Advertisement

Monte Carlo Simulations of Organic Photovoltaics

  • Chris Groves
  • Neil C. GreenhamEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 352)

Abstract

Monte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.

Keywords

Monte Carlo simulation Organic semiconductors Photovoltaics 

References

  1. 1.
    Bässler H (1993) Phys Status Solidi B Basic Res 175:15–56Google Scholar
  2. 2.
    Wolf U, Arkhipov VI, Bässler H (1999) Phys Rev B 59:7507–7513Google Scholar
  3. 3.
    Barth S, Wolf U, Bässler H (1999) Phys Rev B 60:8791–8797Google Scholar
  4. 4.
    Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Phys Rev Lett 94:206601CrossRefGoogle Scholar
  5. 5.
    Zhou J, Zhou YC, Zhao JM, Wu CQ, Ding XM, Hou XY (2007) Phys Rev B 75:153201CrossRefGoogle Scholar
  6. 6.
    Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Phys Rev B 72:155206CrossRefGoogle Scholar
  7. 7.
    Jansen APJ (2012) An introduction to kinetic Monte Carlo simulations of surface reactions. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  8. 8.
    Athanasopoulos S, Kirkpatrick J, Martinez D, Frost JM, Foden CM, Walker AB, Nelson J (2007) Nano Lett 7:1785–1788CrossRefGoogle Scholar
  9. 9.
    Marsh RA, Groves C, Greenham NC (2007) J Appl Phys 101:083509CrossRefGoogle Scholar
  10. 10.
    Watkins PK, Walker AB, Verschoor GLB (2005) Nano Lett 5:1814–1818CrossRefGoogle Scholar
  11. 11.
    van Eersel H, Janssen RAJ, Kemerink M (2012) Adv Funct Mater 22:2700–2708CrossRefGoogle Scholar
  12. 12.
    Groves C, Greenham NC (2008) Phys Rev B 78:155205CrossRefGoogle Scholar
  13. 13.
    Crossland EJW, Tremel K, Fischer F, Rahimi K, Reiter G, Steiner U, Ludwigs S (2012) Adv Mater 24:839–844CrossRefGoogle Scholar
  14. 14.
    Liu T, Cheung DL, Troisi A (2011) Phys Chem Chem Phys 13:21461–21470CrossRefGoogle Scholar
  15. 15.
    Yan H, Swaraj S, Wang C, Hwang I, Greenham NC, Groves C, Ade H, McNeill CR (2010) Adv Funct Mater 20:4329–4337CrossRefGoogle Scholar
  16. 16.
    Kimber RGE, Wright EN, O'Kane SEJ, Walker AB, Blakesley JC (2012) Phys Rev B 86:235206CrossRefGoogle Scholar
  17. 17.
    Lyons BP, Clarke N, Groves C (2011) J Phys Chem C 115:22572–22577Google Scholar
  18. 18.
    Lyons BP, Clarke N, Groves C (2012) Energy Environ Sci 5:7657–7663CrossRefGoogle Scholar
  19. 19.
    Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Phys Rev B 72:085205CrossRefGoogle Scholar
  20. 20.
    Athanasopoulos S, Emelianova EV, Walker AB, Beljonne D (2009) Phys Rev B 80:195209CrossRefGoogle Scholar
  21. 21.
    Feron K, Zhou X, Belcher WJ, Dastoor PC (2012) J Appl Phys 111:044510CrossRefGoogle Scholar
  22. 22.
    Feron K, Fell CJ, Rozanski LJ, Gong BB, Nicolaidis N, Belcher WJ, Zhou X, Sesa E, King BV, Dastoor PC (2012) Appl Phys Lett 101:193306CrossRefGoogle Scholar
  23. 23.
    Oosterhout SD, Wienk MM, van Bavel SS, Thiedmann R, Koster LJA, Gilot J, Loos J, Schmidt V, Janssen RAJ (2009) Nat Mater 8:818–824Google Scholar
  24. 24.
    Hindson JC, Saghi Z, Hernandez-Garrido J-C, Midgley PA, Greenham NC (2011) Nano Lett 11:904–909CrossRefGoogle Scholar
