Skip to main content

Small Optical Gap Molecules and Polymers: Using Theory to Design More Efficient Materials for Organic Photovoltaics

  • Chapter
  • First Online:
Multiscale Modelling of Organic and Hybrid Photovoltaics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 352))

Abstract

Recent improvements in the power conversion efficiencies of organic solar cells have been derived through a combination of new materials, processing, and device designs. A key factor has also been quantum-chemical studies that have led to a better understanding not only of the intrinsic electronic and optical properties of the materials but also of the physical processes that take place during the photovoltaic effect. In this chapter we review some recent quantum-chemical investigations of donor–acceptor copolymers, systems that have found wide use as the primary absorbing and hole-transport materials in bulk-heterojunction solar cells. We underline a number of current limitations with regard to available electronic structure methods and in terms of the understanding of the processes involved in solar cell operation. We conclude with a brief outlook that discusses the need to develop multiscale simulation methods that combine quantum-chemical techniques with large-scale classically-based simulations to provide a more complete picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are using here the HTM and ETM notations to denote the two components of the active layer, instead of the more conventional donor and acceptor (D/A) notations, in order to prevent any confusion with the donor/acceptor character of the copolymers used in the BHJ solar cells.

  2. 2.

    Note that both vibrational (i.e., Franck–Condon factor) and spin selection rules also play an important role in the probability of a transition.

References

  1. Becquerel E (1839) Mémoire sur les effets électroniques produits sous l'influence des rayons solaires. C R Acad Sci 9:561

    Google Scholar 

  2. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183

    CAS  Google Scholar 

  3. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498

    CAS  Google Scholar 

  4. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789

    CAS  Google Scholar 

  5. Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78:4510

    CAS  Google Scholar 

  6. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater 6:497

    CAS  Google Scholar 

  7. Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater 19:2295

    CAS  Google Scholar 

  8. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M (2008) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732

    CAS  Google Scholar 

  9. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon 3:297

    CAS  Google Scholar 

  10. Beaupre S, Boudreault P-LT, Leclerc M (2010) Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Adv Mater 22:E6

    CAS  Google Scholar 

  11. Zou Y, Najari A, Berrouard P, Beaupre S, Reda Aich B, Tao Y, Leclerc M (2010) A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J Am Chem Soc 132:5330

    CAS  Google Scholar 

  12. Liang Y, Xiao S, Feng D, Yu L (2008) Control in energy levels of conjugated polymers for photovoltaic application. J Phys Chem C 112:7866

    CAS  Google Scholar 

  13. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon 3:649

    CAS  Google Scholar 

  14. Liang Y, Feng D, Guo J, Szarko JM, Ray C, Chen LX, Yu L (2009) Regioregular oligomer and polymer containing thieno[3,4-b]thiophene moiety for efficient organic solar cells. Macromolecules 42:1091

    CAS  Google Scholar 

  15. Liang Y, Feng D, Wu Y, Tsai S-T, Li G, Ray C, Yu L (2009) Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc 131:7792

    CAS  Google Scholar 

  16. Liang Y, Wu Y, Feng D, Tsai S-T, Son H-J, Li G, Yu L (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56

    CAS  Google Scholar 

  17. Guo J, Liang Y, Szarko J, Lee B, Son HJ, Son HJ, Rolczynski BS, Yu L, Chen LX (2010) Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. J Phys Chem B 114:742

    CAS  Google Scholar 

  18. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135

    CAS  Google Scholar 

  19. Muhlbacher D, Scharber M, Morana M, Zhu ZG, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884

    Google Scholar 

  20. Liang Y, Yu L (2010) A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res 43:1227

    CAS  Google Scholar 

  21. Press release (2012) Solarmer energy, Incorporated. August 21, 2012

    Google Scholar 

  22. Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689

    CAS  Google Scholar 

  23. Zhang Y, Dang X-D, Kim C, Nguyen T-Q (2011) Effect of charge recombination on the fill factor of small molecule bulk heterojunction solar cells. Adv Energy Mater 1:610

    CAS  Google Scholar 

  24. Wei G, Lunt RR, Sun K, Wang S, Thompson ME, Forrest SR (2010) Efficient, ordered bulk heterojunction nanocrystalline solar cells by annealing of ultrathin squaraine thin films. Nano Lett 10:3555

    CAS  Google Scholar 

  25. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Mater 11:44

    Google Scholar 

  26. Press release (2013) Heliatek GmbH. January 16, 2013

    Google Scholar 

  27. Beaujuge PM, Frechet JMJ (2011) Molecular design and ordering effects in pi-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009

    CAS  Google Scholar 

  28. Henson ZB, Mullen K, Bazan GC (2012) Design strategies for organic semiconductors beyond the molecular formula. Nature Chem 4:699

    CAS  Google Scholar 

  29. Havinga EE, Hoeve W, Wynberg H (1992) A new class of small band gap organic polymer conductors. Polym Bull 29:119

    CAS  Google Scholar 

  30. Havinga EE, Tenhoeve W, Wynberg H (1993) Alternate donor–acceptor small-band-gap semiconducting polymers – polysquaraines and polycroconaines. Synth Met 55:299

    CAS  Google Scholar 

  31. Dhanabalan A, van Dongen JLJ, van Duren JKJ, Janssen HM, van Hal PA, Janssen RAJ (2001) Synthesis, characterization, and electrooptical properties of a new alternating N-dodecylpyrrole-benzothiadiazole copolymer. Macromolecules 34:2495

    CAS  Google Scholar 

  32. Dhanabalan A, van Duren JKJ, van Hal PA, van Dongen JLJ, Janssen RAJ (2001) Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv Funct Mater 11:255

    CAS  Google Scholar 

  33. van Mullekom HAM, Vekemans J, Havinga EE, Meijer EW (2001) Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mat Sci Eng R 32:1

    Google Scholar 

  34. Jenekhe SA, Lu L, Alam MM (2001) New conjugated polymers with donor–acceptor architectures: synthesis and photophysics of carbazole–quinoline and phenothiazine–quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 34:7315

    CAS  Google Scholar 

  35. Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, Van Hal PA, Janssen RAJ (2002) A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater 12:709

    CAS  Google Scholar 

  36. Persson N-K, Sun M, Kjellberg P, Pullerits T, Inganäs O (2005) Optical properties of low band gap alternating copolyfluorenes for photovoltaic devices. J Chem Phys 123:204718

    Google Scholar 

  37. Thompson BC, Kim Y-G, McCarley TD, Reynolds JR (2006) Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. J Am Chem Soc 128:12714

    CAS  Google Scholar 

  38. Cheng KF, Liu CL, Chen WC (2007) Small band gap conjugated polymers based on thiophene-thienopyrazine copolymers. J Polym Sci A Polym Chem 45:5872

    Google Scholar 

  39. Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D, Nguyen LH, Neugebauer H, Sariciftci S, Aguirre A, Janssen G, Goovaerts E (2007) Low band gap donor–acceptor conjugated polymers toward organic solar cells applications. Macromolecules 40:65

    CAS  Google Scholar 

  40. Gadisa A, Mammo W, Andersson LM, Admassie S, Zhang F, Andersson MR, Inganaes O (2007) A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility. Adv Funct Mater 17:3836

    CAS  Google Scholar 

  41. Tang W, Ke L, Tan L, Lin T, Kietzke T, Chen Z-K (2007) Conjugated copolymers based on fluorene-thieno[3,2-b]thiophene for light-emitting diodes and photovoltaic cells. Macromolecules 40:6164

    CAS  Google Scholar 

  42. Wong HMP, Wang P, Abrusci A, Svensson M, Andersson MR, Greenham NC (2007) Donor and acceptor behavior in a polyfluorene for photovoltaics. J Phys Chem C 111:5244

    CAS  Google Scholar 

  43. Zhang M, Yang C, Mishra AK, Pisula W, Zhou G, Schmaltz B, Baumgarten M, Mullen K (2007) Conjugated alternating copolymers containing both donor and acceptor moieties in the main chain. Chem Commun 1704

