Folds and Buckles at the Nanoscale: Experimental and Theoretical Investigation of the Bending Properties of Graphene Membranes

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 348)


The elastic properties of graphene crystals have been extensively investigated, revealing unique properties in the linear and nonlinear regimes, when the membranes are under either stretching or bending loading conditions. Nevertheless less knowledge has been developed so far on folded graphene membranes and ribbons. It has been recently suggested that fold-induced curvatures, without in-plane strain, can affect the local chemical reactivity, the mechanical properties, and the electron transfer in graphene membranes. This intriguing perspective envisages a materials-by-design approach through the engineering of folding and bending to develop enhanced nano-resonators or nano-electro-mechanical devices. Here we present a novel methodology to investigate the mechanical properties of folded and wrinkled graphene crystals, combining transmission electron microscopy mapping of 3D curvatures and theoretical modeling based on continuum elasticity theory and tight-binding atomistic simulations.


3D reconstruction Bending rigidity Geometric phase analysis Graphene Tight binding Transmission electron microscopy 



Bilayered edged graphene


Carbon nanotube


Chemical vapor deposition


Diffraction pattern


Fast Fourier transform


Geometric phase analysis


High resolution transmission electron microscopy


Scanning transmission electron microscope




Transmission electron microscope



One of us (L.C.) acknowledges financial support under project PRIN 2010–2011 “GRAF”.