  25. 25.
    Peumans P, Uchida S, Forrest SR (2003) Nature 425:158–162CrossRefGoogle Scholar
  26. 26.
    Wodo O, Ganapathysubramanian B (2012) Comput Mater Sci 55:113–126CrossRefGoogle Scholar
  27. 27.
    Gagorik AG, Mohin JW, Kowalewski T, Hutchison GR (2013) J Phys Chem Lett 4:36–42Google Scholar
  28. 28.
    Nelson J, Kwiatkowski JJ, Kirkpatrick J, Frost JM (2009) Acc Chem Res 42:1768–1778CrossRefGoogle Scholar
  29. 29.
    MacKenzie RCI, Shuttle CC, Chablinyc ML, Nelson J (2012) Adv Energy Mater 2:662–669CrossRefGoogle Scholar
  30. 30.
    Gartstein YN, Conwell EM (1995) Chem Phys Lett 245:351–358Google Scholar
  31. 31.
    Groves C, Blakesley JC, Greenham NC (2010) Nano Lett 10:1063–1069CrossRefGoogle Scholar
  32. 32.
    Groves C (2013) Energy Environ Sci 6:1546–1551CrossRefGoogle Scholar
  33. 33.
    Casalegno M, Raos G, Po R (2010) J Chem Phys 132:094705Google Scholar
  34. 34.
    van der Holst JJM, van Oost FWA, Coehoorn R, Bobbert PA (2011) Phys Rev B 83:085206CrossRefGoogle Scholar
  35. 35.
    Meng LY, Wang D, Li QK, Yi YP, Bredas JL, Shuai ZG (2011) J Chem Phys 134:124102Google Scholar
  36. 36.
    Kimber RGE, Walker AB, Schroder-Turk GE, Cleaver DJ (2010) Phys Chem Chem Phys 12:844–851CrossRefGoogle Scholar
  37. 37.
    Groves C, Kimber RGE, Walker AB (2010) J Chem Phys 133:144110Google Scholar
  38. 38.
    Lukkien JJ, Segers JPL, Hilbers PAJ, Gelten RJ, Jansen APJ (1998) Phys Rev E 58:2598–2610CrossRefGoogle Scholar
  39. 39.
    Groves C, Marsh RA, Greenham NC (2008) J Chem Phys 129:114903Google Scholar
  40. 40.
    Clarke TM, Durrant JR (2010) Chem Rev 110:6736–6767CrossRefGoogle Scholar
  41. 41.
    Onsager L (1938) Phys Rev 54:554CrossRefGoogle Scholar
  42. 42.
    Braun CL (1984) J Chem Phys 80:4157–4161Google Scholar
  43. 43.
    Veldman D, Ipek O, Meskers SCJ, Sweelssen J, Koetse MM, Veenstra SC, Kroon JM, van Bavel SS, Loos J, Janssen RAJ (2008) J Am Chem Soc 130:7721–7735CrossRefGoogle Scholar
  44. 44.
    Dibb GFA, Jamieson FC, Maurano A, Nelson J, Durrant JR (2013) J Phys Chem Lett 803–808Google Scholar
  45. 45.
    Keivanidis PE, Clarke TM, Lilliu S, Agostinelli T, Macdonald JE, Durrant JR, Bradley DDC, Nelson J (2010) J Phys Chem Lett 1:734–738Google Scholar
  46. 46.
    Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photon 3:297–302CrossRefGoogle Scholar
  47. 47.
    Howard IA, Mauer R, Meister M, Laquai F (2010) J Am Chem Soc 132:14866–14876CrossRefGoogle Scholar
  48. 48.
    Jamieson FC, Agostinelli T, Azimi H, Nelson J, Durrant JR (2010) J Phys Chem Lett 1:3306–3310Google Scholar
  49. 49.
    Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PHM, Pshenichnikov MS, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) Science 335:1340–1344CrossRefGoogle Scholar
  50. 50.
    Grancini G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf HJ, Brida D, Cerullo G, Lanzani G (2013) Nat Mater 12:29–33Google Scholar
  51. 51.
