elam JW, Hupp JT, Pellin MJ (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7(8):2183–2187Google Scholar
  200. 200.
    De Angelis F, Armelao L (2011) Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation. Phys Chem Chem Phys 13:467–475Google Scholar
  201. 201.
    Azpiroz JM, Mosconi E, De Angelis F (2011) Modeling ZnS and ZnO nanostructures: structural, electronic, and optical properties. J Phys Chem C 115:25219–25226Google Scholar
  202. 202.
    Azpiroz JM, Infante I, Lopez X, Ugalde JU, De Angelis F (2012) A first-principles study of II–VI (II = Zn; VI = O, S, Se, Te) semiconductor nanostructures. J Mater Chem 22:21453–21465Google Scholar
  203. 203.
    Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C (2009) First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc 131(40):14290–14298Google Scholar
  204. 204.
    Westermark K, Rensmo H, Siegbahn H (2002) PES studies of Ru(dcbpyH2)2(NCS)2 adsorption on nanostructured ZnO for solar cell applications. J Phys Chem B 106(39):10102–10107Google Scholar
  205. 205.
    Persson P, Lunell S, Ojamäe L (2002) Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO(1010) surfaces. Int J Quantum Chem 89(3):172–180Google Scholar
  206. 206.
    Persson P, Ojamäe L (2000) Periodic Hartree–Fock study of the adsorption of formic acid on ZnO(1010). Chem Phys Lett 321(3.4):302–308Google Scholar
  207. 207.
    Amat A, De Angelis F (2012) Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited states nature at the dye/semiconductor interface. Chem Phys Phys Chem 14:10662–10668Google Scholar
  208. 208.
    Patterson CH (2006) Role of defects in ferromagnetism in Zn1xCoxO: a hybrid density-functional study. Phys Rev B 74(14):144432Google Scholar
  209. 209.
    Wander A, Harrison NM (2001) The stability of polar oxide surfaces: the interaction of H2O with ZnO(0001) and ZnO(000). J Chem Phys 115(5):2312Google Scholar
  210. 210.
    Matxain JM, Mercero JM, Fowler JE, Ugalde JM (2003) Electronic excitation energies of ZniOi clusters. J Am Chem Soc 125(31):9494–9499Google Scholar
  211. 211.
    Liu D-P, Li G-D, Su Y, Chen J-S (2006) Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angew Chem Int Ed 45(44):7370–7373. doi: 10.1002/anie.200602429 Google Scholar
  212. 212.
    Meyer B (2004) First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Phys Rev B 69(4):045416Google Scholar
  213. 213.
    Li C, Guo W, Kong Y, Gao H (2007) First-principles study on ZnO nanoclusters with hexagonal prism structures. Appl Phys Lett 90(22):223102–223103Google Scholar
  214. 214.
    Shen X, Allen PB, Muckerman JT, Davenport JW, Zheng J-C (2007) Wire versus tube: stability of small one-dimensional ZnO nanostructures. Nano Lett 7(8):2267–2271Google Scholar
  215. 215.
    Djurišić AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961Google Scholar
  216. 216.
    Armelao L, Pascolini M, Biasiolo E, Tondello E, Bottaro G, Dalle Carbonare MD, D'Arrigo A, Leon A (2008) Innovative metal oxide-based substrates for DNA microarrays. Inorg Chim Acta 361(12–13):3603–3608Google Scholar
  217. 217.
    Lundqvist MJ, Nilsing M, Lunell S, Åkermark B, Persson P (2006) Spacer and anchor effects on the electronic coupling in ruthenium-bis-terpyridine dye-sensitized TiO2 nanocrystals studied by DFT. J Phys Chem B 110(41):20513–20525Google Scholar
  218. 218.
    Wiberg J, Marinado T, Hagberg DP, Sun L, Hagfeldt A, Albinsson B (2009) Effect of anchoring group on electron injection and recombination dynamics in organic dye-sensitized solar cells. J Phys Chem C 113(9):3881–3886Google Scholar
  219. 219.
    Pastore M, De Angelis F (2010) Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. ACS Nano 4(1):556–562Google Scholar
  220. 220.
    Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164(1–3):3–14Google Scholar
  221. 221.
    Odobel F, Blart E, Lagrée M, Villieras M, Boujtita H, El Murr N, Caramori S, Bignozzi CA (2003) Porphyrin dyes for TiO2 sensitization. J Mater Chem 13(3):502–510Google Scholar
  222. 222.