    Google Scholar 

  44. Zhu Z, Waller D, Gaudiana R, Morana M, Muhlbacher D, Scharber M, Brabec C (2007) Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 40:1981

    CAS  Google Scholar 

  45. Blouin N, Leclerc M (2008) Poly(2,7-carbazole)s: structure–property relationships. Acc Chem Res 41:1110

    CAS  Google Scholar 

  46. Hou J, Chen H-Y, Zhang S, Li G, Yang Y (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130:16144

    CAS  Google Scholar 

  47. Hou J, Park M-H, Zhang S, Yao Y, Chen L-M, Li J-H, Yang Y (2008) Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b']dithiophene. Macromolecules 41:6012

    CAS  Google Scholar 

  48. Kumar A, Bokria JG, Buyukmumcu Z, Dey T, Sotzing GA (2008) Poly(thieno[3,4-b]furan), a new low band gap polymer: experiment and theory. Macromolecules 41:7098

    CAS  Google Scholar 

  49. Moule AJ, Tsami A, Buennagel TW, Forster M, Kronenberg NM, Scharber M, Koppe M, Morana M, Brabec CJ, Meerholz K, Scherf U (2008) Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells. Chem Mater 20:4045

    CAS  Google Scholar 

  50. Peng Q, Park K, Lin T, Durstock M, Dai L (2008) Donor-pi-acceptor conjugated copolymers for photovoltaic applications: tuning the open-circuit voltage by adjusting the donor/acceptor ratio. J Phys Chem B 112:2801

    CAS  Google Scholar 

  51. Walker W, Veldman B, Chiechi R, Patil S, Bendikov M, Wudl F (2008) Visible and near-infrared absorbing, low band gap conjugated oligomers based on cyclopentadieneones. Macromolecules 41:7278

    CAS  Google Scholar 

  52. Zhang F, Bijleveld J, Perzon E, Tvingstedt K, Barrau S, Inganaes O, Andersson MR (2008) High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. J Mater Chem 18:5468

    CAS  Google Scholar 

  53. Ahmed E, Kim FS, Xin H, Jenekhe SA (2009) Benzobisthiazole-thiophene copolymer semiconductors: synthesis, enhanced stability, field-effect transistors, and efficient solar cells. Macromolecules 42:8615

    CAS  Google Scholar 

  54. Beaujuge PM, Pisula W, Tsao HN, Ellinger S, Mullen K, Reynolds JR (2009) Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor–acceptor copolymers. J Am Chem Soc 131:7514

    CAS  Google Scholar 

  55. Bijleveld JC, Shahid M, Gilot J, Wienk MM, Janssen RAJ (2009) Copolymers of cyclopentadithiophene and electron-deficient aromatic units designed for photovoltaic applications. Adv Funct Mater 19:3262

    CAS  Google Scholar 

  56. Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ (2009) Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc 131:16616

    CAS  Google Scholar 

  57. Gedefaw D, Zhou Y, Hellstroem S, Lindgren L, Andersson LM, Zhang F, Mammo W, Inganaes O, Andersson MR (2009) Alternating copolymers of fluorene and donor–acceptor–donor segments designed for miscibility in bulk heterojunction photovoltaics. J Mater Chem 19:5359

    CAS  Google Scholar 

  58. Hellstroem S, Zhang F, Inganaes O, Andersson MR (2009) Structure–property relationships of small bandgap conjugated polymers for solar cells. Dalton Trans 10032

    Google Scholar 

  59. Hou J, Chen H-Y, Zhang S, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131:15586

    CAS  Google Scholar 

  60. Hou J, Chen H-Y, Zhang S, Yang Y (2009) Synthesis and photovoltaic properties of two benzo[1,2-b:3,4-b']dithiophene-based conjugated polymers. J Phys Chem C 113:21202

    CAS  Google Scholar 

  61. Hou J, Chen TL, Zhang S, Chen H-Y, Yang Y (2009) Poly[4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3- benzoselenadiazole-4,7-diyl], a new low band gap polymer in polymer solar cells. J Phys Chem C 113:1601

    CAS  Google Scholar 

  62. Huo L, Chen H-Y, Hou J, Chen TL, Yang Y (2009) Low band gap dithieno[3,2-b:2',3'-d]silole-containing polymers, synthesis, characterization and photovoltaic application. Chem Commun 5570

    Google Scholar 

  63. Huo L, Hou J, Chen H-Y, Zhang S, Jiang Y, Chen TL, Yang Y (2009) Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42:6564

    CAS  Google Scholar 

  64. Inganas O, Zhang F, Andersson MR (2009) Alternating polyfluorenes collect solar light in polymer photovoltaics. Acc Chem Res 42:1731

    CAS  Google Scholar 

  65. Lee SK, Cho NS, Cho S, Moon S-J, Lee JK, Bazan GC (2009) Synthesis and characterization of low-bandgap cyclopentadithiophene-biselenophene copolymer and its use in field-effect transistor and polymer solar cells. J Polym Sci A Polym Chem 47:6873

    Google Scholar 

  66. Lindgren LJ, Zhang F, Andersson M, Barrau S, Hellstroem S, Mammo W, Perzon E, Inganaes O, Andersson MR (2009) Synthesis, characterization, and devices of a series of alternating copolymers for solar cells. Chem Mater 21:3491

    CAS  Google Scholar 

  67. Mei JG, Heston NC, Vasilyeva SV, Reynolds JR (2009) A facile approach to defect-free vinylene-linked benzothiadiazole-thiophene low-bandgap conjugated polymers for organic electronics. Macromolecules 42:1482

    CAS  Google Scholar 

  68. Mondal R, Ko S, Norton JE, Miyaki N, Becerril HA, Verploegen E, Toney MF, Brédas JL, McGehee MD, Bao ZN (2009) Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. J Mater Chem 19:7195

    CAS  Google Scholar 

  69. Mondal R, Miyaki N, Becerril HA, Norton JE, Parmer J, Mayer AC, Tang ML, Brédas J-L, McGehee MD, Bao Z (2009) Synthesis of acenaphthyl and phenanthrene based fused-aromatic thienopyrazine co-polymers for photovoltaic and thin film transistor applications. Chem Mater 21:3618

    CAS  Google Scholar 

  70. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297

    CAS  Google Scholar 

  71. Steckler TT, Zhang X, Hwang J, Honeyager R, Ohira S, Zhang XH, Grant A, Ellinger S, Odom SA, Sweat D, Tanner DB, Rinzler AG, Barlow S, Brédas JL, Kippelen B, Marder SR, Reynolds JR (2009) A spray-processable, low bandgap, and ambipolar donor–acceptor conjugated polymer. J Am Chem Soc 131:2824

    CAS  Google Scholar 

  72. Xin H, Guo X, Kim FS, Ren G, Watson MD, Jenekhe SA (2009) Efficient solar cells based on a new phthalimide-based donor–acceptor copolymer semiconductor: morphology, charge-transport, and photovoltaic properties. J Mater Chem 19:5303

    CAS  Google Scholar 

  73. Zhang S, Guo Y, Fan H, Liu Y, Chen H-Y, Yang G, Zhan X, Liu Y, Li Y, Yang Y (2009) Low bandgap pi-conjugated copolymers based on fused thiophenes and benzothiadiazole: synthesis and structure-property relationship study. J Polym Sci A Polym Chem 47:5498

    Google Scholar 

  74. Zoombelt AP, Fonrodona M, Turbiez MGR, Wienk MM, Janssen RAJ (2009) Synthesis and photovoltaic performance of a series of small band gap polymers. J Mater Chem 19:5336

    CAS  Google Scholar 

  75. Zoombelt AP, Fonrodona M, Wienk MM, Sieval AB, Hummelen JC, Janssen RAJ (2009) Photovoltaic performance of an ultrasmall band gap polymer. Org Lett 11:903

    CAS  Google Scholar 

  76. Zoombelt AP, Gilot J, Wienk MM, Janssen RAJ (2009) Effect of extended thiophene segments in small band gap polymers with thienopyrazine. Chem Mater 21:1663

    CAS  Google Scholar 

  77. Zoombelt AP, Leenen MAM, Fonrodona M, Nicolas Y, Wienk MM, Janssen RAJ (2009) The influence of side chains on solubility and photovoltaic performance of dithiophene-thienopyrazine small band gap copolymers. Polymer 50:4564

    CAS  Google Scholar 

  78. Baran D, Balan A, Celebi S, Meana Esteban B, Neugebauer H, Sariciftci NS, Toppare L (2010) Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications. Chem Mater 22:2978

    CAS  Google Scholar 

  79. Beaujuge PM, Subbiah J, Choudhury KR, Ellinger S, McCarley TD, So F, Reynolds JR (2010) Green dioxythiophene-benzothiadiazole donor–acceptor copolymers for photovoltaic device applications. Chem Mater 22:2093

    CAS  Google Scholar 

  80. Chen C-H, Hsieh C-H, Dubosc M, Cheng Y-J, Hsu C-S (2010) Synthesis and characterization of bridged bithiophene-based conjugated polymers for photovoltaic applications: acceptor strength and ternary blends. Macromolecules 43:697

    CAS  Google Scholar 

  81. Chen H-Y, Hou J, Hayden AE, Yang H, Houk KN, Yang Y (2010) Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv Mater 22:371

    CAS  Google Scholar 

  82. Huo L, Hou J, Zhang S, Chen H-Y, Yang Y (2010) A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew Chem Int Edit 49:1500

    CAS  Google Scholar 

  83. Kim B-S, Ma B, Donuru VR, Liu H, Frechet JMJ (2010) Bodipy-backboned polymers as electron donor in bulk heterojunction solar cells. Chem Commun 46:4148

    CAS  Google Scholar 

  84. Li J, Grimsdale AC (2010) Carbazole-based polymers for organic photovoltaic devices. Chem Soc Rev 39:2399

    CAS  Google Scholar 

  85. Liu B, Najari A, Pan C, Leclerc M, Xiao D, Zou Y (2010) New low bandgap dithienylbenzothiadiazole vinylene based copolymers: synthesis and photovoltaic properties. Macromol Rapid Commun 31:391

    CAS  Google Scholar 

  86. Marchiori CFN, Koehler M (2010) Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: a molecular study using density functional theory calculations. Synth Met 160:643

    CAS  Google Scholar 

  87. Mondal R, Becerril HA, Verploegen E, Kim D, Norton JE, Ko S, Miyaki N, Lee S, Toney MF, Brédas J-L, McGehee MD, Bao Z (2010) Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications. J Mater Chem 20:5823

    CAS  Google Scholar 

  88. Piliego C, Holcombe TW, Douglas JD, Woo CH, Beaujuge PM, Frechet JMJ (2010) Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc 132:7595

    CAS  Google Scholar 

  89. Qian G, Wang ZY (2010) Design, synthesis, and properties of benzobisthiadiazole-based donor-pi-acceptor-pi-donor type of low-band-gap chromophores and polymers. Can J Chem 88:192

    CAS  Google Scholar 

  90. Scharber MC, Koppe M, Gao J, Cordella F, Loi MA, Denk P, Morana M, Egelhaaf HJ, Forberich K, Dennler G, Gaudiana R, Waller D, Zhu ZG, Shi XB, Brabec CJ (2010) Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell. Adv Mater 22:367

    CAS  Google Scholar 

  91. Wu J-S, Cheng Y-J, Dubosc M, Hsieh C-H, Chang C-Y, Hsu C-S (2010) Donor–acceptor polymers based on multi-fused heptacyclic structures: synthesis, characterization and photovoltaic applications. Chem Commun 46:3259

    CAS  Google Scholar 

  92. Zhang X, Steckler TT, Dasari RR, Ohira S, Potscavage WJ Jr, Tiwari SP, Coppee S, Ellinger S, Barlow S, Brédas J-L, Kippelen B, Reynolds JR, Marder SR (2010) Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. J Mater Chem 20:123

    Google Scholar 

  93. Zhang Y, Hau SK, Yip H-L, Sun Y, Acton O, Jen AK-Y (2010) Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione. Chem Mater 22:2696

    CAS  Google Scholar 

  94. Zoombelt AP, Mathijssen SGJ, Turbiez MGR, Wienk MM, Janssen RAJ (2010) Small band gap polymers based on diketopyrrolopyrrole. J Mater Chem 20:2240

    CAS  Google Scholar 

  95. Walker B, Kim C, Nguyen T-Q (2010) Small molecule solution-processed bulk heterojunction solar cells†. Chem Mater 23:470

    Google Scholar 

  96. Zhang F, Wu D, Xu Y, Feng X (2011) Thiophene-based conjugated oligomers for organic solar cells. J Mater Chem 21:17590

    CAS  Google Scholar 

  97. Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Edit 51:2020

    CAS  Google Scholar 

  98. Liu X, Sun Y, Perez LA, Wen W, Toney MF, Heeger AJ, Bazan GC (2012) Narrow-band-gap conjugated chromophores with extended molecular lengths. J Am Chem Soc 134:20609

    CAS  Google Scholar 

  99. Henson ZB, Welch GC, van der Poll T, Bazan GC (2012) Pyridalthiadiazole-based narrow band gap chromophores. J Am Chem Soc 134:3766

    CAS  Google Scholar 

  100. Risko C, McGehee MD, Brédas JL (2011) A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells. Chem Sci 2:1200

    CAS  Google Scholar 

  101. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer:fullerene bulk heterojunction solar cells. Adv Mater 19:1551

    CAS  Google Scholar 

  102. Thompson BC, Fréchet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Edit 47:58

    CAS  Google Scholar 

  103. Brédas JL, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691

    Google Scholar 

  104. Kippelen B, Brédas JL (2009) Organic photovoltaics. Energ Environ Sci 2:251

    CAS  Google Scholar 

  105. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736

    CAS  Google Scholar 

  106. Venkataraman D, Yurt S, Venkatraman BH, Gavvalapalli N (2010) Role of molecular architecture in organic photovoltaic cells. J Phys Chem Lett 1:947

    CAS  Google Scholar 

  107. Knupfer M (2003) Exciton binding energies in organic semiconductors. Appl Phys A 77:623

    CAS  Google Scholar 

  108. Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740

    CAS  Google Scholar 

  109. Morteani AC, Sreearunothai P, Herz LM, Friend RH, Silva C (2004) Exciton regeneration at polymeric semiconductor heterojunctions. Phys Rev Lett 92:247402

    Google Scholar 

  110. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868

    CAS  Google Scholar 

  111. Guenes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324

    CAS  Google Scholar 

  112. Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971

    Google Scholar 

  113. Coropceanu V, Cornil J, da Silva DA, Olivier Y, Silbey R, Brédas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926

    CAS  Google Scholar 

  114. Beaujuge PM, Tsao HN, Hansen MR, Amb CM, Risko C, Subbiah J, Choudhury KR, Mavrinskiy A, Pisula W, Brédas JL, So F, Mullen K, Reynolds JR (2012) Synthetic principles directing charge transport in low-band-gap dithienosilole-benzothiadiazole copolymers. J Am Chem Soc 134:8944

    CAS  Google Scholar 

  115. Ajayaghosh A (2003) Donor–acceptor type low band gap polymers: polysquaraines and related systems. Chem Soc Rev 32:181

    CAS  Google Scholar 

  116. Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533

    CAS  Google Scholar 

  117. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924

    CAS  Google Scholar 

  118. Roncali J (1997) Synthetic principles for bandgap control in linear pi-conjugated systems. Chem Rev 97:173

    CAS  Google Scholar 

  119. Benanti TL, Venkataraman D (2006) Organic solar cells: an overview focusing on active layer morphology. Photosynth Res 87:73

    CAS  Google Scholar 

  120. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954

    CAS  Google Scholar 

  121. Kroon R, Lenes M, Hummelen JC, Blom PWM, De Boer B (2008) Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym Rev 48:531

    CAS  Google Scholar 

  122. Roncali J (2007) Molecular engineering of the band gap of pi-conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761

    CAS  Google Scholar 

  123. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10% energy-conversion efficiency. Adv Mater 18:789

    CAS  Google Scholar 

  124. Spanggaard H, Krebs FC (2004) A brief history of the development of organic and polymeric photovoltaics. Sol Energy Mater Sol Cells 83:125

    CAS  Google Scholar 

  125. Boudreault P-L, Najari A, Leclerc M (2011) Processable low-bandgap polymers for photovoltaic applications. Chem Mater 23:456

    CAS  Google Scholar 

  126. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22:3839

    CAS  Google Scholar 

  127. Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700

    CAS  Google Scholar 

  128. Pandey L, Risko C, Norton JE, Brédas JL (2012) Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45:6405

    CAS  Google Scholar 

  129. Wudl F, Kobayashi M, Heeger AJ (1984) Poly(Isothianaphthene). J Org Chem 49:3382

    CAS  Google Scholar 

  130. Brédas JL (1985) Relationship between band-gap and bond length alternation in organic conjugated polymers. J Chem Phys 82:3808

    Google Scholar 

  131. Brédas JL, Heeger AJ, Wudl F (1986) Towards organic polymers with very small intrinsic band-gaps.1. Electronic-structure of polyisothianaphthene and derivatives. J Chem Phys 85:4673

    Google Scholar 

  132. Jira R, Braunling H (1987) Synthesis of polyarenemethines, a new class of conducting polymers. Synth Met 17:691

    CAS  Google Scholar 

  133. Braunling H, Jira R (1987) Synthesis of polyphenylenemethines – a reinvestigation. Synth Met 20:375

    Google Scholar 

  134. Hoogmartens I, Adriaensens P, Vanderzande D, Gelan J, Quattrocchi C, Lazzaroni R, Brédas JL (1992) Low-bandgap conjugated polymers – a joint experimental and theoretical-study of the structure of polyisothianaphthene. Macromolecules 25:7347

    CAS  Google Scholar 

  135. Salzner U, Karalti O, Durdagi S (2006) Does the donor–acceptor concept work for designing synthetic metals? III. Theoretical investigation of copolymers between quinoid acceptors and aromatic donors. J Mol Model 12:687

    CAS  Google Scholar 

  136. Cui CX, Kertesz M, Jiang Y (1990) Extraction of polymer properties from oligomer calculations. J Phys Chem 94:5172

    CAS  Google Scholar 

  137. Karpfen A, Kertesz M (1991) Energetics and geometry of conducting polymers from oligomers. J Phys Chem 95:7680

    CAS  Google Scholar 

  138. Rissler J (2004) Effective conjugation length of pi-conjugated systems. Chem Phys Lett 395:92

    CAS  Google Scholar 

  139. Cornil J, Gueli I, Dkhissi A, Sancho-Garcia JC, Hennebicq E, Calbert JP, Lemaur V, Beljonne D, Brédas JL (2003) Electronic and optical properties of polyfluorene and fluorene-based copolymers: a quantum-chemical characterization. J Chem Phys 118:6615

    CAS  Google Scholar 

  140. Sancho-Garcia JC, Foden CL, Grizzi I, Greczynski G, de Jong MP, Salaneck WR, Brédas JL, Cornil J (2004) Joint theoretical and experimental characterization of the structural and electronic properties of poly(dioctylfluorene-alt-N-butylphenyl diphenylamine). J Phys Chem B 108:5594

    CAS  Google Scholar 

  141. Ozen AS, Atilgan C, Sonmez G (2007) Noncovalent intramolecular interactions in the monomers and oligomers of the acceptor and donor type of low band gap conducting polymers. J Phys Chem C 111:16362

    Google Scholar 

  142. Karsten BP, Viani L, Gierschner J, Cornil J, Janssen RAJ (2008) An oligomer study on small band gap polymers. J Phys Chem A 112:10764

    CAS  Google Scholar 

  143. Van Vooren A, Kim J-S, Cornil J (2008) Intrachain versus interchain electron transport in poly(fluorene-alt-benzothiadiazole): a quantum-chemical insight. Chemphyschem 9:989

    Google Scholar 

  144. Zhang L, Zhang QY, Ren H, Yan HL, Zhang JP, Zhang HP, Gu JW (2008) Calculation of band gap in long alkyl-substituted heterocyclic-thiophene-conjugated polymers with electron donor–acceptor fragment. Sol Energy Mater Sol Cells 92:581

    CAS  Google Scholar 

  145. Karsten BP, Viani L, Gierschner J, Cornil J, Janssen RAJ (2009) On the origin of small band gaps in alternating thiophene–thienopyrazine oligomers. J Phys Chem A 113:10343

    CAS  Google Scholar 

  146. Winfield JM, Van Vooren A, Park M-J, Hwang D-H, Cornil J, Kim J-S, Friend RH (2009) Charge-transfer character of excitons in poly[2,7-(9,9-di-n-octylfluorene)(1-x)-co-4,7-(2,1,3-benzothiadiazole)(x)]. J Chem Phys 131:035104

    Google Scholar 

  147. Szarko JM, Rolczynski BS, Guo J, Liang Y, He F, Mara MW, Yu L, Chen LX (2010) Electronic processes in conjugated diblock oligomers mimicking low band-gap polymers: experimental and theoretical spectral analysis. J Phys Chem B 114:14505

    CAS  Google Scholar 

  148. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899

    CAS  Google Scholar 

  149. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    CAS  Google Scholar 

  150. Stewart JJP (1989) Optimization of parameters for semiempirical methods. 1. Method. J Comput Chem 10:209

    CAS  Google Scholar 

  151. Stewart JJP (1989) Optimization of parameters for semiempirical methods. 2. Applications. J Comput Chem 10:221

    CAS  Google Scholar 

  152. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Electron correlation theories and their application to the study of simple reaction potential surfaces. Int J Quantum Chem 14:545

    CAS  Google Scholar 

  153. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618

    Google Scholar 

  154. Grimme S (2003) Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118:9095

    CAS  Google Scholar 

  155. Head-Gordon M, Rico RJ, Oumi M, Lee TJ (1994) A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem Phys Lett 219:21

    CAS  Google Scholar 

  156. Grimme S, Izgorodina EI (2004) Calculation of 0–0 excitation energies of organic molecules by CIS(D) quantum chemical methods. Chem Phys 305:223

    CAS  Google Scholar 

  157. Rhee YM, Head-Gordon M (2007) Scaled second-order perturbation corrections to configuration interaction singles: efficient and reliable excitation energy methods. J Phys Chem A 111:5314

    CAS  Google Scholar 

  158. Goerigk L, Grimme S (2010) Assessment of TD-DFT methods and of various spin scaled CIS(D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. J Chem Phys 132:184103

    Google Scholar 

  159. Settels V, Liu W, Pflaum J, Fink RF, Engels B (2012) Comparison of the electronic structure of different perylene-based dye-aggregates. J Comput Chem 33:1544

    CAS  Google Scholar 

  160. Hättig C (2005) Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). In: Jensen HJÅ (ed) Advances in quantum chemistry, vol 50. Academic, San Diego, p 37

    Google Scholar 

  161. Starcke JH, Wormit M, Schirmer J, Dreuw A (2006) How much double excitation character do the lowest excited states of linear polyenes have? Chem Phys 329:39

    CAS  Google Scholar 

  162. Starcke JH, Wormit M, Dreuw A (2009) Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations. J Chem Phys 131:144311

    Google Scholar 

  163. Starcke JH, Wormit M, Dreuw A (2009) Unrestricted algebraic diagrammatic construction scheme of second order for the calculation of excited states of medium-sized and large molecules. J Chem Phys 130:024104

    Google Scholar 

  164. Knippenberg S, Starcke JH, Wormit M, Dreuw A (2010) The low-lying excited states of neutral polyacenes and their radical cations: a quantum chemical study employing the algebraic diagrammatic construction scheme of second order. Mol Phys 108:2801

    CAS  Google Scholar 

  165. Knippenberg S, Eisenbrandt P, Sistik L, Slavicek P, Dreuw A (2011) Simulation of photoelectron spectra using the reflection principle in combination with unrestricted excitation ADC(2) to assess the accuracy of excited-state calculations. Chemphyschem 12:3180

    CAS  Google Scholar 

  166. Hedin L (1965) New method for calculating the one-particle Green's function with application to the electron–gas problem. Phys Rev 139:A796

    Google Scholar 

  167. Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390

    CAS  Google Scholar 

  168. Ethridge EC, Fry JL, Zaider M (1996) Quasiparticle spectra of trans-polyacetylene. Phys Rev B 53:3662

    CAS  Google Scholar 

  169. van der Horst JW, Bobbert PA, Michels MAJ, Brocks G, Kelly PJ (1999) Ab initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening. Phys Rev Lett 83:4413

    Google Scholar 

  170. Rohlfing M, Louie SG (1999) Optical excitations in conjugated polymers. Phys Rev Lett 82:1959

    CAS  Google Scholar 

  171. Grossman JC, Rohlfing M, Mitas L, Louie SG, Cohen ML (2001) High accuracy many-body calculational approaches for excitations in molecules. Phys Rev Lett 86:472

    CAS  Google Scholar 

  172. Tiago ML, Northrup JE, Louie SG (2003) Ab initio calculation of the electronic and optical properties of solid pentacene. Phys Rev B 67:115212

    Google Scholar 

  173. Tiago ML, Rohlfing M, Louie SG (2004) Bound excitons and optical properties of bulk trans-polyacetylene. Phys Rev B 70:193204

    Google Scholar 

  174. Tiago ML, Chelikowsky JR (2005) First-principles GW–BSE excitations in organic molecules. Solid State Commun 136:333

    CAS  Google Scholar 

  175. Neaton JB, Hybertsen MS, Louie SG (2006) Renormalization of molecular electronic levels at metal–molecule interfaces. Phys Rev Lett 97:216405

    CAS  Google Scholar 

  176. Dori N, Menon M, Kilian L, Sokolowski M, Kronik L, Umbach E (2006) Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: experiment and theory. Phys Rev B 73:195208

    Google Scholar 

  177. Rostgaard C, Jacobsen KW, Thygesen KS (2010) Fully self-consistent GW calculations for molecules. Phys Rev B 81:085103

    Google Scholar 

  178. Umari P, Stenuit G, Baroni S (2010) GW quasiparticle spectra from occupied states only. Phys Rev B 81:115104

    Google Scholar 

  179. Tamblyn I, Darancet P, Quek SY, Bonev SA, Neaton JB (2011) Electronic energy level alignment at metal–molecule interfaces with a GW approach. Phys Rev B 84:201402

    Google Scholar 

  180. Blase X, Attaccalite C, Olevano V (2011) First-principles GW calculations for fullerenes, porphyrins, phthalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 83:115103

    Google Scholar 

  181. Faber C, Attaccalite C, Olevano V, Runge E, Blase X (2011) First-principles GW calculations for DNA and RNA nucleobases. Phys Rev B 83:115123

    Google Scholar 

  182. Faber C, Duchemin I, Deutsch T, Attaccalite C, Olevano V, Blase X (2012) Electron–phonon coupling and charge-transfer excitations in organic systems from many-body perturbation theory. J Mater Sci 47:7472

    CAS  Google Scholar 

  183. Sharifzadeh S, Biller A, Kronik L, Neaton JB (2012) Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles. Phys Rev B 85:125307

    Google Scholar 

  184. Refaely-Abramson S, Sharifzadeh S, Govind N, Autschbach J, Neaton JB, Baer R, Kronik L (2012) Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. Phys Rev Lett 109:226405

    Google Scholar 

  185. Sharifzadeh S, Tamblyn I, Doak P, Darancet PT, Neaton JB (2012) Quantitative molecular orbital energies within a G(0)W(0) approximation. Eur Phys J B 85:323

    Google Scholar 

  186. Körzdörfer T, Marom N (2012) Strategy for finding a reliable starting point for G(0)W(0) demonstrated for molecules. Phys Rev B 86:041110

    Google Scholar 

  187. Wang J-F, Feng J-K, Ren A-M, Liu X-D, Ma Y-G, Lu P, Zhang H-X (2004) Theoretical studies of the absorption and emission properties of the fluorene-based conjugated polymers. Macromolecules 37:3451

    CAS  Google Scholar 

  188. Yang L, Feng J-K, Liao Y, Ren A-M (2005) A theoretical investigation on the electronic and optical properties of pi-conjugated copolymers with an efficient electron-accepting unit bithieno[3,2-b:2'3'-e]pyridine. Polymer 46:9955

    CAS  Google Scholar 

  189. Yang L, Feng J-K, Ren A-M (2005) Theoretical studies on the electronic and optical properties of two new alternating fluorene/carbazole copolymers. J Comput Chem 26:969

    CAS  Google Scholar 

  190. Yang L, Feng J-K, Ren A-M (2005) Theoretical study on electronic structure and optical properties of phenothiazine-containing conjugated oligomers and polymers. J Org Chem 70:5987

    CAS  Google Scholar 

  191. Yang L, Liao Y, Feng J-K, Ren A-M (2005) Theoretical studies of the modulation of polymer electronic and optical properties through the introduction of the electron-donating 3,4-ethylenedioxythiophene or electron-accepting pyridine and 1,3,4-oxadiazole moieties. J Phys Chem A 109:7764

    CAS  Google Scholar 

  192. Pai C-L, Liu C-L, Chen W-C, Jenekhe SA (2006) Electronic structure and properties of alternating donor–acceptor conjugated copolymers: 3,4-ethylenedioxythiophene (EDOT) copolymers and model compounds. Polymer 47:699

    CAS  Google Scholar 

  193. Medina BM, Van Vooren A, Brocorens P, Gierschner J, Shkunov M, Heeney M, McCulloch I, Lazzaroni R, Cornil J (2007) Electronic structure and charge-transport properties of polythiophene chains containing thienothiophene units: a joint experimental and theoretical study. Chem Mater 19:4949

    CAS  Google Scholar 

  194. Yang L, Feng J-K, Ren A-M (2007) Theoretical study on electronic structure and optical properties of novel donor–acceptor conjugated copolymers derived from benzothiadiazole and benzoselenadiazole. THEOCHEM 816:161

    CAS  Google Scholar 

  195. Ding Y, Zhao JF, Wang XS, Liu SS, Ma FC (2009) Optical properties of neutral and charged low band gap alternating copolyfluorenes: TD-DFT investigation. Chinese J Chem Phys 22:389

    CAS  Google Scholar 

  196. Karsten BP, Bijleveld JC, Viani L, Cornil J, Gierschner J, Janssen RAJ (2009) Electronic structure of small band gap oligomers based on cyclopentadithiophenes and acceptor units. J Mater Chem 19:5343

    CAS  Google Scholar 

  197. Liang DD, Tang SS, Liu JB, Liu JH, Kang LJ (2009) First principles calculations of optical and electronical properties for 2,7-carbazole derivatives as solar cells materials. THEOCHEM 908:102

    CAS  Google Scholar 

  198. Peng Q, Xu J, Zheng W (2009) Low band gap copolymers based on thiophene and quinoxaline: their electronic energy levels and photovoltaic application. J Polym Sci A Polym Chem 47:3399

    Google Scholar 

  199. Tian YH, Kertesz M (2009) Ladder-type polyenazine based on intramolecular S … N interactions: a theoretical study of a small-bandgap polymer. Macromolecules 42:6123

    CAS  Google Scholar 

  200. Kang JG, Kim HJ, Jeong YK, Nah MK, Park C, Bae YJ, Lee SW, Kim IT (2010) Optical and conformational studies on benzobisthiazole derivatives. J Phys Chem B 114:3791

    CAS  Google Scholar 

  201. Ko S, Mondal R, Risko C, Lee JK, Hong S, McGehee MD, Brédas J-L, Bao Z (2010) Tuning the optoelectronic properties of vinylene-linked donor–acceptor copolymers for organic photovoltaics. Macromolecules 43:6685

    CAS  Google Scholar 

  202. Steyrleuthner R, Schubert M, Howard I, Klaumunzer B, Schilling K, Chen ZH, Saalfrank P, Laquai F, Facchetti A, Neher D (2012) Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology. J Am Chem Soc 134:18303

    CAS  Google Scholar 

  203. Sumpter BG, Meunier V (2012) Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems? J Polym Sci B Polym Phys 50:1071

    CAS  Google Scholar 

  204. Banerji N, Gagnon E, Morgantin PY, Valouch S, Mohebbi AR, Seo JH, Leclerc M, Heeger AJ (2012) Breaking down the problem: optical transitions, electronic structure, and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks. J Phys Chem C 116:11456

    CAS  Google Scholar 

  205. Schroeder BC, Huang ZG, Ashraf RS, Smith J, D'Angelo P, Watkins SE, Anthopoulos TD, Durrant JR, McCulloch I (2012) Silaindacenodithiophene-based low band gap polymers – the effect of fluorine substitution on device performances and film morphologies. Adv Funct Mater 22:1663

    CAS  Google Scholar 

  206. Rolczynski BS, Szarko JM, Son HJ, Liang YY, Yu LP, Chen LX (2012) Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implication in photovoltaic materials design. J Am Chem Soc 134:4142

    CAS  Google Scholar 

  207. Longo L, Carbonera C, Pellegrino A, Perin N, Schimperna G, Tacca A, Po R (2012) Comparison between theoretical and experimental electronic properties of some popular donor polymers for bulk-heterojunction solar cells. Sol Energy Mater Sol Cells 97:139

    CAS  Google Scholar 

  208. Fazzi D, Grancini G, Maiuri M, Brida D, Cerullo G, Lanzani G (2012) Ultrafast internal conversion in a low band gap polymer for photovoltaics: experimental and theoretical study. Phys Chem Chem Phys 14:6367

    Google Scholar 

  209. Ozen AS (2011) Peripheral and structural effects on the band gap of acceptor–donor type conducting polymers containing pendant bisfulleroid groups. J Phys Chem C 115:25007

    CAS  Google Scholar 

  210. White CA, Johnson BG, Gill PMW, Headgordon M (1994) The continuous fast multipole method. Chem Phys Lett 230:8

    CAS  Google Scholar 

  211. White CA, Johnson BG, Gill PMW, HeadGordon M (1996) Linear scaling density functional calculations via the continuous fast multipole method. Chem Phys Lett 253:268

    CAS  Google Scholar 

  212. Scuseria GE (1999) Linear scaling density functional calculations with Gaussian orbitals. J Phys Chem A 103:4782

    CAS  Google Scholar 

  213. Zhou BJ, Ligneres VL, Carter EA (2005) Improving the orbital-free density functional theory description of covalent materials. J Chem Phys 122:044103

    Google Scholar 

  214. Bowler DR, Miyazaki T (2010) Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J Phys Condens Matter 22:074207

    CAS  Google Scholar 

  215. Northrup JE (2007) Atomic and electronic structure of polymer organic semiconductors: P3HT, PQT, and PBTTT. Phys Rev B 76:245202

    Google Scholar 

  216. Cho E, Risko C, Kim D, Gysel R, Cates Miller N, Breiby DW, McGehee MD, Toney MF, Kline RJ, Brédas J-L (2012) Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) films. J Am Chem Soc 134:6177

    CAS  Google Scholar 

  217. Heimel G, Salzmann I, Duhm S, Rabe JP, Koch N (2009) Intrinsic surface dipoles control the energy levels of conjugated polymers. Adv Funct Mater 19:3874

    CAS  Google Scholar 

  218. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  219. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200

    CAS  Google Scholar 

  220. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623

    CAS  Google Scholar 

  221. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    CAS  Google Scholar 

  222. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200

    CAS  Google Scholar 

  223. Savin A, Flad H-J (1995) Density functionals for the Yukawa electron–electron interaction. Int J Quantum Chem 56:327

    CAS  Google Scholar 

  224. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425

    CAS  Google Scholar 

  225. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51

    CAS  Google Scholar 

  226. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree–Fock exchange for the performance of hybrid density functionals. J Chem Phys 125:074106

    Google Scholar 

  227. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109

    Google Scholar 

  228. Krukau AV, Scuseria GE, Perdew JP, Savin A (2008) Hybrid functionals with local range separation. J Chem Phys 129:124103

    Google Scholar 

  229. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Google Scholar 

  230. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615

    CAS  Google Scholar 

  231. Stein T, Kronik L, Baer R (2009) Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J Chem Phys 131:244119

    Google Scholar 

  232. Baer R, Livshits E, Salzner U (2010) Tuned range-separated hybrids in density functional theory. Annu Rev Phys Chem 61:85

    CAS  Google Scholar 

  233. Stein T, Eisenberg H, Kronik L, Baer R (2010) Fundamental gaps in finite systems from eigenvalues of a generalized Kohn–Sham method. Phys Rev Lett 105:266802

    Google Scholar 

  234. Korzdorfer T, Sears JS, Sutton C, Brédas JL (2011) Long-range corrected hybrid functionals for pi-conjugated systems: dependence of the range-separation parameter on conjugation length. J Chem Phys 135:204107

    Google Scholar 

  235. Karolewski A, Stein T, Baer R, Kummel S (2011) Communication: tailoring the optical gap in light-harvesting molecules. J Chem Phys 134:151101

    CAS  Google Scholar 

  236. Kuritz N, Stein T, Baer R, Kronik L (2011) Charge-transfer-like π→π* excitations in time-dependent density functional theory: a conundrum and its solution. J Chem Theory Comput 7:2408

    CAS  Google Scholar 

  237. Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84:075144

    Google Scholar 

  238. Pandey L, Doiron C, Sears JS, Brédas JL (2012) Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals. Phys Chem Chem Phys 14:14243

    CAS  Google Scholar 

  239. Herguth P, Jiang X, Liu MS, Jen AKY (2002) Highly efficient fluorene- and benzothiadiazole-based conjugated copolymers for polymer light-emitting diodes. Macromolecules 35:6094

    CAS  Google Scholar 

  240. Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988

    CAS  Google Scholar 

  241. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222

    CAS  Google Scholar 

  242. Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307

    Google Scholar 

  243. Liao L, Dai L, Smith A, Durstock M, Lu J, Ding J, Tao Y (2007) Photovoltaic-active dithienosilole-containing polymers. Macromolecules 40:9406

    CAS  Google Scholar 

  244. Ashraf RS, Chen Z, Leem DS, Bronstein H, Zhang W, Schroeder B, Geerts Y, Smith J, Watkins S, Anthopoulos TD, Sirringhaus H, de Mello JC, Heeney M, McCulloch I (2010) Silaindacenodithiophene semiconducting polymers for efficient solar cells and high-mobility ambipolar transistors†. Chem Mater 23:768

    Google Scholar 

  245. Yang L, Feng J-K, Ren A-M, Sun J-Z (2006) The electronic structure and optical properties of carbazole-based conjugated oligomers and polymers: a theoretical investigation. Polymer 47:1397

    CAS  Google Scholar 

  246. Silva-Junior MR, Thiel W (2010) Benchmark of electronically excited states for semiempirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J Chem Theory Comput 6:1546

    CAS  Google Scholar 

  247. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997

    CAS  Google Scholar 

  248. Gross EKU, Kohn W (1985) Local density-functional theory of frequency-dependent linear response. Phys Rev Lett 55:2850

    CAS  Google Scholar 

  249. Tao J, Tretiak S, Zhu J-X (2009) Prediction of excitation energies for conjugated polymers using time-dependent density functional theory. Phys Rev B 80:235110