  1. 1.
    Krivanek OL, Dellby N, Murfitt MF, Chisholm MF, Pennycook TJ, Suenaga K, Nicolosi V (2010) Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110:935–945CrossRefGoogle Scholar
  2. 2.
    Warner JH, Roxana Margine E, Mukai M, Robertson AW, Giustino F, Kirkland AI (2012) Dislocation-driven deformations in graphene. Science 337:209–212CrossRefGoogle Scholar
  3. 3.
    Meyer JC, Eder F, Kurasch S, Skakalova V, Kotakoski J, Jin Park H, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov AV, Kaiser U (2012) Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys Rev Lett 108:196102CrossRefGoogle Scholar
  4. 4.
    Zan R, Bangert U, Ramasse Q, Novoselov KS (2011) Metal–graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Lett 11:1087–1092Google Scholar
  5. 5.
    Zhou W, Kapetanakis MD, Prange MP, Pantelides ST, Pennycook SJ, Idrobo JC (2012) Phys Rev Lett 109:206803CrossRefGoogle Scholar
  6. 6.
    Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Hytch M, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74:131–146CrossRefGoogle Scholar
  9. 9.
    Grillo V, Rossi F (2013) Stem cell: a software tool for electron microscopy. Part 2. Analysis of crystalline materials. Ultramicroscopy, advanced online publication 125:112–129Google Scholar
  10. 10.
    Mermin N (1968) Crystalline order in two dimensions. Phys Rev 176:250–254CrossRefGoogle Scholar
  11. 11.
    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Two-dimensional atomic crystals. Proc Nat Acad Sci USA 102:10451–10453CrossRefGoogle Scholar
  12. 12.
    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRefGoogle Scholar
  13. 13.
    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotech 4:562–566CrossRefGoogle Scholar
  14. 14.
    Vandeparre H, Pineirua M, Brau F, Roman B, Bico J, Gay C, Bao W, Lau CN, Reis PM, Damman P (2011) Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains. Phys Rev Lett 106:224301CrossRefGoogle Scholar
  15. 15.
    Kim K, Lee Z, Malone BD, Chan KT, Aleman B, Regan W, Gannett W, Crommie MF, Cohen ML, Zettl A (2011) Multiply folded graphene. Phys Rev B 83:245433CrossRefGoogle Scholar
  16. 16.
    Topsakal M, Bagci VMK, Ciraci S (2010) Current–voltage (I–V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 81:205437CrossRefGoogle Scholar
  17. 17.
    Cadelano E, Palla P, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502CrossRefGoogle Scholar
  18. 18.
    Cadelano E, Giordano S, Colombo L (2010) Interplay between bending and stretching in carbon nanoribbons. Phys Rev B 81:144105CrossRefGoogle Scholar
  19. 19.
    Poetschke M, Rocha CG, Foa Torres LEF, Roche S, Cuniberti G (2010) Modeling graphene-based nanoelectromechanical devices. Phys Rev B 81:193404CrossRefGoogle Scholar
  20. 20.
    Feng J, Qi L, Huang J, Li J (2009) Geometric and electronic structure of graphene bilayer edges. Phys Rev B 80:165407CrossRefGoogle Scholar
  21. 21.
    Tozzini V, Pellegrini V (2011) Reversible hydrogen storage by controlled buckling of graphene layers. J Phys Chem C 115:25523–25528CrossRefGoogle Scholar
  22. 22.
    Zheng Y, Wei N, Fan Z, Xu L, Huang Z (2011) Mechanical properties of grafold: a demonstration of strengthened graphene. Nanotechnology 22:405701CrossRefGoogle Scholar
  23. 23.
    Prada E, San-Jose P, Brey L (2010) Zero landau level in folded graphene nanoribbons. Phys Rev Lett 105:106802CrossRefGoogle Scholar
  24. 24.
    Zhu W (2012) Structure and electronic transport in graphene wrinkles. Nano Lett 12:3431–3436CrossRefGoogle Scholar
  25. 25.
    Pang ALJ, Sorkin V, Zhang Y-W, Srolovitz DJ (2012) Self assembly of free-standing graphene nano-ribbons. Phys Lett A 376:973–977CrossRefGoogle Scholar
  26. 26.
    Qi L, Huang JY, Feng J, Li J (2010) In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges. Carbon 48:2354–2360CrossRefGoogle Scholar
  27. 27.
    Patra N, Wang B, Kral P (2009) Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett 9:3766–3771CrossRefGoogle Scholar
  28. 28.
    Catheline A, Ortolani L, Morandi V, Melle-Franco M, Drummond C, Zakri C, Penicaud A (2012) Solutions of fully exfoliated individual graphene flakes in low boiling points solvents. Soft Matter 8:7882–7887CrossRefGoogle Scholar
  29. 29.
    Midgley P, Weyland M, Yates T, Tong J, Dunin-Borkowsky R (2004) Stem electron tomography for nanoscale materials science. Microsc Microanal 10:148–149CrossRefGoogle Scholar
  30. 30.
    Molhave K, Gudnason SB, Pedersen AT, Clausen CH, Horsewell A, Boggild P (2007) Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy 108:52–57CrossRefGoogle Scholar
  31. 31.
    Barboza APM, Chacham H, Oliveira CK, Fernandes TFD, Martins Ferreira EH, Archanjo BS, Batista RJC, de Oliveira AB, Neves BRA (2012) Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett 12:2313–2317CrossRefGoogle Scholar
  32. 32.
    Hytch M (1997) Analysis of variations in structure from high resolution electron microscope images by combining real space and Fourier space information. Microsc Microanal 8:41–57Google Scholar
  33. 33.
    Hytch M, Plamann T (2001) Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87:199–212CrossRefGoogle Scholar
  34. 34.
    Snoeck E, Warot B, Ardhuin H, Rocher A, Casanove M, Kilaas R, Hytch M (1998) Quantitative analysis of strain field in thin films from HRTEM micrographs. Thin Solid Films 319:157–162CrossRefGoogle Scholar
  35. 35.
    Ortolani L, Cadelano E, Veronese GP, Degli Esposti Boschi C, Snoeck E, Colombo L, Morandi V (2012) Folded graphene membranes: mapping curvature at the nanoscale. Nano Lett 12:5207–5212CrossRefGoogle Scholar
  36. 36.
    Xu CH, Wang CZ, Chan CT, Ho KM (1992) A transferable tight-binding potential for carbon. J Phys Cond Matt 4:6047–6054CrossRefGoogle Scholar
  37. 37.
    Dresselhaus G, Saito R, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College, LondonGoogle Scholar
  38. 38.
    Shen L, Li J (2005) Equilibrium structure and strain energy of single-walled carbon nanotubes. Phys Rev B 71:165427CrossRefGoogle Scholar
  39. 39.
    Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Sol 51:1059CrossRefGoogle Scholar
  40. 40.
    Xu Y, Gao H, Lil M, Guo Z, Chen H, Jin Z, Yu B (2011) Electronic transport in monolayer graphene with extreme physical deformation: ab initio density functional calculation. Nanotechnology 22:365202CrossRefGoogle Scholar
  41. 41.
    Goodwin L, Skinner AJ, Pettifor DG (1989) Generating transferable tight-binding parameters: application to silicon. Europhys Lett 9:701–706CrossRefGoogle Scholar
  42. 42.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  43. 43.
    JEMS P Stadelmann, CIME-EPFL, Laudanne, Switzerland. Accessed online 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CNR-IMM BolognaBolognaItaly
  2. 2.Department of PhysicsUniversity of Cagliari, Cittadella UniversitariaMonserrato (Ca)Italy

Personalised recommendations