Advertisement

Sialic Acid Receptors of Viruses

  • Mikhail Matrosovich
  • Georg Herrler
  • Hans Dieter Klenk
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 367)

Abstract

Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.

Keywords

Ganglioside Mucins Neuraminidase Receptor binding Receptor-destroying enzyme Sialate-O-acetylesterase Virus 

Notes

Acknowledgements

Our own recent studies were supported by the Deutsche Forschungsgemeinschaft (SFB 587, SFB 593, SFB 621 and SFB 1021), the Bundesministerium fuer Bildung und Forschung (BMBF, FluResearchNet), the Von Behring-Roentgen-Stiftung, the LOEWE Program of the State of Hessen (Universities of Giessen and Marburg Lung Center), the Wellcome Trust grant WT085572MF, and the European Commission FP7 projects FLUPIG and PREDEMICS.

References

  1. 1.
    Hirst GK (1941) The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94:22–23Google Scholar
  2. 2.
    McClelland L, Hare R (1941) The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus. Can J Public Health 32:530–538Google Scholar
  3. 3.
    Burnet FM, Stone JD (1947) The receptor-destroying enzyme of V. cholerae. Aust J Exp Biol Med Sci 25:227–233Google Scholar
  4. 4.
    Gottschalk A, Lind PE (1949) Product of interaction between influenza virus enzyme and ovomucin. Nature 164:232Google Scholar
  5. 5.
    Klenk E, Faillard H, Lempfrid H (1955) Über die enzymatische Wirkung von Influenza Virus. Z physiol Chem 301:235–246Google Scholar
  6. 6.
    de Groot RJ (2006) Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj J 23:59–72Google Scholar
  7. 7.
    Lehmann F, Tiralongo E, Tiralongo J (2006) Sialic acid-specific lectins: occurrence, specificity and function. Cell Mol Life Sci 63:1331–1354Google Scholar
  8. 8.
    Neu U, Stehle T, Atwood WJ (2009) The Polyomaviridae: contributions of virus structure to our understanding of virus receptors and infectious entry. Virology 384:389–399Google Scholar
  9. 9.
    Olofsson S, Bergstrom T (2005) Glycoconjugate glycans as viral receptors. Ann Med 37:154–172Google Scholar
  10. 10.
    Taube S, Jiang M, Wobus CE (2010) Glycosphingolipids as receptors for non-enveloped viruses. Viruses 2:1011–1049Google Scholar
  11. 11.
    McCauley JW, Hongo S, Kaverin NV, Kochs G, Lamb RA, Matrosovich MN, Perez DR, Palese P, Presti RM, Rimstadt E et al. (2011) Orthomyxoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy. Elsevier, Oxford, pp 749–762Google Scholar
  12. 12.
    Palese P, Shaw ML (2007) Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott, Williams and Wilkins, Philadelphia, pp 1647–1689Google Scholar
  13. 13.
    Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA et al. (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109:4269–4274Google Scholar
  14. 14.
    Klenk HD (2011) Influenza virology. In: von Itzstein M (ed) Influenza virus sialidase – a drug discovery target. Springer, Basel, pp 1–29Google Scholar
  15. 15.
    Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285:28403–28409Google Scholar
  16. 16.
    Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569Google Scholar
  17. 17.
    Matrosovich MN, Klenk H-D, Kawaoka Y (2006) Receptor specificity, host range and pathogenicity of influenza viruses. In: Kawaoka Y (ed) Influenza virology: current topics. Caister Academic, Wymondham, pp 95–137Google Scholar
  18. 18.
    Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23Google Scholar
  19. 19.
    Matrosovich M, Tuzikov A, Bovin N, Gambarian A, Klimov A, Cox N, Castrucci M, Donatelli I, Kawaoka Y (2000) Alterations of receptor-binding properties of H1, H2 and H3 avian influenza virus hemagglutinins upon introduction into mammals. J Virol 74:8502–8512Google Scholar
  20. 20.
    Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373Google Scholar
  21. 21.
    Baum LG, Paulson JC (1990) Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl 40:35–38Google Scholar
  22. 22.
    Gambaryan A, Webster R, Matrosovich M (2002) Differences between influenza virus receptors on target cells of duck and chicken. Arch Virol 147:1197–1208Google Scholar
  23. 23.
    Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG et al. (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373Google Scholar
  24. 24.
    Kuchipudi SV, Nelli R, White GA, Bain M, Chang KC, Dunham S (2009) Differences in influenza virus receptors in chickens and ducks: implications for interspecies transmission. J Mol Genet Med 3:143–151Google Scholar
  25. 25.