    Google Scholar 

  250. Gierschner J, Cornil J, Egelhaaf H-J (2007) Optical bandgaps of pi-conjugated organic materials at the polymer limit: experiment and theory. Adv Mater 19:173

    CAS  Google Scholar 

  251. Meier H, Stalmach U, Kolshorn H (1997) Effective conjugation length and UV/vis spectra of oligomers. Acta Polym 48:379

    CAS  Google Scholar 

  252. Kuhn W (1948) Helv Chim Acta 31:1780

    CAS  Google Scholar 

  253. Zade SS, Zamoshchik N, Bendikov M (2011) From short conjugted oligomers to conjugated polymers. lessons from studies on long conjugated oligomers. Acc Chem Res 44:14

    CAS  Google Scholar 

  254. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009

    CAS  Google Scholar 

  255. Kohler A, dos Santos DA, Beljonne D, Shuai Z, Brédas JL, Holmes AB, Kraus A, Mullen K, Friend RH (1998) Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392:903

    CAS  Google Scholar 

  256. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775

    CAS  Google Scholar 

  257. Wiebeler C, Tautz R, Feldmann J, von Hauff E, Da Como E, Schumacher S (2013) Spectral signatures of polarons in conjugated co-polymers. J Phys Chem B ASAP 117: 4454–4460

    Google Scholar 

  258. Tautz R, Da Como E, Wiebeler C, Soavi G, Dumsch I, Fröhlich N, Grancini G, Allard S, Scherf U, Cerullo G, Schumacher S, Feldmann J (2013) Charge photogeneration in donor–acceptor conjugated materials: influence of excess excitation energy and chain length. J Am Chem Soc 135:4282

    CAS  Google Scholar 

  259. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433

    CAS  Google Scholar 

  260. Kohler A, Bassler H (2009) Triplet states in organic semiconductors. Mat Sci Eng R 66:71

    Google Scholar 

  261. Kohler A, Beljonne D (2004) The singlet–triplet exchange energy in conjugated polymers. Adv Funct Mater 14:11

    Google Scholar 

  262. Veldman D, Meskers SCJ, Janssen RAJ (2009) The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater 19:1939

    CAS  Google Scholar 

  263. Schueppel R, Schmidt K, Uhrich C, Schulze K, Wynands D, Brédas JL, Brier E, Reinold E, Bu HB, Baeuerle P, Maennig B, Pfeiffer M, Leo K (2008) Optimizing organic photovoltaics using tailored heterojunctions: a photoinduced absorption study of oligothiophenes with low band gaps. Phys Rev B 77:085311

    Google Scholar 

  264. Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009) Beyond förster resonance energy transfer in biological and nanoscale systems. J Phys Chem B 113:6583

    CAS  Google Scholar 

  265. Wiesenhofer H, Beljonne D, Scholes GD, Hennebicq E, Brédas JL, Zojer E (2005) Limitations of the Forster description of singlet exciton migration: the illustrative example of energy transfer to ketonic defects in ladder-type poly(para-phenylenes). Adv Funct Mater 15:155

    CAS  Google Scholar 

  266. Neuteboom EE, Meskers SCJ, Van Hal PA, Van Duren JKJ, Meijer EW, Janssen RAJ, Dupin H, Pourtois G, Cornil J, Lazzaroni R, Brédas J-L, Beljonne D (2003) Alternating oligo(p-phenylene vinylene)-perylene bisimide copolymers: synthesis, photophysics, and photovoltaic properties of a new class of donor–acceptor materials. J Am Chem Soc 125:8625

    CAS  Google Scholar 

  267. Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378

    CAS  Google Scholar 

  268. Marguet S, Markovitsi D, Millie P, Sigal H, Kumar S (1998) Influence of disorder on electronic excited states: an experimental and numerical study of alkylthiotriphenylene columnar phases. J Phys Chem B 102:4697

    CAS  Google Scholar 

  269. Yamagata H, Norton JE, Hontz E, Olivier Y, Beljonne D, Brédas JL, Silbey RJ, Spano FC (2011) The nature of sinlget excitons in oligoacene molecular crystals. J Chem Phys 134:204703

    CAS  Google Scholar 

  270. Kawatsu T, Coropceanu V, Ye AJ, Brédas JL (2008) Quantum-chemical approach to electronic coupling: application to charge separation and charge recombination pathways in a model molecular donor–acceptor system for organic solar cells. J Phys Chem C 112:3429

    CAS  Google Scholar 

  271. Linares M, Beljonne D, Cornil J, Lancaster K, Brédas JL, Verlaak S, Mityashin A, Heremans P, Fuchs A, Lennartz C, Ide J, Mereau R, Aurel P, Ducasse L, Castet F (2010) On the interface dipole at the pentacene–fullerene heterojunction: a theoretical study. J Phys Chem C 114:3215

    CAS  Google Scholar 

  272. Lee J, Vandewal K, Yost SR, Bahlke ME, Goris L, Baldo MA, Manca JV, Voorhis TV (2010) Charge transfer state versus hot exciton dissociation in polymer–fullerene blended solar cells. J Am Chem Soc 132:11878

    CAS  Google Scholar 

  273. Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PHM, Pshenichnikov MS, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335:1340

    CAS  Google Scholar 

  274. Yi YP, Coropceanu V, Brédas JL (2009) Exciton-dissociation and charge-recombination processes in pentacene/C-60 solar cells: theoretical insight into the impact of interface geometry. J Am Chem Soc 131:15777

    CAS  Google Scholar 

  275. Yi Y, Coropceanu V, Brédas J-L (2011) A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells. J Mater Chem 21:1479

    CAS  Google Scholar 

  276. Rand BP, Cheyns D, Vasseur K, Giebink NC, Mothy S, Yi Y, Coropceanu V, Beljonne D, Cornil J, Brédas J-L, Genoe J (2012) The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv Funct Mater 22:2987

    CAS  Google Scholar 

  277. Ko S, Hoke ET, Pandey L, Hong S, Mondal R, Risko C, Yi Y, Noriega R, McGehee MD, Brédas J-L, Salleo A, Bao Z (2012) Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. J Am Chem Soc 134:5222

    CAS  Google Scholar 

  278. Perez MD, Borek C, Forrest SR, Thompson ME (2009) Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. J Am Chem Soc 131:9281

    CAS  Google Scholar 

  279. Vandewal K, Tvingstedt K, Gadisa A, Inganas O, Manca JV (2010) Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Phys Rev B 81:125204

    Google Scholar 

  280. Vandewal K, Tvingstedt K, Gadisa A, Inganas O, Manca JV (2009) On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater 8:904

    CAS  Google Scholar 

  281. Pauck T, Bassler H, Grimme J, Scherf U, Mullen K (1996) A comparative site-selective fluorescence study of ladder-type para-phenylene oligomers and oligo-phenylenevinylenes. Chem Phys 210:219

    CAS  Google Scholar 

  282. Wu Q, Van Voorhis T (2005) Direct optimization method to study constrained systems within density-functional theory. Phys Rev A 72:024502

    Google Scholar 

  283. Klamt A, Schuurmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799

    Google Scholar 

  284. Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas J-L (2006) Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc 128:9882

    CAS  Google Scholar 

  285. Bounds PJ, Munn RW (1979) Polarization energy of a localized charge in a molecular-crystal. Chem Phys 44:103

    CAS  Google Scholar 

  286. Bounds PJ, Munn RW (1981) Polarization energy of a localized charge in a molecular-crystal. 2. Charge-quadrupole energy. Chem Phys 59:41

    CAS  Google Scholar 

  287. Bounds PJ, Munn RW (1981) Polarization energy of a localized charge in a molecular-crystal. 3. Sub-molecule treatment. Chem Phys 59:47

    CAS  Google Scholar 

  288. Eisenstein I, Munn RW, Bounds PJ (1983) Polarization energy of a localized charge in a molecular-crystal. 4. Effect of polarizability changes. Chem Phys 74:307

    CAS  Google Scholar 

  289. Eisenstein I, Munn RW (1983) Polarization energy of a localized charge in a molecular-crystal. 6. Effect of excitons. Chem Phys 79:189

    CAS  Google Scholar 

  290. Eisenstein I, Munn RW (1983) Polarization energy of a localized charge in a molecular-crystal. 5. Effect of vacancies. Chem Phys 77:47

    CAS  Google Scholar 

  291. Soos ZG, Tsiper EV, Pascal RA (2001) Charge redistribution and electronic polarization in organic molecular crystals. Chem Phys Lett 342:652

    CAS  Google Scholar 

  292. Tsiper EV, Soos ZG (2001) Charge redistribution and polarization energy of organic molecular crystals. Phys Rev B 64:195124

    Google Scholar 

  293. Tsiper EV, Soos ZG, Gao W, Kahn A (2002) Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chem Phys Lett 360:47

    CAS  Google Scholar 

  294. Tsiper EV, Soos ZG (2003) Electronic polarization in pentacene crystals and thin films. Phys Rev B 68:085301

    Google Scholar 

  295. Verlaak S, Heremans P (2007) Molecular microelectrostatic view on electronic states near pentacene grain boundaries. Phys Rev B 75:115127

    Google Scholar 

  296. Norton JE, Brédas JL (2008) Polarization energies in oligoacene semiconductor crystals. J Am Chem Soc 130:12377

    CAS  Google Scholar 

  297. Castet F, Aurel P, Fritsch A, Ducasse L, Liotard D, Linares M, Cornil J, Beljonne D (2008) Electronic polarization effects on charge carriers in anthracene: a valence bond study. Phys Rev B 77:115210

    Google Scholar 

  298. Verlaak S, Beljonne D, Cheyns D, Rolin C, Linares M, Castet F, Cornil J, Heremans P (2009) Electronic structure and geminate pair energetics at organic–organic interfaces: the case of pentacene/C-60 heterojunctions. Adv Funct Mater 19:3809

    CAS  Google Scholar 

  299. Beljonne D, Cornil J, Muccioli L, Zannoni C, Brédas J-L, Castet F (2011) Electronic processes at organic–organic interfaces: insight from modeling and implications for opto-electronic devices. Chem Mater 23:591

    CAS  Google Scholar 

  300. Marcus RA (1956) On the theory of oxidation–reduction reactions involving electron transfer. J Chem Phys 24:966

    CAS  Google Scholar 

  301. Marcus RA (1956) Electrostatic free energy and other properties of states having nonequilibrium polarization. J Chem Phys 24:979

    CAS  Google Scholar 

  302. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265

    CAS  Google Scholar 

  303. Marcus RA (1993) Electron–transfer reactions in chemistry – theory and experiment. Rev Mod Phys 65:599

    CAS  Google Scholar 

  304. Nelson J, Kwiatkowski JJ, Kirkpatrick J, Frost JM (2009) Modeling charge transport in organic photovoltaic materials. Acc Chem Res 42:1768

    CAS  Google Scholar 

  305. Cheung DL, McMahon DP, Troisi A (2009) Computational study of the structure and charge-transfer parameters in low-molecular-mass P3HT. J Phys Chem B 113:9393

    CAS  Google Scholar 

  306. Cheung DL, McMahon DP, Troisi A (2009) A realistic description of the charge carrier wave function in microcrystalline polymer semiconductors. J Am Chem Soc 131:11179

    CAS  Google Scholar 

  307. McMahon DP, Cheung DL, Goris L, Dacuña J, Salleo A, Troisi A (2011) Relation between microstructure and charge transport in polymers of different regioregularity. J Phys Chem C 115:19386

    Google Scholar 

  308. Poelking C, Cho E, Malafeev A, Ivanov V, Kremer K, Risko C, Brédas J-L, Andrienko D (2013) Characterization of charge-carrier transport in semicrystalline polymers: electronic couplings, site energies, and charge-carrier dynamics in poly(bithiophene-alt-thienothiophene) [PBTTT]. J Phys Chem C 117:1633

    CAS  Google Scholar 

  309. Heimel G, Romaner L, Brédas JL, Zojer E (2006) Phys Rev Lett 96:196806

    Google Scholar 

  310. Heimel G, Romaner L, Brédas JL, Zojer E (2006) Surf Sci 600:4548

    CAS  Google Scholar 

  311. Rusu PC, Brocks G (2006) Surface dipoles and work functions of alkylthiolates and fluorinated alkylthiolates on Au(111). J Phys Chem B 110:22628

    CAS  Google Scholar 

  312. Rusu PC, Brocks G (2006) Work functions of self-assembled monolayers on metal surfaces by first-principles calculations. Phys Rev B 74:073414

    Google Scholar 

  313. Segev L, Salomon A, Natan A, Cahen D, Kronik L, Amy F, Chan CK, Kahn A (2006) Electronic structure of Si(111)-bound alkyl monolayers: theory and experiment. Phys Rev B 74:165323

    Google Scholar 

  314. Heimel G, Romaner L, Brédas JL, Zojer E (2007) Nano Lett 7:932

    CAS  Google Scholar 

  315. Natan A, Kronik L, Haick H, Tung RT (2007) Electrostatic properties of ideal and non-ideal polar organic monolayers: implications for electronic devices. Adv Mater 19:4103

    CAS  Google Scholar 

  316. Paramonov PB, Paniagua SA, Hotchkiss PJ, Jones SC, Armstrong NR, Marder SR, Brédas JL (2008) Theoretical characterization of the indium tin oxide surface and of its binding sites for adsorption of phosphonic acid monolayers. Chem Mater 20:5131

    CAS  Google Scholar 

  317. Hotchkiss PJ, Li H, Paramonov PB, Paniagua SA, Jones SC, Armstrong NR, Brédas JL, Marder SR (2009) Modification of the surface properties of indium tin oxide with benzylphosphonic acids: a joint experimental and theoretical study. Adv Mater 21:4496

    CAS  Google Scholar 

  318. Li H, Duan YQ, Paramonov P, Coropceanu V, Brédas JL (2009) Electronic structure of self-assembled (fluoro)methylthiol monolayers on the Au(111) surface: impact of fluorination and coverage density. J Electron Spectrosc 174:70

    CAS  Google Scholar 

  319. Rusu PC, Giovannetti G, Weijtens C, Coehoorn R, Brocks G (2009) Work function pinning at metal–organic interfaces. J Phys Chem C 113:9974

    CAS  Google Scholar 

  320. Li H, Paramonov P, Brédas JL (2010) Theoretical study of the surface modification of indium tin oxide with trifluorophenyl phosphonic acid molecules: impact of coverage density and binding geometry. J Mater Chem 20:2630

    CAS  Google Scholar 

  321. Rusu PC, Giovannetti G, Weijtens C, Coehoorn R, Brocks G (2010) First-principles study of the dipole layer formation at metal–organic interfaces. Phys Rev B 81:125403

    Google Scholar 

  322. O’Boyle NM, Campbell CM, Hutchison GR (2011) Computational design and selection of optimal organic photovoltaic materials. J Phys Chem C 115:16200

    Google Scholar 

  323. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2:2241

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Office of Naval Research (Award No. N00014-11-1-0211) and by the Deanship of Scientific Research (DSR) of King Abdulaziz University (Award No. 23-3-1432/HiCi), which the authors acknowledge for technical and financial support. We are also greatly indebted to our many colleagues that have contributed to the work in organic photovoltaics reviewed herein, including Zhenan Bao, Pierre M. Beaujuge, David Beljonne, Jérôme Cornil, Veaceslav Coropceanu, Bernard Kippelen, Hong Li, Seth R. Marder, Michael D. McGehee, Joseph E. Norton, Laxman Pandey, John R. Reynolds, Alberto Salleo, John S. Sears, and Yuanping Yi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Brédas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Risko, C., Brédas, JL. (2013). Small Optical Gap Molecules and Polymers: Using Theory to Design More Efficient Materials for Organic Photovoltaics. In: Beljonne, D., Cornil, J. (eds) Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_459

Download citation

Publish with us

Policies and ethics