    Abbotto A, Manfredi N, Marinzi C, De Angelis F, Mosconi E, Yum J, Xianxi Z, Nazeeruddin MK, Grätzel M (2009) Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy Environ Sci 2(10):1094. doi: 10.1039/b910654e Google Scholar
  223. 223.
    Argazzi R, Bignozzi CA (2002) Solvatochromic dye sensitized nanocrystalline solar cells. Nano Lett 2(6):625–628Google Scholar
  224. 224.
    Katoh R, Kasuya M, Furube A, Fuke N, Koide N, Han L (2009) Quantitative study of solvent effects on electron injection efficiency for black-dye-sensitized nanocrystalline TiO2 films. Sol Energy Mater Sol Cells 93(6–7):698–703Google Scholar
  225. 225.
    Hara K, Dan-oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H (2004) Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 20:4205–4210Google Scholar
  226. 226.
    Kay A, Gratzel M (1993) Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97:6272–6277Google Scholar
  227. 227.
    Liu Y, Hagfeldt A, Xiao X-R, Lindquist S-E (1998) Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol Energy Mater Sol Cells 55(3):267–281Google Scholar
  228. 228.
    Falaras P (1998) Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide. Sol Energy Mater Sol Cells 53(1–2):163–175Google Scholar
  229. 229.
    Finnie KS, Bartlett JR, Woolfrey JL (1998) Vibrational spectroscopic study of the coordination of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania. Langmuir 14:2744–2749Google Scholar
  230. 230.
    Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu L (2009) A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J Phys Chem C 113:20117–20126Google Scholar
  231. 231.
    Hara K, Sato T, Katoh R, Furube A, Yoshihara T, Murai M, Kurashige M, Ito S, Shinpo A, Suga S (2005) Novel conjugated organic dyes for efficient dye sensitized solar cells. Adv Funct Mater 15(2):246–252Google Scholar
  232. 232.
    Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107:597–606Google Scholar
  233. 233.
    Ganbold E-O, Lee Y, Lee K, Kwon O, Joo S-W (2010) Interfacial behavior of benzoic acid and phenylphosphonic acid on nanocrystalline TiO2 surfaces. Chem Asian J 5:852–858Google Scholar
  234. 234.
    Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987Google Scholar
  235. 235.
    Lee KE, Gomez MA, Elouatik S, Demopoulos GP (2010) Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26(12):9575–9583Google Scholar
  236. 236.
    Pérez León C, Kador L, Peng B, Thelakkat M (2006) Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV−vis, Raman, and FTIR spectroscopies. J Phys Chem B 110(17):8723–8730Google Scholar
  237. 237.
    Anselmi C, Mosconi E, Pastore M, Ronca E, De Angelis F (2012) Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. Phy Chem Chem Phys 14(46):15963–15974Google Scholar
  238. 238.
    Johansson EMJ, Edvinsson T, Odelius M, Hagberg DP, Sun L, Hagfeldt A, Siegbahn H, Rensmo H (2007) Electronic and molecular surface structure of a polyene-diphenylaniline dye adsorbed from solution onto nanoporous TiO2. J Phys Chem C 111:8580–8586Google Scholar
  239. 239.
    Marinado T, Hagberg D, Hedlund M, Edvinsson T, Johansson E, Boschloo G, Rensmo H, Brinck T, Sun L, Hagfeldt A (2009) Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance. Phys Chem Chem Phys 11(1):133–141Google Scholar
  240. 240.
    Hahlin M, Johansson E, Plogmaker S, Odelius M, Sun L, Siegbahn H, Rensmo H (2010) Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Phys Chem Chem Phys 12:1507–1517Google Scholar
  241. 241.
    Karlsson KM, Jiang X, Eriksson SK, Gabrielsson E, Rensmo H, Hagfeldt A, Sun L (2011) Phenoxazine dyes for dye-sensitized solar cells: relationship between molecular structure and electron lifetime. Chem Eur J 17(23):6415–6424Google Scholar
  242. 242.
    Wang M, Plogmaker S, Humphry-Baker R, Pechy P, Rensmo H, Zakeeruddin SM, Grätzel M (2012) Molecular-scale interface engineering of nanocrystalline titania by co-adsorbents for solar energy conversion. Chem Sus Chem 5(1):181–187Google Scholar
  243. 243.
