Skip to main content

Terms for the Quantitation of a Mixture of Stereoisomers

  • Chapter
  • First Online:
Differentiation of Enantiomers I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 340))

Abstract

Various terms for the quantitation of a mixture of enantiomers and diastereomers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds: determination of enantiomer and diastereomer composition. Wiley Interscience, New York, pp 214–295, Chapter 6 and 5

    Google Scholar 

  2. Koppenhoefer B, Muschalek V, Hummel M, Bayer E (1989) Determination of the enhancement of the enantiomeric purity during recrystallization of amino acids. J Chromatogr 477:139–145

    Article  Google Scholar 

  3. Reiner C, Nicholson GJ, Nagel U, Schurig V (2007) Evaluation of enantioselective gas chromatography for the determination of minute deviations from racemic composition of α-amino acids with emphasis on tyrosine: accuracy and precision of the method. Chirality 19:401–414

    Article  CAS  Google Scholar 

  4. Raban M, Mislow K (1967) Modern methods for the determination of optical purity. Top Stereochem 2:199–230

    Article  CAS  Google Scholar 

  5. Morrison JD, Mosher HS (1971) Asymmetric organic reactions. Prentice Hall, Eaglewood Cliffs

    Google Scholar 

  6. Orchin M, Kaplan F, Macomber RS, Wilson RM, Zimmer H (1980) The vocabulary of organic chemistry. Wiley, New York, p 130

    Google Scholar 

  7. Schurig V (1985) Current methods for the determination of enantiomeric compositions (part 1): definitions, polarimetry. Kontakte (Darmstadt) 1:54–60

    Google Scholar 

  8. Kagan HB (1995) Is there a preferred expression for the composition of enantiomers? Recueil Trav Chim Pays-Bas 114(4–5):203–205

    CAS  Google Scholar 

  9. Schurig V (1996) Terms for the quantitation of a mixture of stereoisomers. Enantiomer 1(2):139–143

    Google Scholar 

  10. http://en.wikipedia.org/wiki/Enantiomeric_excess

  11. Gawley RE (2005) Do the terms “% ee” and “% de” make sense as expressions of stereoisomer composition or stereoselectivity? J Org Chem 71:2411–2416

    Article  Google Scholar 

  12. Schurig V, Lindner W (1995) Determination of enantiomeric purity by direct methods. In: Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds) Stereoselective synthesis, vol E 21a, Houben-Weyl, methods of organic chemistry. Thieme, Stuttgart, New York, pp 147–192 (V.S.) & pp. 193–224 (W.L.)

    Google Scholar 

  13. Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds. Wiley Interscience, New York, pp 1197–1198

    Google Scholar 

  14. Brewster JH (1992) Racemic, scalemic, holemic. Chem Eng News 70(2):3 (May 18)

    Google Scholar 

  15. Rautenstrauch V, Lindström M, Bourdin B, Currie J, Oliveros E (1993) Enantiomeric purities of (R)-camphors and (S)-camphors from the chiral pool and high enantiomeric purities in general. Helv Chim Acta 76(1):607–615

    Article  CAS  Google Scholar 

  16. Rautenstrauch V, Mégard P, Bourdin B, Furrer A (1992) Treating the camphors with potassium in liquid-ammonia leads to a double Horeau duplication. J Am Chem Soc 114(4):1418–1428

    Article  CAS  Google Scholar 

  17. Wistuba D, Nowotny H-P, Träger O, Schurig V (1989) Cytochrome P-450-catalyzed asymmetric epoxidation of simple prochiral and chiral aliphatic alkenes: species dependence and effect of enzyme induction on enantioselective oxirane formation. Chirality 1:127–136

    Article  CAS  Google Scholar 

  18. Harner T, Wiberg K, Norstrom R (2000) Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ Sci Technol 34(1):218–220

    Article  CAS  Google Scholar 

  19. De Geus HJ, Wester PG, de Boer J, Brinkman UAT (2000) Enantiomer fractions instead of enantiomer ratios. Chemosphere 41(5):725–727

    Article  Google Scholar 

  20. Hashim NH, Shafie S, Khan SJ (2010) Enantiomeric fraction as an indicator of pharmaceutical biotransformation during wastewater treatment and in the environment – a review. Environ Technol 31(12):1349–1370

    Article  CAS  Google Scholar 

  21. Selke R, Facklam C, Foken H, Heller D (1993) Application of the term “relative enantioselectivity” as useful measure for comparison of chiral catalysts, demonstrated on asymmetric hydrogenation of amino acid precursors. Tetrahedr Asymm 4(3):369–382

    Article  CAS  Google Scholar 

  22. Selke R (1997) Importance of the term “enantiomeric ratio” for comparison of chiral catalysts in prochiral substrate reactions. Enantiomer 2(5):415–419