    Pillai SP, Lee CW (2010) Species and age related differences in the type and distribution of influenza virus receptors in different tissues of chickens, ducks and turkeys. Virol J 7:5Google Scholar
  26. 26.
    Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436Google Scholar
  27. 27.
    Matrosovich M, Stech J, Klenk HD (2009) Influenza receptors, polymerase and host range. Rev Sci Tech 28:203–217Google Scholar
  28. 28.
    Matrosovich MN, Gambarian AS, Klenk HD (2008) Receptor specificity of influenza viruses and its alteration during interspecies transmission. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian Influenza. Karger, Basel, pp 134–155Google Scholar
  29. 29.
    Gambaryan A, Tuzikov A, Pazynina G, Bovin N, Balish A, Klimov A (2006) Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 344:432–438Google Scholar
  30. 30.
    Matrosovich M, Zhou N, Kawaoka Y, Webster R (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155Google Scholar
  31. 31.
    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410Google Scholar
  32. 32.
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101:4620–4624Google Scholar
  33. 33.
    Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY, Kwong DL, Wong MP, Chui WH, Poon LL, Tsao SW et al. (2007) Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med 13:147–149Google Scholar
  34. 34.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2006) H5N1 virus attachment to lower respiratory tract. Science 312:399Google Scholar
  35. 35.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171:1215–1223Google Scholar
  36. 36.
    Yao L, Korteweg C, Hsueh W, Gu J (2007) Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J. doi: 10.1096/fj.1006-7880com Google Scholar
  37. 37.
    Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541Google Scholar
  38. 38.
    Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428Google Scholar
  39. 39.
    Scholtissek C, Hinshaw VS, Olsen CW (1998) Influenza in pigs and their role as the intermediate host. In: Nicholson KG, Webster RG, Hay A (eds) Textbook of influenza. Blackwell Science, London, pp 137–145Google Scholar
  40. 40.
    Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, Matrosovich MN, Olsen CW, Klimov AI (2005) Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res 114:15–22Google Scholar
  41. 41.
    Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K (2010) Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol J 7:38Google Scholar
  42. 42.
    Bradley KC, Jones CA, Tompkins SM, Tripp RA, Russell RJ, Gramer MR, Heimburg-Molinaro J, Smith DF, Cummings RD, Steinhauer DA (2011) Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology 413:169–182Google Scholar
  43. 43.
    Chen LM, Rivailler P, Hossain J, Carney P, Balish A, Perry I, Davis CT, Garten R, Shu B, Xu X et al. (2011) Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology 412:401–410Google Scholar
  44. 44.
    Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, Gustin KM, Pearce MB, Viswanathan K, Shriver ZH et al. (2009) Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 325:484–487Google Scholar
  45. 45.
    Yang H, Carney P, Stevens J (2010) Structure and receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Curr 2. doi: 10.1371/currents.RRN1152
  46. 46.
    Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, Chai W, Campanero-Rhodes MA, Zhang Y, Eickmann M, Kiso M et al. (2009) Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol 27:797–799Google Scholar
  47. 47.
    Kilander A, Rykkvin R, Dudman SG, Hungnes O (2010) Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 15(9):pii=19498Google Scholar
  48. 48.
    Puzelli S, Facchini M, De Marco MA, Palmieri A, Spagnolo D, Boros S, Corcioli F, Trotta D, Bagnarelli P, Azzi A, Cassone A, Rezza G, Pompa MG, Oleari F, Donatelli I, the Influnet Surveillance Group for Pandemic A(H1N1) 2009 Influenza Virus in Italy (2010) Molecular surveillance of pandemic influenza A(H1N1) viruses circulating in Italy from May 2009 to February 2010: association between haemagglutinin mutations and clinical outcome. Euro Surveill 15(43):pii=19696Google Scholar
  49. 49.
    Liu Y, Childs RA, Matrosovich T, Wharton S, Palma AS, Chai W, Daniels R, Gregory V, Uhlendorff J, Kiso M et al. (2010) Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J Virol 84:12069–12074Google Scholar
  50. 50.
    Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, Schrauwen EJ, Bestebroer TM, Koel B, Burke DF et al. (2010) Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol 84:11802–11813Google Scholar
  51. 51.
    Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224–234Google Scholar
  52. 52.
    Nicholls JM, Chan RW, Russell RJ, Air GM, Peiris JS (2008) Evolving complexities of influenza virus and its receptors. Trends Microbiol 16:149–157Google Scholar
  53. 53.
    Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303:35–40Google Scholar
  54. 54.
    Blok J, Air GM (1982) Block deletions in the neuraminidase genes from some influenza A viruses of the N1 subtype. Virology 118:229–234Google Scholar
  55. 55.