    Nara M, Torii H, Tasumi M (1996) Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: an ab initio molecular orbital study. J Phys Chem 100:19812–19817Google Scholar
  244. 244.
    Deacon GB, Phillips RJ (1980) Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250Google Scholar
  245. 245.
    Shklover V, Ovchinnikov YE, Braginsky LS, Zakeeruddin SM, Grätzel M (1998) Structure of organic/inorganic interface in assembled materials comprising molecular components. Crystal structure of the sensitizer bis[(4,4′-carboxy-2,2′-bipyridine)(thiocyanato)]ruthenium(II). Chem Mater 10(9):2533–2541Google Scholar
  246. 246.
    Schiffmann F, VandeVondele J, Hutter J, Wirz R, Urakawa A, Baiker A (2010) Protonation-dependent binding of ruthenium bipyridyl complexes to the anatase(101) surface. J Phys Chem C 114(18):8398–8404Google Scholar
  247. 247.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2010) First-principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J Phys Chem C 114(13):6054–6061Google Scholar
  248. 248.
    De Angelis F, Fantacci S, Mosconi E, Nazeeruddin MK, Grätzel M (2011) Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models. J Phys Chem C 115(17):8825–8831Google Scholar
  249. 249.
    Rocca D, Gebauer R, De Angelis F, Nazeeruddin MK, Baroni S (2009) Time-dependent density functional theory study of squaraine dye-sensitized solar cells. Chem Phys Lett 475:49–53Google Scholar
  250. 250.
    Martsinovich N, Jones DR, Troisi A (2010) Electronic structure of TiO2 surfaces and effect of molecular adsorbates using different DFT implementations. J Phys Chem C 114(51):22659–22670Google Scholar
  251. 251.
    Martsinovich N, Troisi A (2011) High-throughput computational screening of chromophores for dye-sensitized solar cells. J Phys Chem C 115(23):11781–11792Google Scholar
  252. 252.
    De Angelis F (2010) Direct vs indirect injection mechanisms in perylene dye-sensitized solar cells: a DFT/TDDFT investigation. Chem Phys Lett 493(4–6):323–327Google Scholar
  253. 253.
    Persson P, Bergstrom R, Lunell S (2000) Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles. J Phys Chem B 104(44):10348–10351Google Scholar
  254. 254.
    Vittadini A, Selloni A, Rotzinger FP, Grätzel M (2000) Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B 104(6):1300–1306Google Scholar
  255. 255.
    Tian H, Yang X, Chen R, Zhang R, Hagfeldt A, Sun L (2008) Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J Phys Chem C 112:11023–11033Google Scholar
  256. 256.
    Pastore M, De Angelis F (2011) Computational modeling of stark effects in organic dye-sensitized TiO2 heterointerfaces. J Phys Chem Lett 2(11):1261–1267Google Scholar
  257. 257.
    Mosconi E, Selloni A, De Angelis F (2012) Solvent effects on the adsorption geometry and electronic structure of dye-sensitized TiO2: a first-principles investigation. J Phys Chem C 116(9):5932–5940Google Scholar
  258. 258.
    Nunzi F, De Angelis F (2011) DFT investigations of formic acid adsorption on single-wall TiO2 nanotubes: effect of the surface curvature. J Phys Chem C 115(5):2179–2186Google Scholar
  259. 259.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phy Rev Lett 77(18):3865–3868Google Scholar
  260. 260.
    Foster AS, Nieminen RM (2004) Adsorption of acetic and trifluoroacetic acid on the TiO2(110) surface. J Chem Phys 121(18):9039Google Scholar
  261. 261.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comp Chem 22(9):931–967Google Scholar
  262. 262.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Revision B05 edn. Gaussian Inc., PittsburghGoogle Scholar
  263. 263.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377Google Scholar
  264. 264.
    Miller KL, Musgrave CB, Falconer JL, Medlin JW (2011) Effects of water and formic acid adsorption on the electronic structure of anatase TiO2(101). J Phys Chem C 115(6):2738–2749Google Scholar
  265. 265.
    Miller KL, Falconer JL, Medlin JW (2011) Effect of water on the adsorbed structure of formic acid on TiO2 anatase (1 0 1). J Catalysis 278(2):321–328Google Scholar
  266. 266.
    Hagberg DP, Yum J-H, Lee H, De Angelis F, Marinado T, Karlsson KM, Humphry-Baker R, Sun L, Hagfeldt A, Grätzel M, Nazeeruddin MK (2008) Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J Am Chem Soc 130:6259–6266Google Scholar
  267. 267.
    Hagberg DP, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun LC (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Comm 21:2245–2247Google Scholar
  268. 268.
    Hagberg DP, Marinado T, Karlsson KM, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun L (2007) Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J Org Chem 72(25):9550–9556Google Scholar
  269. 269.
    Cappel UB, Feldt SM, Schoneboom J, Hagfeldt A, Boschloo G (2010) The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells. J Am Chem Soc 132:9096–9101Google Scholar
  270. 270.
    Nilsing M, Persson P, Lunell S, Ojamäe L (2007) Dye-sensitization of the TiO2 rutile (110) surface by perylene dyes: quantum-chemical periodic B3LYP computations. J Phys Chem C 111(32):12116–12123Google Scholar
  271. 271.
    Li J, Nilsing M, Kondov I, Wang H, Persson P, Lunell S, Thoss M (2008) Dynamical simulation of photoinduced electron transfer reactions in dye – semiconductor systems with different anchor groups. J Phys Chem C 112(32):12326–12333Google Scholar
  272. 272.
    Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA III, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theor Comp 2(2):441–451Google Scholar
  273. 273.
    Moser JE, Grätzel M (1993) Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region. Chem Phys 176(2–3):493–500Google Scholar
  274. 274.
    O'Regan B, Moser J, Anderson M, Grätzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726Google Scholar
  275. 275.
    Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2000) Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B 104(3):538–547Google Scholar
  276. 276.
    Haque SA, Tachibana Y, Klug DR, Durrant JR (1998) Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J Phys Chem B 102(10):1745–1749Google Scholar
  277. 277.
    Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function. Angew Chem Int Ed 44:5740–5744Google Scholar
  278. 278.
    Prezhdo OV, Duncan WR, Prezhdo VV (2008) Dynamics of the photoexcited electron at the chromophore–semiconductor interface. Acc Chem Res 41(2):339–348Google Scholar
  279. 279.
    Haque SA, Palomares E, Cho BM, Green ANM, Hirata N, Klug DR, Durrant JR (2005) Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J Am Chem Soc 127(10):3456–3462Google Scholar
  280. 280.
    Long H, Zhou D, Zhang M, Peng C, Uchida S, Wang P (2011) Probing dye-correlated interplay of energetics and kinetics in mesoscopic titania solar cells with 4-tert-butylpyridine. J Phys Chem C 115(29):14408–14414Google Scholar
  281. 281.
    Nilsing M, Persson P, Ojamäe L (2005) Anchor group influence on molecule-metal oxide interfaces: periodic hybrid DFT study of pyridine bound to TiO2 via carboxylic and phosphonic acid. Chem Phys Lett 415(4–6):375–380Google Scholar
  282. 282.
    Pal SK, Sundstrom V, Galoppini E, Persson P (2009) Calculations of interfacial interactions in pyrene-Ipa rod sensitized nanostructured TiO2. Dalton Trans (45):10021–10031Google Scholar
  283. 283.
    Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theory Comput 2(2):441–451Google Scholar
  284. 284.
    Li J, Wang H, Persson P, Thoss M (2012) Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups. J Chem Phys 137(22):22A529-516Google Scholar
  285. 285.
    Ambrosio F, Martsinovich N, Troisi A (2012) Effect of the anchoring group on electron injection: theoretical study of phosphonated dyes for dye-sensitized solar cells. J Phys Chem C 116(3):2622–2629Google Scholar
  286. 286.
    Maggio E, Martsinovich N, Troisi A (2012) Evaluating charge recombination rate in dye-sensitized solar cells from electronic structure calculations. J Phys Chem C 116(14):7638–7649Google Scholar
  287. 287.
    Jones DR, Troisi A (2010) A method to rapidly predict the charge injection rate in dye sensitized solar cells. Phys Chem Chem Phys 12(18):4625–4634Google Scholar
  288. 288.
    Maggio E, Martsinovich N, Troisi A (2012) Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells. J Chem Phys 137(22):22A508Google Scholar
  289. 289.
    Maggio E, Martsinovich N, Troisi A (2013) Using orbital symmetry to minimize charge recombination in dye-sensitized solar cells. Angew Chem Int Ed 52(3):973–975Google Scholar
  290. 290.
    Ambrosio F, Martsinovich N, Troisi A (2012) What is the best anchoring group for a dye in a dye-sensitized solar cell? J Phys Chem Lett 3(11):1531–1535Google Scholar
  291. 291.
    Persson P, Lundqvist MJ (2005) Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. J Phys Chem B 109(24):11918–11924Google Scholar
  292. 292.
    Labat F, Ciofini I, Adamo C (2012) Revisiting the importance of dye binding mode in dye-sensitized solar cells: a periodic viewpoint. J Mater Chem 22(24):12205–12211Google Scholar
  293. 293.
    Labat FDR, Ciofini I, Hratchian HP, Frisch MJ, Raghavachari K, Adamo C (2011) Insights into working principles of ruthenium polypyridyl dye-sensitized solar cells from first principles modeling. J Phys Chem C 115(10):4297–4306Google Scholar
  294. 294.
    Martsinovich N, Ambrosio F, Troisi A (2012) Adsorption and electron injection of the N3 metal-organic dye on the TiO2 rutile (110) surface. Phys Chem Chem Phys 14(48):16668–16676Google Scholar
  295. 295.
    Persson P, Lundqvist MJ (2005) Calculated structural and electronic interactions of a titanium dioxide nanocrystal sensitized with the ruthenium dye N3. J Phys Chem B 109:11918Google Scholar
  296. 296.
    Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2001) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493. doi: 10.1021/ja016561n Google Scholar
  297. 297.
    Wenger B, Grätzel M, Moser J-E (2005) Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc 127(35):12150–12151Google Scholar
  298. 298.
    Kuang D, Ito S, Wenger B, Klein C, Moser J-E, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2006) High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc 128(12):4146–4154Google Scholar
  299. 299.
    Mayor LC, Taylor JB, Magnano G, Rienzo A, Satterley CJ, O'Shea JN, Schnadt J (2008) Photoemission, resonant photoemission, and X-ray absorption of a Ru(II) complex adsorbed on rutile TiO2 (110) prepared by in situ electrospray deposition. J Chem Phys 129(11):114701–114709Google Scholar
  300. 300.
    Weston M, Britton AJ, O'Shea JN (2011) Charge transfer dynamics of model charge transfer centers of a multicenter water splitting dye complex on rutile TiO2 (110). J Chem Phys 134(5):054705–054710Google Scholar
  301. 301.
    Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2002) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493Google Scholar
  302. 302.
    Bräm O, Cannizzo A, Chergui M (2012) Ultrafast fluorescence studies of dye sensitized solar cells. Phy Chem Chem Phys 14:7934–7937Google Scholar
  303. 303.
    Szarko JM, Neubauer A, Bartelt A, Socaciu-Siebert L, Birkner F, Schwarzburg K, Hannappel T, Eichberger R (2008) The ultrafast temporal and spectral characterization of electron injection from perylene derivatives into ZnO and TiO2 colloidal films. J Phys Chem C 112(28):10542–10552Google Scholar
  304. 304.
    Gonzalez-Moreno R, Cook PL, Zegkinoglou I, Liu X, Johnson PS, Yang W, Ruther RE, Hamers RJ, Tena-Zaera R, Himpsel FJ, Ortega JE, Rogero C (2011) Attachment of protoporphyrin dyes to nanostructured ZnO surfaces: characterization by near edge X-ray absorption fine structure spectroscopy. J Phys Chem C 115(37):18195–18201Google Scholar
  305. 305.
    Burfeindt B, Hannappel T, Storck W, Willig F (1996) Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. J Phys Chem 100(41):16463–16465. doi: 10.1021/jp9622905 Google Scholar
  306. 306.
    Ronca E, Pastore M, Belpassi L, Tarantelli F, De Angelis F (2013) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energy Environ Sci 6:183–193Google Scholar
  307. 307.
    Belpassi L, Infante I, Tarantelli F, Visscher L (2008) The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130(3):1048–1060Google Scholar
  308. 308.
    Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126(39):12218–12219Google Scholar
  309. 309.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474Google Scholar
  310. 310.
    Pasquarello A, Laasonen K, Car R, Lee C, Vanderbilt D (1992) Ab initio molecular dynamics for d-electron systems: liquid copper at 1500 K. Phys Rev Lett 69(13):1982–1985Google Scholar
  311. 311.
    Giannozzi P, Angelis FD, Car R (2004) First-principle molecular dynamics with ultrasoft pseudopotentials: parallel implementation and application to extended bioinorganic systems. J Chem Phys 120(13):5903–5915Google Scholar
  312. 312.
    Ardo S, Sun Y, Castellano FN, Meyer GJ (2010) Excited-state electron transfer from ruthenium-polypyridyl compounds to anatase TiO2 nanocrystallites: evidence for a stark effect. J Phys Chem B 114:14596–14604Google Scholar
  313. 313.
    Ardo S, Sun Y, Staniszewski A, Castellano FN, Meyer GJ (2010) Stark effects after excited-state interfacial electron transfer at sensitized TiO2 nanocrystallites. J Am Chem Soc 132:6696–6709Google Scholar
  314. 314.
    Staniszewski A, Ardo S, Sun Y, Castellano FN, Meyer GJ (2008) Slow cation transfer follows sensitizer regeneration at anatase TiO2 interfaces. J Am Chem Soc 130(35):11586–11587Google Scholar
  315. 315.
    Snaith HJ, Karthikeyan CS, Petrozza A, Teuscher J, Moser JE, Nazeeruddin MK, Thelakkat M, Grätzel M (2008) High extinction coefficient “Antenna” dye in solid-state dye-sensitized solar cells: a photophysical and electronic study. J Phys Chem C 112(20):7562–7566Google Scholar
  316. 316.
    Cappel UB, Gibson EA, Hagfeldt A, Boschloo G (2009) Dye regeneration by spiro-MeOTAD in solid state dye-sensitized solar cells studied by photoinduced absorption spectroscopy and spectroelectrochemistry. J Phys Chem C 113:6275–6281Google Scholar
  317. 317.
    Anderson AY, Barnes PRF, Durrant JR, O'Regan B (2010) Simultaneous transient absorption and transient electrical measurements on operating dye-sensitized solar cells: elucidating the intermediates in iodide oxidation. J Phys Chem C 114:1953–1958Google Scholar
  318. 318.
    Cappel UB, Smeigh AL, Plogmaker S, Johansson EMJ, Rensmo H, Hammarström L, Hagfeldt A, Boschloo G (2011) Characterization of the interface properties and processes in solid state dye-sensitized solar cells employing a perylene sensitizer. J Phys Chem C 115:4345–4358Google Scholar
  319. 319.
    Stark J (1914) Observation of the separation of spectral lines by an electric field. Nature 401:401Google Scholar
  320. 320.
    Boxer SG (2009) Stark realities. J Phys Chem B 113:2972–2983Google Scholar
  321. 321.
    Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Ann Rev Phys Chem 48:213–242Google Scholar
  322. 322.
    Patrick CE, Giustino F (2011) O 1s core-level shifts at the anatase TiO2 (101)/N3 photovoltaic interface: signature of H-bonded supramolecular assembly. Phys Rev B 84:085330Google Scholar
  323. 323.
    Wang Q, Zakeeruddin SM, Nazeeruddin MK, Humphry-Baker R, Grätzel M (2006) Molecular wiring of nanocrystals: NCS-enhanced cross-surface charge transfer in self-assembled Ru-complex monolayer on mesoscopic oxide films. J Am Chem Soc 128:4446–4452Google Scholar
  324. 324.
    Ellis-Gibbings L, Johansson V, Walsh RB, Kloo L, Quinton JS, Andersson GG (2012) Formation of N719 dye multilayers on dye sensitized solar cell photoelectrode surfaces investigated by direct determination of element concentration depth profiles. Langmuir 28(25):9431–9439Google Scholar
  325. 325.
    Föster T (1959) 10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17Google Scholar
  326. 326.
    Hoke ET, Hardin BE, McGehee MD (2010) Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells. Opt Exp 18(4):3893–3904Google Scholar
  327. 327.
    Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A, Yoriya S, Grimes CA (2010) High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett 10(7):2387–2394Google Scholar
  328. 328.
    Hardin BE, Sellinger A, Moehl T, Humphry-Baker R, Moser J-E, Wang P, Zakeeruddin SM, Grätzel M, McGehee MD (2011) Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells. J Am Chem Soc 133(27):10662–10667Google Scholar
  329. 329.
    Pastore F, De Angelis F (2013) Intermolecular interactions in dye-sensitized solar cells: a computational modeling perspective. J Phys Chem Lett 4:956–974Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computational Laboratory for Hybrid Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie MolecolariPerugiaItaly

Personalised recommendations