    CAS  Google Scholar 

  23. Seebach D, Beck AK, Schmidt B, Wang YM (1994) Enantioselective and diastereoselective titanium-taddolate catalyzed addition of diethyl and bis(3-buten-1-yl) zinc to aldehydes – a full account with preparative details. Tetrahedron 50(15):4363–4384

    Article  CAS  Google Scholar 

  24. Rautenstrauch V (1994) The 2 expressions of the Horeau principle, nth-order Horeau amplifications, and scales for the resulting very high enantiopurities. Bull Soc Chim Fr 131(5):515–524

    CAS  Google Scholar 

  25. Glausch A, Hahn J, Schurig V (1995) Enantioselective determination of chiral 2,2′,3,3′,4,6′- hexachloro-biphenyl (PCB 132) in human milk samples by multidimensional gas chromatography/electron capture detection and by mass spectrometry. Chemosphere 30:2079–2085

    Article  CAS  Google Scholar 

  26. Faber K (1997) The “enantiomeric ratio” – beware of confusion! Enantiomer 2(5):411–414

    CAS  Google Scholar 

  27. Chen C-S, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104(25):7294–7299

    Article  CAS  Google Scholar 

  28. Sih CJ, Wu S-H (1989) Resolution of enantiomers via biocatalysis. Top Stereochem 19:63–125

    CAS  Google Scholar 

  29. Bornscheuer UT, Kazlaukas RJ (1999) Hydrolases in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  30. Kagan HB, Fiaud JC (1988) Kinetic resolution. Top Stereochem 18:249–330

    CAS  Google Scholar 

  31. Rakels JLL, Straathof AJJ, Heijnen JJ (1993) A simple method to determine the enantiomeric ratio in enantioselective biocatalysis. Enyzme Microb Technol 15(12):1051–1056

    Article  CAS  Google Scholar 

  32. Ghanem A, Schurig V (2003) Lipase-catalyzed access to enantiomerically pure (R)- and (S)-trans-4-phenyl-3-butene-2-ol. Tetrahedr Asymm 14:57–62

    Article  CAS  Google Scholar 

  33. Gal J (2007) Carl Friedrich Naumann and the introduction of enantio terminology: a review and analysis on the 150th anniversary. Chirality 19(2):89–98

    Article  CAS  Google Scholar 

  34. Lehmann FPA, Rodrigues De Miranda JF, Ariëns EJ (1976) Stereoselectivity and affinity in molecular pharmacology. In: Jucker E (ed) Progress research, vol 20. Birkhäuser, Basel, pp 101–142

    Google Scholar 

  35. Zeller EA, Banerjee R (1963) Eutopic and dystopic complexes of bovine lens amino peptidase. Invest Ophthalmol 2(5):519–519

    Google Scholar 

  36. Ariëns EJ (1984) Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 26(6):663–668

    Article  Google Scholar 

  37. Pfeiffer CC (1956) Optical isomerism and pharmacological action, a generalization. Science 124(3210):29–31

    Article  CAS  Google Scholar 

  38. Rochat B, Amey M, Van Gelderen H, Testa P, Baumann P (1995) Determination of the enantiomers of citalopram, its demethylated and propionic-acid metabolites in human plasma by chiral HPLC. Chirality 7(6):389–395

    Article  CAS  Google Scholar 

  39. Lyle GG, Lyle RE (1983) Polarimetry. In: Morrison JD (ed) Asymmetric synthesis, vol I, Analytical methods. Academic, New York, pp 13–27

    Google Scholar 

  40. Horeau A (1969) Interactions d’enantiomeres en solution; influence sur le pouvoir rotatoire: purete optique et purete enantiomerique. Tetrahedr Lett 10(36):3121–3124

    Article  Google Scholar 

  41. Brown HC, Ayyangar NR, Zweifel G (1964) Hydroboration. XVIII. The reaction of diisopinocampheylborane with representative cis-acyclic, cyclic, and bicyclic olefins. A convenient synthesis of optically active alcohols and olefins of high optical purity and established configuration. J Am Chem Soc 86(3):397–403

    Article  CAS  Google Scholar 

  42. Brewster H (1959) The optical activity of endocyclic olefins. J Am Chem Soc 81(20):5493–5500

    Article  CAS  Google Scholar 

  43. Schurig V, Gil-Av E (1976/1977) Chromatographic resolution of chiral olefins. Specific rotation of 3-methylcyclopentene and related compounds. Israel J Chem 15:96–98

    Article  Google Scholar 

  44. Consiglio G, Pino P, Flowers LI, Pittman CU (1983) Asymmetric hydroformylation of styrene by chiral platinum catalysts: a re-evaluation of the optical yields. J Chem Soc Chem Commun: 612–613

    Google Scholar 

  45. Edwards D, Cooper K, Dougherty RC (1980) Asymmetric synthesis in a confined vortex: gravitational fields can cause asymmetric synthesis. J Am Chem Soc 102(1):381–382 & 7618

    Article  CAS  Google Scholar 

  46. Mead CA, Moscowitz A (1980) Some comments on the possibility of achieving asymmetric synthesis from achiral reactants in a rotating vessel. J Am Chem Soc 102(24):7301–7302

    Article  CAS  Google Scholar 

  47. Schurig V (1995) Determination of enantiomeric purity by direct methods. In: Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds) Stereoselective synthesis, vol E 21a, Houben-Weyl, methods of organic chemistry. Thieme, Stuttgart, New York, p 157, Chapter 3.1.3.7

    Google Scholar 

  48. Beitler U, Feibush B (1976) Interaction between asymmetric solutes and solvents: diamides derived from L-valine as stationary phases in gas–liquid partition chromatography. J Chromatogr 123(1):149–166

    Article  CAS  Google Scholar 

  49. Schurig V, Bürkle W, Hintzer K, Weber R (1989) Evaluation of nickel(II) bis[α- (heptafluorobutanoyl)-terpeneketonates] as chiral stationary phases for the enantiomer separation of alkyl-substituted cyclic ethers by complexation chromatography. J Chromatogr 475:23–44

    Article  CAS  Google Scholar 

  50. Levkin PA, Schurig V (2008) Apparent and true enantioselectivity of single- and binary-selector chiral stationary phases in gas chromatography. J Chromatogr A 1184(1–2):309–322

    Article  CAS  Google Scholar 

  51. Pirkle WH, Welch CJ (1996) Some thoughts on the coupling of dissimilar chiral columns or the mixing of chiral stationary phases for the separation of enantiomers. J Chromatogr 731(1–2):23–44

    Google Scholar 

  52. Schurig V (2009) Elaborate treatment of retention in chemoselective chromatography – retention increment approach and non-linear effects. J Chromatogr A 1216(10):1723–1736

    Article  CAS  Google Scholar 

  53. Levkin PA, Maier NM, Schurig V, Lindner W (2010) Strong detrimental effect of a minute enantiomeric impurity of a chiral selector on the enantioselectivity factor. Angew Chem Int Ed 49(42):7742–7744

    Article  CAS  Google Scholar 

  54. Ulrich EM, Helsel DR, Foreman WT (2003) Complications with using ratios for environmental data: comparing enantiomeric ratios (ERs) and enantiomeric fractions (EFs). Chemosphere 53(5):531–538

    Article  CAS  Google Scholar 

  55. Frank H, Nicholson GJ, Bayer E (1978) Enantiomer labelling, a method for the quantitative analysis of amino acids. J Chromatogr 167:187–196

    Article  CAS  Google Scholar 

  56. Vetter W, Schurig V (1997) Enantioselective determination of chiral organochlorine compounds in biota by gas chromatography on modified cyclodextrins. J Chromatogr A 774:143–175

    Article  CAS  Google Scholar 

  57. Gil-Av E, Schurig V (1994) Resolution of non-racemic mixtures in achiral chromatographic systems: a model for the enantioselective effects observed. J Chromatogr A 666:519–525

    Article  CAS  Google Scholar 

  58. Eliel EL, Wilen SH (1990) Misuse of homochiral. Chem Eng News 68(3):2 (September 10)

    Article  Google Scholar 

  59. Ruch E (1972) Algebraic aspects of the chirality phenomenon in chemistry. Acc Chem Res 5(2):49–56

    Article  CAS  Google Scholar 

  60. Schurig V (1977) Internal vs. external diastereotopism in homochiral cis vs. trans olefin metal π complexes. Tetrahedr Lett 18(45):3977–3980

    Article  Google Scholar 

  61. Schurig V (1984) Stereoheterotopicity and stereoisomerism in heterochiral cis vs. trans olefin metal π complexes. Tetrahedr Lett 25(26):2739–2742

    Article  CAS  Google Scholar 

  62. Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds. Wiley Interscience, New York, p 215

    Google Scholar 

  63. Gal J (1998) Problems of stereochemical nomenclature and terminology. 1. The homochiral controversy. Its nature and origins, and a proposed solution. Enantiomer 3(3):263–273

    CAS  Google Scholar 

  64. Thaisrivongs S, Seebach D (1983) Diastereoselective benzyloxymercuration/demercuration of derivatives of γ-alkyl-δ-hydroxy-α, β-unsaturated esters. A new strategy for the synthesis of aldol-type products. J Am Chem Soc 105(25):7407–7413

    Article  CAS  Google Scholar 

  65. Cawley A, Duxbury JP, Kee TP (1998) NMR determination of enantiopurity via chiral derivatisation. Tetrahedr Asymm 9:1947–1949

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schurig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schurig, V. (2013). Terms for the Quantitation of a Mixture of Stereoisomers. In: Schurig, V. (eds) Differentiation of Enantiomers I. Topics in Current Chemistry, vol 340. Springer, Cham. https://doi.org/10.1007/128_2013_454

Download citation

Publish with us

Policies and ethics