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667Google Scholar
  56. 56.
    Palese P, Tobita K, Ueda M, Compans RW (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410Google Scholar
  57. 57.
    Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, Cordioli P, Fioretti A, Alexander DJ (2001) Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol 146:963–973Google Scholar
  58. 58.
    Kaverin NV, Gambaryan AS, Bovin NV, Rudneva IA, Shilov AA, Khodova OM, Varich NL, Sinitsin BV, Makarova NV, Kropotkina EA (1998) Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology 244:315–321Google Scholar
  59. 59.
    Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74:6015–6020Google Scholar
  60. 60.
    Wagner R, Matrosovich M, Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166Google Scholar
  61. 61.
    Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD (2000) Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74:6316–6323Google Scholar
  62. 62.
    Hausmann J, Kretzschmar E, Garten W, Klenk HD (1995) N1 neuraminidase of influenza virus A/FPV/Rostock/34 has haemadsorbing activity. J Gen Virol 76(Pt 7):1719–1728Google Scholar
  63. 63.
    Kobasa D, Rodgers ME, Wells K, Kawaoka Y (1997) Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks. J Virol 71:6706–6713Google Scholar
  64. 64.
    Laver WG, Colman PM, Webster RG, Hinshaw VS, Air GM (1984) Influenza virus neuraminidase with hemagglutinin activity. Virology 137:314–323Google Scholar
  65. 65.
    Varghese JN, Colman PM, van Donkelaar A, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL (1997) Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci U S A 94:11808–11812Google Scholar
  66. 66.
    Uhlendorff J, Matrosovich T, Klenk HD, Matrosovich M (2009) Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Arch Virol 154:945–957Google Scholar
  67. 67.
    Herrler G, Hausmann J, Klenk HD (1995) Sialic acid as receptor determinant of ortho- and paramyxoviruses. In: Rosenberg A (ed) Biology of the Sialic acids. Plenum, New York, pp 315–336Google Scholar
  68. 68.
    Herrler G, Klenk HD (1991) Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40:213–234Google Scholar
  69. 69.
    Rosenthal PB, Zhang X, Formanowski F, Fitz W, Wong CH, Meier-Ewert H, Skehel JJ, Wiley DC (1998) Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396:92–96Google Scholar
  70. 70.
    Herrler G, Rott R, Klenk HD, Muller HP, Shukla AK, Schauer R (1985) The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J 4:1503–1506Google Scholar
  71. 71.
    Herrler G, Multhaup G, Beyreuther K, Klenk HD (1988) Serine 71 of the glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus. Arch Virol 102:269–274Google Scholar
  72. 72.
    Pleschka S, Klenk HD, Herrler G (1995) The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis. J Gen Virol 76:2529–2537Google Scholar
  73. 73.
    Vlasak R, Muster T, Lauro AM, Powers JC, Palese P (1989) Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function. J Virol 63:2056–2062Google Scholar
  74. 74.
    Hofling K, Klenk HD, Herrler G (1997) Inactivation of inhibitors by the receptor-destroying enzyme of influenza C virus. J Gen Virol 78:567–570Google Scholar
  75. 75.
    Hofling K, Brossmer R, Klenk H, Herrler G (1996) Transfer of an esterase-resistant receptor analog to the surface of influenza C virions results in reduced infectivity due to aggregate formation. Virology 218:127–133Google Scholar
  76. 76.
    Herrler G, Gross HJ, Brossmer R (1995) A synthetic sialic acid analog that is resistant to the receptor-destroying enzyme can be used by influenza C virus as a receptor determinant for infection of cells. Biochem Biophys Res Commun 216:821–827Google Scholar
  77. 77.
    Herrler G, Gross HJ, Imhof A, Brossmer R, Milks G, Paulson JC (1992) A synthetic sialic acid analogue is recognized by influenza C virus as a receptor determinant but is resistant to the receptor-destroying enzyme. J Biol Chem 267:12501–12505Google Scholar
  78. 78.
    Rogers GN, Herrler G, Paulson JC, Klenk HD (1986) Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J Biol Chem 261:5947–5951Google Scholar
  79. 79.
    Herrler G, Klenk HD (1987) The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology 159:102–108Google Scholar
  80. 80.
    Zimmer G, Klenk HD, Herrler G (1995) Identification of a 40-kDa cell surface sialoglycoprotein with the characteristics of a major influenza C virus receptor in a Madin–Darby canine kidney cell line. J Biol Chem 270:17815–17822Google Scholar
  81. 81.
    Zimmer G, Lottspeich F, Maisner A, Klenk HD, Herrler G (1997) Molecular characterization of gp40, a mucin-type glycoprotein from the apical plasma membrane of Madin–Darby canine kidney cells (type I). Biochem J 326:99–108Google Scholar
  82. 82.
    Marschall M, Herrler G, Boswald C, Foerst G, Meier-Ewert H (1994) Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein. J Gen Virol 75:2189–2196Google Scholar
  83. 83.
    Matsuzaki M, Sugawara K, Adachi K, Hongo S, Nishimura H, Kitame F, Nakamura K (1992) Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. Virology 189:79–87Google Scholar
  84. 84.
    Szepanski S, Gross HJ, Brossmer R, Klenk HD, Herrler G (1992) A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology 188:85–92Google Scholar
  85. 85.
    Umetsu Y, Sugawara K, Nishimura H, Hongo S, Matsuzaki M, Kitame F, Nakamura K (1992) Selection of antigenically distinct variants of influenza C viruses by the host cell. Virology 189:740–744Google Scholar
  86. 86.
    Falk K, Namork E, Rimstad E, Mjaaland S, Dannevig BH (1997) Characterization of infectious salmon anemia virus, an orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.). J Virol 71:9016–9023Google Scholar
  87. 87.
    Kristiansen M, Froystad MK, Rishovd AL, Gjoen T (2002) Characterization of the receptor-destroying enzyme activity from infectious salmon anaemia virus. J Gen Virol 83:2693–2697Google Scholar
  88. 88.
    Hellebo A, Vilas U, Falk K, Vlasak R (2004) Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J Virol 78:3055–3062Google Scholar
  89. 89.
    Falk K, Aspehaug V, Vlasak R, Endresen C (2004) Identification and characterization of viral structural proteins of infectious salmon anemia virus. J Virol 78:3063–3071Google Scholar
  90. 90.
    Krossoy B, Devold M, Sanders L, Knappskog PM, Aspehaug V, Falk K, Nylund A, Koumans S, Endresen C, Biering E (2001) Cloning and identification of the infectious salmon anaemia virus haemagglutinin. J Gen Virol 82:1757–1765Google Scholar
  91. 91.
    Rimstad E, Mjaaland S, Snow M, Mikalsen AB, Cunningham CO (2001) Characterization of the infectious salmon anemia virus genomic segment that encodes the putative hemagglutinin. J Virol 75:5352–5356Google Scholar
  92. 92.
    Vlasak R, Luytjes W, Spaan W, Palese P (1988) Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci U S A 85:4526–4529Google Scholar
  93. 93.
    Schultze B, Wahn K, Klenk HD, Herrler G (1991) Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180:221–228Google Scholar
  94. 94.
    Vlasak R, Luytjes W, Leider J, Spaan W, Palese P (1988) The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol 62:4686–4690Google Scholar
  95. 95.
    Yokomori K, La Monica N, Makino S, Shieh CK, Lai MM (1989) Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology 173:683–691Google Scholar
  96. 96.
    Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ (2008) Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc Natl Acad Sci U S A 105:9065–9069Google Scholar
  97. 97.
    Sugiyama K, Kasai M, Kato S, Kasai H, Hatakeyama K (1998) Haemagglutinin-esterase protein (HE) of murine corona virus: DVIM (diarrhea virus of infant mice). Arch Virol 143:1523–1534Google Scholar
  98. 98.
    Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R (1999) Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J Virol 73:3737–3743Google Scholar
  99. 99.
    Regl G, Kaser A, Iwersen M, Schmid H, Kohla G, Strobl B, Vilas U, Schauer R, Vlasak R (1999) The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J Virol 73:4721–4727Google Scholar
  100. 100.
    Smits SL, Gerwig GJ, van Vliet AL, Lissenberg A, Briza P, Kamerling JP, Vlasak R, de Groot RJ (2005) Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J Biol Chem 280:6933–6941Google Scholar
  101. 101.
    Storz J, Zhang XM, Rott R (1992) Comparison of hemagglutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains. Arch Virol 125:193–204Google Scholar
  102. 102.
    Schultze B, Herrler G (1992) Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 73:901–906Google Scholar
  103. 103.
    Lin X, O'Reilly KL, Storz J (1997) Infection of polarized epithelial cells with enteric and respiratory tract bovine coronaviruses and release of virus progeny. Am J Vet Res 58:1120–1124Google Scholar
  104. 104.
    Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, Herrler G (1996) Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol 70:5634–5637Google Scholar
  105. 105.
    Schultze B, Zimmer G, Herrler G (1996) Virus entry into a polarized epithelial cell line (MDCK): similarities and dissimilarities between influenza C virus and bovine coronavirus. J Gen Virol 77(Pt 10):2507–2514Google Scholar
  106. 106.
    King B, Potts BJ, Brian DA (1985) Bovine coronavirus hemagglutinin protein. Virus Res 2:53–59Google Scholar
  107. 107.
    Yoo D, Graham FL, Prevec L, Parker MD, Benko M, Zamb T, Babiuk LA (1992) Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. J Gen Virol 73:2591–2600Google Scholar
  108. 108.
    Schultze B, Gross HJ, Brossmer R, Herrler G (1991) The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol 65:6232–6237Google Scholar
  109. 109.
    Gagneten S, Gout O, Dubois-Dalcq M, Rottier P, Rossen J, Holmes KV (1995) Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 69:889–895Google Scholar
  110. 110.
    Langereis MA, van Vliet AL, Boot W, de Groot RJ (2010) Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J Virol 84:8970–8974Google Scholar
  111. 111.
    Noda M, Koide F, Asagi M, Inaba Y (1988) Physicochemical properties of transmissible gastroenteritis virus hemagglutinin. Arch Virol 99:163–172Google Scholar
  112. 112.
    Noda M, Yamashita H, Koide F, Kadoi K, Omori T, Asagi M, Inaba Y (1987) Hemagglutination with transmissible gastroenteritis virus. Arch Virol 96:109–115Google Scholar
  113. 113.
    Krempl C, Schultze B, Laude H, Herrler G (1997) Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287Google Scholar
  114. 114.
    Bernard S, Laude H (1995) Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity. J Gen Virol 76:2235–2241Google Scholar
  115. 115.
    Krempl C, Ballesteros ML, Zimmer G, Enjuanes L, Klenk HD, Herrler G (2000) Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J Gen Virol 81:489–496Google Scholar
  116. 116.
    Schwegmann-Wessels C, Zimmer G, Schroder B, Breves G, Herrler G (2003) Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins. J Virol 77:11846–11848Google Scholar
  117. 117.
    Pensaert M, Callebaut P, Vergote J (1986) Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet Q 8:257–261Google Scholar
  118. 118.
    Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420Google Scholar
  119. 119.
    Cox E, Pensaert MB, Callebaut P, van Deun K (1990) Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet Microbiol 23:237–243Google Scholar
  120. 120.
    Schwegmann-Wessels C, Zimmer G, Laude H, Enjuanes L, Herrler G (2002) Binding of transmissible gastroenteritis coronavirus to cell surface sialoglycoproteins. J Virol 76:6037–6043Google Scholar
  121. 121.
    Schwegmann-Wessels C, Bauer S, Winter C, Enjuanes L, Laude H, Herrler G (2011) The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus. Virol J 8:435Google Scholar
  122. 122.
    Bingham RW, Madge MH, Tyrrell DA (1975) Haemagglutination by avian infectious bronchitis virus – a coronavirus. J Gen Virol 28:381–390Google Scholar
  123. 123.
    Schultze B, Cavanagh D, Herrler G (1992) Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes. Virology 189:792–794Google Scholar
  124. 124.
    Winter C, Schwegmann-Wessels C, Cavanagh D, Neumann U, Herrler G (2006) Sialic acid is a receptor determinant for infection of cells by avian infectious bronchitis virus. J Gen Virol 87:1209–1216Google Scholar
  125. 125.
    Abd El Rahman S, El-Kenawy AA, Neumann U, Herrler G, Winter C (2009) Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus. Avian Pathol 38:41–45Google Scholar
  126. 126.
    Abd El Rahman S, Winter C, El-Kenawy A, Neumann U, Herrler G (2010) Differential sensitivity of well-differentiated avian respiratory epithelial cells to infection by different strains of infectious bronchitis virus. J Virol 84:8949–8952Google Scholar
  127. 127.
    Winter C, Herrler G, Neumann U (2008) Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent. Microbes Infect 10:367–373Google Scholar
  128. 128.
    Cornelissen LA, Wierda CM, van der Meer FJ, Herrewegh AA, Horzinek MC, Egberink HF, de Groot RJ (1997) Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 71:5277–5286Google Scholar
  129. 129.
    Duckmanton L, Tellier R, Richardson C, Petric M (1999) The novel hemagglutinin-esterase genes of human torovirus and Breda virus. Virus Res 64:137–149Google Scholar
  130. 130.
    Langereis MA, Zeng Q, Gerwig GJ, Frey B, von Itzstein M, Kamerling JP, de Groot RJ, Huizinga EG (2009) Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases. Proc Natl Acad Sci U S A 106:15897–15902Google Scholar
  131. 131.
    Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott, Williams and Wilkins, Philadelphia, pp 1449–1496Google Scholar
  132. 132.
    Zaitsev V, von Itzstein M, Groves D, Kiefel M, Takimoto T, Portner A, Taylor G (2004) Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J Virol 78:3733–3741Google Scholar
  133. 133.
    Lawrence MC, Borg NA, Streltsov VA, Pilling PA, Epa VC, Varghese JN, McKimm-Breschkin JL, Colman PM (2004) Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J Mol Biol 335:1343–1357Google Scholar
  134. 134.
    Yuan P, Thompson TB, Wurzburg BA, Paterson RG, Lamb RA, Jardetzky TS (2005) Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 13:803–815Google Scholar
  135. 135.
    Alymova IV, Taylor G, Mishin VP, Watanabe M, Murti KG, Boyd K, Chand P, Babu YS, Portner A (2008) Loss of the N-linked glycan at residue 173 of human parainfluenza virus type 1 hemagglutinin-neuraminidase exposes a second receptor-binding site. J Virol 82:8400–8410Google Scholar
  136. 136.
    Holmgren J, Svennerholm L, Elwing H, Fredman P, Strannegard O (1980) Sendai virus receptor: proposed recognition structure based on binding to plastic-adsorbed gangliosides. Proc Natl Acad Sci U S A 77:1947–1950Google Scholar
  137. 137.
    Markwell MA, Svennerholm L, Paulson JC (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci U S A 78:5406–5410Google Scholar
  138. 138.
    Markwell MA, Paulson JC (1980) Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc Natl Acad Sci U S A 77:5693–5697Google Scholar
  139. 139.
    Suzuki Y, Suzuki T, Matsumoto M (1983) Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membrane. J Biochem 93:1621–1633Google Scholar
  140. 140.
    Suzuki Y, Suzuki T, Matsunaga M, Matsumoto M (1985) Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus. J Biochem 97:1189–1199Google Scholar
  141. 141.
    Suzuki T, Portner A, Scroggs RA, Uchikawa M, Koyama N, Matsuo K, Suzuki Y, Takimoto T (2001) Receptor specificities of human respiroviruses. J Virol 75:4604–4613Google Scholar
  142. 142.
    Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK (1999) X-Ray crystallographic structure of the Norwalk virus capsid. Science 286:287–290Google Scholar
  143. 143.
    Prasad BV, Rothnagel R, Jiang X, Estes MK (1994) Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68:5117–5125Google Scholar
  144. 144.
    Bu W, Mamedova A, Tan M, Xia M, Jiang X, Hegde RS (2008) Structural basis for the receptor binding specificity of Norwalk virus. J Virol 82:5340–5347Google Scholar
  145. 145.
    Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, Zhang XC, Jiang X, Li X, Rao Z (2007) Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81:5949–5957Google Scholar
  146. 146.
    Choi JM, Hutson AM, Estes MK, Prasad BV (2008) Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc Natl Acad Sci U S A 105:9175–9180Google Scholar
  147. 147.
    Katpally U, Voss NR, Cavazza T, Taube S, Rubin JR, Young VL, Stuckey J, Ward VK, Virgin HWT, Wobus CE et al. (2010) High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains. J Virol 84:5836–5841Google Scholar
  148. 148.
    Taube S, Rubin JR, Katpally U, Smith TJ, Kendall A, Stuckey JA, Wobus CE (2010) High-resolution X-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain. J Virol 84:5695–5705Google Scholar
  149. 149.
    Wobus CE, Thackray LB, Virgin HWT (2006) Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80:5104–5112Google Scholar
  150. 150.
    Estes MK, Prasad BV, Atmar RL (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19:467–474Google Scholar
  151. 151.
    Le Pendu J, Ruvoen-Clouet N, Kindberg E, Svensson L (2006) Mendelian resistance to human norovirus infections. Semin Immunol 18:375–386Google Scholar
  152. 152.
    Tan M, Jiang X (2007) Norovirus-host interaction: implications for disease control and prevention. Expert Rev Mol Med 9:1–22Google Scholar
  153. 153.
    Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N (2004) Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 78:3817–3826Google Scholar
  154. 154.
    Rydell GE, Nilsson J, Rodriguez-Diaz J, Ruvoen-Clouet N, Svensson L, Le Pendu J, Larson G (2009) Human noroviruses recognize sialyl Lewis X neoglycoprotein. Glycobiology 19:309–320Google Scholar
  155. 155.
    Taube S, Perry JW, Yetming K, Patel SP, Auble H, Shu L, Nawar HF, Lee CH, Connell TD, Shayman JA et al. (2009) Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 83:4092–4101Google Scholar
  156. 156.
    Stuart AD, Brown TD (2007) Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. J Gen Virol 88:177–186Google Scholar
  157. 157.
    Tavakkol A, Burness AT (1990) Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry 29:10684–10690Google Scholar
  158. 158.
    Zhou L, Luo Y, Wu Y, Tsao J, Luo M (2000) Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler's virus. J Virol 74:1477–1485Google Scholar
  159. 159.
    Anderson K, Bond CW (1987) Biological properties of mengovirus: characterization of avirulent, hemagglutination-defective mutants. Arch Virol 93:31–49Google Scholar
  160. 160.
    Stoner GD, Williams B, Kniazeff A, Shimkin MB (1973) Effect of neuraminidase pretreatment on the susceptibility of normal and transformed mammalian cells to bovine enterovirus 261. Nature 245:319–320Google Scholar
  161. 161.
    Nokhbeh MR, Hazra S, Alexander DA, Khan A, McAllister M, Suuronen EJ, Griffith M, Dimock K (2005) Enterovirus 70 binds to different glycoconjugates containing alpha2,3-linked sialic acid on different cell lines. J Virol 79:7087–7094Google Scholar
  162. 162.
    Lipton HL, Kumar AS, Trottier M (2005) Theiler's virus persistence in the central nervous system of mice is associated with continuous viral replication and a difference in outcome of infection of infiltrating macrophages versus oligodendrocytes. Virus Res 111:214–223Google Scholar
  163. 163.
    Helander A, Silvey KJ, Mantis NJ, Hutchings AB, Chandran K, Lucas WT, Nibert ML, Neutra MR (2003) The viral sigma1 protein and glycoconjugates containing alpha2-3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces. J Virol 77:7964–7977Google Scholar
  164. 164.
    Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermody TS (2001) Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem 276:2200–2211Google Scholar
  165. 165.
    Prota AE, Campbell JA, Schelling P, Forrest JC, Watson MJ, Peters TR, Aurrand-Lions M, Imhof BA, Dermody TS, Stehle T (2003) Crystal structure of human junctional adhesion molecule 1: implications for reovirus binding. Proc Natl Acad Sci U S A 100:5366–5371Google Scholar
  166. 166.
    Connolly JL, Barton ES, Dermody TS (2001) Reovirus binding to cell surface sialic acid potentiates virus-induced apoptosis. J Virol 75:4029–4039Google Scholar
  167. 167.
    Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897Google Scholar
  168. 168.
    Kraschnefski MJ, Bugarcic A, Fleming FE, Yu X, von Itzstein M, Coulson BS, Blanchard H (2009) Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein. Glycobiology 19:194–200Google Scholar
  169. 169.
    Bastardo JW, Holmes IH (1980) Attachment of SA-11 rotavirus to erythrocyte receptors. Infect Immun 29:1134–1140Google Scholar
  170. 170.
    Spence L, Fauvel M, Petro R, Bloch S (1976) Haemagglutinin from rotavirus. Lancet 2:1023Google Scholar
  171. 171.
    Ciarlet M, Estes MK (1999) Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 80:943–948Google Scholar
  172. 172.
    Banda K, Kang G, Varki A (2009) ‘Sialidase sensitivity’ of rotaviruses revisited. Nat Chem Biol 5:71–72Google Scholar
  173. 173.
    Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS et al. (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5:91–93Google Scholar
  174. 174.
    Monnier N, Higo-Moriguchi K, Sun ZY, Prasad BV, Taniguchi K, Dormitzer PR (2006) High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain. J Virol 80:1513–1523Google Scholar
  175. 175.
    Lopez S, Arias CF (2006) Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 309:39–66Google Scholar
  176. 176.
    Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC (2002) Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol 76:10512–10517Google Scholar
  177. 177.
    Kuhlenschmidt MS, Rolsma MD, Kuhlenschmidt TB, Gelberg HB (1997) Characterization of a porcine enterocyte receptor for group A rotavirus. Adv Exp Med Biol 412:135–143Google Scholar
  178. 178.
    Delorme C, Brussow H, Sidoti J, Roche N, Karlsson KA, Neeser JR, Teneberg S (2001) Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J Virol 75:2276–2287Google Scholar
  179. 179.
    Superti F, Donelli G (1991) Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. J Gen Virol 72:2467–2474Google Scholar
  180. 180.
    Guo CT, Nakagomi O, Mochizuki M, Ishida H, Kiso M, Ohta Y, Suzuki T, Miyamoto D, Hidari KI, Suzuki Y (1999) Ganglioside GM(1a) on the cell surface is involved in the infection by human rotavirus KUN and MO strains. J Biochem 126:683–688Google Scholar
  181. 181.
    Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354:278–284Google Scholar
  182. 182.
    Neu U, Woellner K, Gauglitz G, Stehle T (2008) Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 105:5219–5224Google Scholar
  183. 183.
    Stehle T, Harrison SC (1997) High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J 16:5139–5148Google Scholar
  184. 184.
    Stehle T, Yan Y, Benjamin TL, Harrison SC (1994) Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369:160–163Google Scholar
  185. 185.
    Cahan LD, Paulson JC (1980) Polyoma virus adsorbs to specific sialyloligosaccharide receptors on erythrocytes. Virology 103:505–509Google Scholar
  186. 186.
    Cahan LD, Singh R, Paulson JC (1983) Sialyloligosaccharide receptors of binding variants of polyoma virus. Virology 130:281–289Google Scholar
  187. 187.
    Fried H, Cahan LD, Paulson JC (1981) Polyoma virus recognizes specific sialyligosaccharide receptors on host cells. Virology 109:188–192Google Scholar
  188. 188.
    Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346–4355Google Scholar
  189. 189.
    Stehle T, Harrison SC (1996) Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4:183–194Google Scholar
  190. 190.
    Caruso M, Belloni L, Sthandier O, Amati P, Garcia MI (2003) Alpha4beta1 integrin acts as a cell receptor for murine polyomavirus at the postattachment level. J Virol 77:3913–3921Google Scholar
  191. 191.
    Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L et al. (2010). GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12,11–18; sup pp 11–12.Google Scholar
  192. 192.
    Qian M, Cai D, Verhey KJ, Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5:e1000465Google Scholar
  193. 193.
    Keppler OT, Herrmann M, Oppenlander M, Meschede W, Pawlita M (1994) Regulation of susceptibility and cell surface receptor for the B-lymphotropic papovavirus by N glycosylation. J Virol 68:6933–6939Google Scholar
  194. 194.
    Dugan AS, Gasparovic ML, Atwood WJ (2008) Direct correlation between sialic acid binding and infection of cells by two human polyomaviruses (JC virus and BK virus). J Virol 82:2560–2564Google Scholar
  195. 195.
    Liu CK, Wei G, Atwood WJ (1998) Infection of glial cells by the human polyomavirus JC is mediated by an N-linked glycoprotein containing terminal alpha(2-6)-linked sialic acids. J Virol 72:4643–4649Google Scholar
  196. 196.
    Komagome R, Sawa H, Suzuki T, Suzuki Y, Tanaka S, Atwood WJ, Nagashima K (2002) Oligosaccharides as receptors for JC virus. J Virol 76:12992–13000Google Scholar
  197. 197.
    Elphick GF, Querbes W, Jordan JA, Gee GV, Eash S, Manley K, Dugan A, Stanifer M, Bhatnagar A, Kroeze WK et al. (2004) The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306:1380–1383Google Scholar
  198. 198.
    Dugan AS, Eash S, Atwood WJ (2005) An N-linked glycoprotein with alpha(2,3)-linked sialic acid is a receptor for BK virus. J Virol 79:14442–14445Google Scholar
  199. 199.
    Low JA, Magnuson B, Tsai B, Imperiale MJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80:1361–1366Google Scholar
  200. 200.
    Erickson KD, Garcea RL, Tsai B (2009) Ganglioside GT1b is a putative host cell receptor for the Merkel cell polyomavirus. J Virol 83:10275–10279Google Scholar
  201. 201.
    Arnberg N, Kidd AH, Edlund K, Nilsson J, Pring-Akerblom P, Wadell G (2002) Adenovirus type 37 binds to cell surface sialic acid through a charge-dependent interaction. Virology 302:33–43Google Scholar
  202. 202.
    Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736Google Scholar
  203. 203.
    Schmidt M, Chiorini JA (2006) Gangliosides are essential for bovine adeno-associated virus entry. J Virol 80:5516–5522Google Scholar
  204. 204.
    Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75:6884–6893Google Scholar
  205. 205.
    Dickey DD, Excoffon KJ, Koerber JT, Bergen J, Steines B, Klesney-Tait J, Schaffer DV, Zabner J (2011) Enhanced sialic acid-dependent endocytosis explains the increased efficiency of infection of airway epithelia by a novel adeno-associated virus. J Virol 85:9023–9030Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mikhail Matrosovich
    • 1
  • Georg Herrler
    • 2
  • Hans Dieter Klenk
    • 1
  1. 1.Institut für VirologiePhilipps-UniversitätMarburgGermany
  2. 2.Institut für VirologieStiftung Tierärztliche Hochschule HannoverHannoverGermany

Personalised recommendations