    Jailaubekov AE, Willard AP, Tritsch JR, Chan WL, Sai N, Gearba R, Kaake LG, Williams KJ, Leung K, Rossky PJ, Zhu XY (2013) Nat Mater 12:66–73Google Scholar
  52. 52.
    Brabec CJ, Heeney M, McCulloch I, Nelson J (2011) Chem Soc Rev 40:1185–1199CrossRefGoogle Scholar
  53. 53.
    McNeill CR, Greenham NC (2009) Adv Mater 21:3840–3850CrossRefGoogle Scholar
  54. 54.
    Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR (2012) Chem Sci 3:485–492CrossRefGoogle Scholar
  55. 55.
    McMahon DP, Cheung DL, Troisi A (2011) J Phys Chem Lett 2:2737–2741Google Scholar
  56. 56.
    Caruso D, Troisi A (2012) Proc Natl Acad Sci USA 109:13498–13502CrossRefGoogle Scholar
  57. 57.
    Sano H, Tachiya M (1979) J Chem Phys 71:1276–1282Google Scholar
  58. 58.
    Tachiya M, Seki K (2010) Phys Rev B 82:085201CrossRefGoogle Scholar
  59. 59.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:052104CrossRefGoogle Scholar
  60. 60.
    Maturova K, van Bavel SS, Wienk MM, Janssen RAJ, Kemerink M (2009) Nano Lett 9:3032–3037CrossRefGoogle Scholar
  61. 61.
    Shuttle CG, O’Regan B, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Phys Rev B 78:113201CrossRefGoogle Scholar
  62. 62.
    Juška G, Arlauskas K, Stuchlik J, Osterbaka R (2006) J Non Crystal Solids 352:1167–1171CrossRefGoogle Scholar
  63. 63.
    Pivrikas A, Sariciftci NS, Juška G, Österbacka R (2007) Progress in Photovolt Res Appl 15:677–696CrossRefGoogle Scholar
  64. 64.
    Peumans P, Forrest SR (2004) Chem Phys Lett 398:27–31Google Scholar
  65. 65.
    Yang F, Forrest SR (2008) ACS Nano 2:1022–1032CrossRefGoogle Scholar
  66. 66.
    Meng LY, Shang Y, Li QK, Li YF, Zhan XW, Shuai ZG, Kimber RGE, Walker AB (2010) J Phys Chem B 114:36–41Google Scholar
  67. 67.
    Gregg BA (2011) J Phys Chem Lett 3013–3015Google Scholar
  68. 68.
    McNeill CR, Westenhoff S, Groves C, Friend RH, Greenham NC (2007) J Phys Chem C 111:19153–19160Google Scholar
  69. 69.
    He XM, Gao F, Tu GL, Hasko D, Huttner S, Steiner U, Greenham NC, Friend RH, Huck WTS (2010) Nano Lett 10:1302–1307CrossRefGoogle Scholar
  70. 70.
    Albrecht U, Bassler H (1995) Chem Phys Lett 235:389–393Google Scholar
  71. 71.
    Rubel O, Baranovskii SD, Stolz W, Gebhard F (2008) Phys Rev Lett 100:196602CrossRefGoogle Scholar
  72. 72.
    Deibel C, Strobel T, Dyakonov V (2009) Phys Rev Lett 103:036402CrossRefGoogle Scholar
  73. 73.
    Frost JM, Cheynis F, Tuladhar SM, Nelson J (2006) Nano Lett 6:1674–1681CrossRefGoogle Scholar
  74. 74.
    Greenham NC, Bobbert PA (2003) Phys Rev B 68:245301CrossRefGoogle Scholar
  75. 75.
    Nelson J (2003) Phys Rev B 67:155209CrossRefGoogle Scholar
  76. 76.
    Juška G, Genevičius K, Nekrašas N, Sliaužys G (2010) Phys Status Solidi (C) 7:980–983Google Scholar
  77. 77.
    Zaumseil J, Groves C, Winfield JM, Greenham NC, Sirringhaus H (2008) Adv Funct Mater 18:3630–3637CrossRefGoogle Scholar
  78. 78.
    Groves C, Reid OG, Ginger DS (2010) Acc Chem Res 43:612–620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Engineering and Computing SciencesDurham UniversityDurhamUK
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations