Skip to main content

Chiral NMR Solvating Additives for Differentiation of Enantiomers

  • Chapter
  • First Online:
Differentiation of Enantiomers II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 341))

Abstract

This chapter will describe the general features and main categories of chiral solvating agents (CSAs) for NMR spectroscopy, spanning from low-medium sized CSAs to macrocyclic ones. CSAs based on chiral ionic liquids (CILs) will be introduced in view of their increasing popularity, and, finally, a short paragraph will be dedicated to special applications of CSAs in particular experimental conditions. Several valuable works, which are mainly devoted to investigate enantiodifferentiation mechanisms by NMR, will not be discussed. The main objective is to identify the current trend in the research areas dedicated to the development of new CSAs for NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raban M, Mislow K (1965) Determination of optical purity by nuclear magnetic resonance spectroscopy. Tetrahedron Lett 6:4249–4253

    Google Scholar 

  2. Pirkle WH (1966) The nonequivalence of physical properties of enantiomers in optically active solvents. Differences in nuclear magnetic resonance spectra. I. J Am Chem Soc 88:1837

    CAS  Google Scholar 

  3. Raban M, Mislow K (1967) Modern methods for the determination of optical purity. Top Stereochem 2:199–230

    CAS  Google Scholar 

  4. Dale JA, Mosher HS (1968) Nuclear magnetic resonance nonequivalence of diastereoisomeric esters of α-substituted phenylacetic acids for the determination of stereochemical purity. J Am Chem Soc 90:3732–3738

    CAS  Google Scholar 

  5. Campbell J (1972) Determination of optical and enantiomeric purity by nuclear magnetic resonance spectroscopy (NMR). Aldrichimica Acta 5:29–32

    CAS  Google Scholar 

  6. Sullivan GR (1978) Chiral lanthanide shift reagents. Top Stereochem 10:287–329

    CAS  Google Scholar 

  7. Pirkle WH, Hoover DJ (1982) NMR chiral solvating agents. Top Stereochem 13:263–331

    CAS  Google Scholar 

  8. Yamaguchi S (1983) Nuclear magnetic resonance analysis using chiral derivatives. In: Morrison JD (ed) Asymmetric synthesis, vol 1. Academic, New York, pp 125–152

    Google Scholar 

  9. Fraser RR (1983) Nuclear magnetic resonance analysis using chiral shift reagents. In: Morrison JD (ed) Asymmetric synthesis, vol 1. Academic, New York, pp 173–196

    Google Scholar 

  10. Weisman GR (1983) Nuclear magnetic resonance analysis using chiral solvating agents. In: Morrison JD (ed) Asymmetric synthesis, vol 1. Academic, New York, pp 153–171

    Google Scholar 

  11. Schurig V (1985) Current methods for determination of enantiomeric compositions. Part 2. NMR spectroscopy with chiral lanthanide shift reagents. Kontakte (Darmstadt) 22–36

    Google Scholar 

  12. Aboul-Enein HY (1988) NMR methods for optical purity determination of pharmaceuticals. Anal Lett 21:2155–2163

    CAS  Google Scholar 

  13. Parker D (1991) NMR determination of enantiomeric purity. Chem Rev 91:1441–1457

    CAS  Google Scholar 

  14. Casy AF (1983) Chiral discrimination by NMR spectroscopy. Trends Anal Chem 12:185–189

    Google Scholar 

  15. Hulst R, Kellogg RM, Feringa BL (1995) New methodologies for enantiomeric excess (ee) determination based on phosphorus NMR. Rec Trav Chim Pays Bas 114:115–138

    CAS  Google Scholar 

  16. Rothchild R (2000) NMR methods for determination of enantiomeric excess. Enantiomer 5:457–471

    CAS  Google Scholar 

  17. Wenzel TJ (2007) Discrimination of chiral compounds using NMR spectroscopy. Wiley, New York

    Google Scholar 

  18. Wenzel TJ, Wilcox JD (2003) Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 15:256–270

    CAS  Google Scholar 

  19. Uccello-Barretta G, Balzano F, Salvadori P (2006) Enantiodiscrimination by NMR spectroscopy. Curr Pharm Des 12:4023–4045

    CAS  Google Scholar 

  20. Kumar AP, Jin D, Lee Y-I (2009) Recent development on spectroscopic methods for chiral analysis of enantiomeric compounds. Appl Spectrosc Rev 44:267–316

    CAS  Google Scholar 

  21. Yip Y, Wong S, Choi S (2011) Assessment of the chemical and enantiomeric purity of organic reference materials. Trends Anal Chem 30:628–640

    CAS  Google Scholar 

  22. Wenzel TJ, Chisholm CD (2011) Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry. Prog Nucl Magn Reson Spectrosc 59:1–63

    CAS  Google Scholar 

  23. Brevard C (1983) The multinuclear approach to NMR spectroscopy. Reidel Publishing Company, Boston, pp 1–27

    Google Scholar 

  24. Klika KD (2009) Use of sub-stoichiometric amounts of chiral auxiliaries for enantiodifferentiation by NMR; caveats and potential utility. Tetrahedron Asymmetry 20:1099–1102

    CAS  Google Scholar 

  25. Pirkle WH, Sikkenga DL (1977) The use of chiral solvating agent for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones. Consequences of three-point interactions. J Org Chem 42:1370–1374

    CAS  Google Scholar 

  26. Pirkle WH, Rinaldi PL (1977) Nuclear magnetic resonance determination of enantiomeric compositions of oxaziridines using chiral solvating agents. J Org Chem 42:3217–3219

    CAS  Google Scholar 

  27. Isiklan M, Asmafiliz N, Ozalp EE, Ilter EE, Kilic Z, Cosut B, Yesilot S, Kilic A, Ozturk A, Hokelek T, Koc Bilir LY, Acik L, Akyuz E (2010) Phosphorus–nitrogen compounds. 21. Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclic phosphazene derivatives. The NMR behaviors of chiral phosphazenes with stereogenic centers upon the addition of chiral solvating agents. Inorg Chem 49:7057–7071

    CAS  Google Scholar 

  28. Cosut B, Ibisoglu H, Kilic A, Yesilot S (2009) Synthesis and enantiomeric analysis of cyclotriphosphazene derivatives with one center of chirality. Inorg Chim Acta 362:4931–4936

    CAS  Google Scholar 

  29. Coles SJ, Davies DB, Eaton RJ, Hursthouse MB, Kilic A, Shaw RA, Uslu A (2006) The structural and stereogenic properties of pentaerythritoxy-bridged cyclotriphosphazene derivatives: spiro–spiro, spiro–ansa and ansa–ansa isomers. Dalton Trans 1302–1312

    Google Scholar 

  30. Lao KYY, Hodgson DJ, Dawson B, Buist PH (2005) A micromethod for the stereochemical analysis of fatty acid desaturase-mediated sulfoxidation reactions. Bioorg Med Chem Lett 15:2799–2802

    CAS  Google Scholar 

  31. Tremblay AE, Tan N, Whittle E, Hodgson DJ, Dawson B, Buist PH, Shanklin J (2010) Stereochemistry of 10-sulfoxidation catalyzed by a soluble Δ9 desaturase. Org Biomol Chem 8:1322–1328

    CAS  Google Scholar 

  32. Tremblay AE, Lao KYY, Hodgson DJ, Dawson B, Buist PH (2009) Synthesis of chiral fluorine-tagged reference standards for the 19F NMR-based stereochemical analysis of sulfoxides at trace analytical levels. Bioorg Med Chem Lett 19:5146–5150

    CAS  Google Scholar 

  33. De Moragas M, Cervello E, Port A, Jaime C, Virgili A, Ancian B (1998) Behavior of the 9-anthryl-tert-butylcarbinol as a chiral solvating agent. Study of diastereochemical association by intermolecular NOE and molecular dynamics calculations. J Org Chem 63:8689–8695

    Google Scholar 

  34. Gil J, Virgili A (1999) The first chiral solvating agent (CSA) without 1H NMR signals: the perdeuterio-2,2,2-trifluoro-1-(9-anthryl)ethanol. Preparation and chiral induction on protonated Pirkle alcohol. J Org Chem 64:7274–7276

    CAS  Google Scholar 

  35. Perez-Trujillo M, Virgili A, Molins E (2004) Preparation, conformational analysis and behavior as chiral solvating agents of 9-anthrylpentafluorophenylmethanol enantiomers: study of the diastereomeric association. Tetrahedron Asymmetry 15:1615–1621

    CAS  Google Scholar 

  36. Sanchez-Aris M, Estivill C, Virgili A (2003) Synthesis and structural study of the enantiomers of α, α′-bis(trifluoromethyl)-10,10′-(9,9′-bianthryl)dimethanol as a chiral solvating agent. Tetrahedron Asymmetry 14:3129–3135

    CAS  Google Scholar 

  37. Munoz A, Virgili A (2002) Preparation and behavior of (R)- and (S)-2,2,2-trifluoro-1-(1-pyrenyl)ethanol as chiral solvating agents: study of the diastereomeric association by Job’s plots, intermolecular NOE and binding constants. Tetrahedron Asymmetry 13:1529–1534

    CAS  Google Scholar 

  38. Benson SC, Cai P, Colon M, Haiza MA, Tokles M, Snyder JK (1988) Use of carboxylic acids as chiral solvating agents for the determination of optical purity of chiral amines by NMR spectroscopy. J Org Chem 53:5335–5341

    CAS  Google Scholar 

  39. Buist PH, Marecak D (1995) (S)-α-Methoxyphenyl acetic acid: a new NMR chiral shift reagent for the stereochemical analysis of sulfoxides. Tetrahedron Asymmetry 6:7–10

    CAS  Google Scholar 

  40. Haiza MA, Sanyal A, Snyder JK (1997) O-Nitromandelic acid: a chiral solvating agent for the NMR determination of chiral diamine enantiomeric purity. Chirality 9:556–562

    CAS  Google Scholar 

  41. Cavalluzzi MM, Bruno C, Lentini G, Lovece A, Catalano A, Carocci A, Franchini C (2009) One-step synthesis of homochiral O-aryl and O-heteroaryl mandelic acids and their use as efficient 1H NMR chiral solvating agents. Tetrahedron Asymmetry 20:1984–1991

    CAS  Google Scholar 

  42. Fauconnot L, Nugier-Chauvin C, Noiret N, Patin H (1997) Enantiomeric excess determination of some chiral sulfoxides by NMR: use of (S)-ibuprofen and (S)-naproxen as shift reagents. Tetrahedron Lett 38:7875–7878

    CAS  Google Scholar 

  43. Demchuk OM, Swierczynska W, Michal Pietrusiewicz K, Woznica M, Wojcik D, Frelek J (2008) A convenient application of the NMR and CD methodologies for the determination of enantiomeric ratio and absolute configuration of chiral atropoisomeric phosphine oxides. Tetrahedron Asymmetry 19:2339–2345

    CAS  Google Scholar 

  44. Chinchilla R, Foubelo F, Najera C, Yus M (1995) (R)-O-Aryllactic acids: convenient chiral solvating agents for direct 1H NMR determination of the enantiomeric composition of amines and aminoalcohols. Tetrahedron Asymmetry 6:1877–1880

    CAS  Google Scholar 

  45. Faigl F, Thurner A, Tarkanyi G, Kovari J, Mordini A (2002) Resolution and enantioselective rearrangements of amino group-containing oxiranyl ethers. Tetrahedron Asymmetry 13:59–68

    CAS  Google Scholar 

  46. Przybyl AK, Kubicki M (2011) Simple and highly efficient preparation and characterization of (−)-lupanine and (+)-sparteine. Tetrahedron 67:7787–7793

    CAS  Google Scholar 

  47. Michalik M, Doebler C (1990) Determination of the chiral purity of amino alcohols by proton NMR spectroscopy. Tetrahedron 46:7739–7744

    CAS  Google Scholar 

  48. Iuliano A, Bartalucci D, Uccello-Barretta G, Balzano F, Salvadori P (2001) 3,5-Dinitrobenzoylphenylglycine analogues bearing the 1,1′-binaphthalene moiety – synthesis, conformational study, and application as chiral solvating agents. Eur J Org Chem 2177–2184

    Google Scholar 

  49. Ardej-Jakubisiak M, Kawecki R (2008) NMR method for determination of enantiomeric purity of sulfinimines. Tetrahedron Asymmetry 19:2645–2647

    CAS  Google Scholar 

  50. Salsbury JS, Isbester PK (2005) Quantitative 1H NMR method for the routine spectroscopic determination of enantiomeric purity of active pharmaceutical ingredients fenfluramine, sertraline, and paroxetine. Magn Reson Chem 43:910–917

    CAS  Google Scholar 

  51. Redondo J, Capdevila A, Latorre I (2010) Use of (S)-BINOL as NMR chiral solvating agent for the enantiodiscrimination of omeprazole and its analogs. Chirality 22:472–478

    CAS  Google Scholar 

  52. Klika KD, Budovska M, Kutschy P (2010) Enantiodifferentiation of phytoalexin spirobrassinin derivatives using the chiral solvating agent (R)-(+)-1,1′-bi-2-naphthol in conjunction with molecular modeling. Tetrahedron Asymmetry 21:647–658

    CAS  Google Scholar 

  53. Toda F, Mori K, Okada J, Node M, Itoh A, Oomine K, Fuji K (1988) New chiral shift reagents, optically active 2,2′-dihydroxy-1,1′-binaphthyl and 1,6-bis(o-chlorophenyl)-1,6-diphenyl-2,4-hexadiyne-1,6-diol. Chem Lett 131–134

    Google Scholar 

  54. Drabowicz J, Duddeck H (1989) Proton NMR spectral nonequivalence of sulfoxide enantiomers in the presence of 2,2′-dihydroxy-1,1′-binaphthyl. Sulfur Lett 10:37–40

    CAS  Google Scholar 

  55. Ma Q, Ma M, Tian H, Ye X, Xiao H, Chen L, Lei X (2012) A novel amine receptor based on the binol scaffold functions as a highly effective chiral shift reagent for carboxylic acids. Org Lett 14:5813–5815

    CAS  Google Scholar 

  56. Omelanczuk J, Mikolajczyk M (1996) Chiral t-butylphenylphosphinothioic acid: a useful chiral solvating agent for direct determination of enantiomeric purity of alcohols, thiols, amines, diols, amino alcohols, and related compounds. Tetrahedron Asymmetry 7:2687–2694

    CAS  Google Scholar 

  57. Drabowicz J, Budzinski B, Mikolajczyk M (1992) Chiral tert-butylphenylphosphinothioic acid: a new NMR solvating agent for determination of enantiomeric excesses of sulfoxides. Tetrahedron Asymmetry 3:1231–1234

    CAS  Google Scholar 

  58. Gulea M, Kwiatkowska M, Lyzwa P, Legay R, Gaumont A-C, Kielbasinski P (2009) Michael addition to a chiral non-racemic 2-phosphono-2,3-didehydrothiolane S-oxide. Tetrahedron Asymmetry 20:293–297

    CAS  Google Scholar 

  59. Mucha P, Mloston G, Jasinski M, Linden A, Heimgartner H (2008) A new approach to enantiomerically pure bis-imidazoles derived from trans-1,2-diaminocyclohexane. Tetrahedron Asymmetry 19:1600–1607

    CAS  Google Scholar 

  60. Szawkalo J, Zawadzka A, Wojtasiewicz K, Leniewski A, Drabowicz J, Czarnocki Z (2005) First enantioselective synthesis of the antitumour alkaloid (+)-crispine A and determination of its enantiomeric purity by 1H NMR. Tetrahedron Asymmetry 16:3619–3621

    CAS  Google Scholar 

  61. Louafi F, Moreau J, Shahane S, Golhen S, Roisnel T, Sinbandhit S, Hurvois J-P (2011) Electrochemical synthesis and chemistry of chiral 1-cyanotetrahydroisoquinolines. An approach to the asymmetric syntheses of the alkaloid (−)-crispine A and its natural (+)-antipode. J Org Chem 76:9720–9732

    CAS  Google Scholar 

  62. Czarnocki SJ, Wojtasiewicz K, Jozwiak AP, Maurin JK, Czarnocki Z, Drabowicz J (2008) Enantioselective synthesis of (+)-trypargine and (+)-crispine E. Tetrahedron 64:3176–3182

    CAS  Google Scholar 

  63. Maier NM, Zoltewicz JA (1997) Dynamic equilibration of diastereomeric salts of atropisomers. Proton NMR spectra of 1,8-di(3′-pyridyl)naphthalene in the presence of R-camphorsulfonic acid. Tetrahedron 53:465–468

    CAS  Google Scholar 

  64. Satishkumar S, Periasamy M (2009) Chiral recognition of carboxylic acids by Troeger’s base derivatives. Tetrahedron Asymmetry 20:2257–2262

    CAS  Google Scholar 

  65. Deshmukh M, Dunach E, Juge S, Kagan HB (1984) A convenient family of chiral shift reagents for measurement of enantiomeric excesses of sulfoxides. Tetrahedron Lett 25:3467–3470

    CAS  Google Scholar 

  66. Pakulski Z, Demchuk OM, Kwiatosz R, Osinski PW, Swierczynska W, Pietrusiewicz KM (2003) The classical Kagan’s amides are still practical NMR chiral shift reagents: determination of enantiomeric purity of P-chirogenic phospholene oxides. Tetrahedron Asymmetry 14:1459–1462

    CAS  Google Scholar 

  67. Hirose T, Naito K, Shitara H, Nohira H, Baldwin BW (2001) 1H NMR study of chiral recognition of amines by chiral Kemp’s acid diamide. Tetrahedron Asymmetry 12:375–380

    CAS  Google Scholar 

  68. Hirose T, Naito K, Nakahara M, Shitara H, Aoki Y, Nohira H, Baldwin BW (2002) New chiral Kemp’s acid diamides for chiral amine recognition by 1H NMR. J Incl Phenom Macrocycl Chem 43:87–93

    CAS  Google Scholar 

  69. Bergmann H, Grosch B, Sitterberg S, Bach T (2004) An enantiomerically pure 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one as 1H NMR shift reagent for the ee determination of chiral lactams, quinolones, and oxazolidinones. J Org Chem 69:970–973

    CAS  Google Scholar 

  70. Yang X, Wang G, Zhong C, Wu X, Fu E (2006) Novel NMR chiral solvating agents derived from (1R,2R)-diaminocyclohexane: synthesis and enantiodiscrimination for chiral carboxylic acids. Tetrahedron Asymmetry 17:916–921

    CAS  Google Scholar 

  71. Luo Z, Zhong C, Wu X, Fu E (2008) Amphiphilic chiral receptor as efficient chiral solvating agent for both lipophilic and hydrophilic carboxylic acids. Tetrahedron Lett 49:3385–3390

    CAS  Google Scholar 

  72. Luo Z, Li B, Fang X, Hu K, Wu X, Fu E (2007) Novel chiral solvating agents derived from natural amino acid: enantiodiscrimination for chiral α-arylalkylamines. Tetrahedron Lett 48:1753–1756

    CAS  Google Scholar 

  73. Naziroglu HN, Durmaz M, Bozkurt S, Sirit A (2011) Application of l-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids. Chirality 23:463–471

    CAS  Google Scholar 

  74. Wagger J, Grdadolnik SG, Groselj U, Meden A, Stanovnik B, Svete J (2007) Chiral solvating properties of (S)-1-benzyl-6-methylpiperazine-2,5-dione. Tetrahedron Asymmetry 18:464–475

    CAS  Google Scholar 

  75. Malavasic C, Wagger J, Stanovnik B, Svete J (2008) (S)-N-Benzyl-3(6)-methylpiperazine-2,5-diones as chiral solvating agents for N-acylamino acid esters. Tetrahedron Asymmetry 19:1557–1567

    CAS  Google Scholar 

  76. Malavasic C, Stanovnik B, Wagger J, Svete J (2011) The effect of substituents on the chiral solvating properties of (S)-1,6-dialkylpiperazine-2,5-diones. Tetrahedron Asymmetry 22:1364–1371

    CAS  Google Scholar 

  77. Kim S, Choi K (2011) A practical solvating agent for the chiral NMR discrimination of carboxylic acids. Eur J Org Chem 4747–4750

    Google Scholar 

  78. Bozkurt S, Durmaz M, Naziroglu HN, Yilmaz M, Sirit A (2011) Amino alcohol based chiral solvating agents: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron Asymmetry 22:541–549

    CAS  Google Scholar 

  79. Ma F, Ai L, Shen X, Zhang C (2007) New macrocyclic compound as chiral shift reagent for carboxylic acids. Org Lett 9:125–127

    CAS  Google Scholar 

  80. Wang W, Ma F, Shen X, Zhang C (2007) New chiral auxiliaries derived from (S)-α-phenylethylamine as chiral solvating agents for carboxylic acids. Tetrahedron Asymmetry 18:832–837

    CAS  Google Scholar 

  81. Wang W, Shen X, Ma F, Li Z, Zhang C (2008) Chiral amino alcohols derived from natural amino acids as chiral solvating agents for carboxylic acids. Tetrahedron Asymmetry 19:1193–1199

    CAS  Google Scholar 

  82. Li Y, Raushel FM (2007) Differentiation of chiral phosphorus enantiomers by 31P and 1H NMR spectroscopy using amino acid derivatives as chemical solvating agents. Tetrahedron Asymmetry 18:1391–1397

    CAS  Google Scholar 

  83. Hernandez-Rodriguez M, Juaristi E (2007) Structurally simple chiral thioureas as chiral solvating agents in the enantiodiscrimination of α-hydroxy and α-amino carboxylic acids. Tetrahedron 63:7673–7678

    CAS  Google Scholar 

  84. Lacour J (2010) Chiral hexacoordinated phosphates: from pioneering studies to modern uses in stereochemistry. C R Chim 13:985–997

    CAS  Google Scholar 

  85. Bergman SD, Frantz R, Gut D, Kol M, Lacour J (2006) Effective chiral recognition among ions in polar media. Chem Commun 850–852

    Google Scholar 

  86. Michon C, Goncalves-Farbos M-H, Lacour J (2009) NMR enantiodifferentiation of quaternary ammonium salts of Troeger base. Chirality 21:809–817

    CAS  Google Scholar 

  87. Lacour J, Goujon-Ginglinger C, Troche-Haldimann S, Jordry JJ (2000) Efficient enantioselective extraction of tris(diimine)ruthenium(II) complexes by chiral, lipophilic TRISPHAT anions. Angew Chem Int Ed 39:3695–3697

    CAS  Google Scholar 

  88. Payet E, Dimitrov-Raytchev P, Chatelet B, Guy L, Grass S, Lacour J, Dutasta J-P, Martinez A (2012) Absolute configuration and enantiodifferentiation of a hemicryptophane incorporating an azaphosphatrane moiety. Chirality 24:1077–1081

    CAS  Google Scholar 

  89. Barry NPE, Austeri M, Lacour J, Therrien B (2009) Highly efficient NMR enantiodiscrimination of chiral octanuclear metalla-boxes in polar solvent. Organometallics 28:4894–4897

    CAS  Google Scholar 

  90. Perollier C, Bernardinelli G, Lacour J (2008) Sugar derived hexacoordinated phosphates: chiral anionic auxiliaries with general asymmetric efficiency. Chirality 20:313–324

    CAS  Google Scholar 

  91. Llewellyn DB, Arndtsen BA (2003) The use of a chiral borate counteranion as a 1H NMR shift reagent for cationic copper(I) complexes. Can J Chem 81:1280–1284

    CAS  Google Scholar 

  92. Loewer Y, Weiss C, Biju AT, Froehlich R, Glorius F (2011) Synthesis and application of a chiral diborate. J Org Chem 76:2324–2327

    CAS  Google Scholar 

  93. Moon LS, Jolly RS, Kasetti Y, Bharatam PV (2009) A new chiral shift reagent for the determination of enantiomeric excess and absolute configuration in cyanohydrins. Chem Commun 1067–1069

    Google Scholar 

  94. Moon LS, Pal M, Kasetti Y, Bharatam PV, Jolly RS (2010) Chiral solvating agents for cyanohydrins and carboxylic acids. J Org Chem 75:5487–5498

    CAS  Google Scholar 

  95. Pirkle WH, Pochapsky TC (1987) Chiral molecular recognition in small bimolecular systems: a spectroscopic investigation into the nature of diastereomeric complexes. J Am Chem Soc 109:5975–5982

    CAS  Google Scholar 

  96. Salvadori P, Rosini C, Pini D, Bertucci C, Altemura P, Uccello-Barretta G, Raffaelli A (1987) A novel application of Cinchona alkaloids as chiral auxiliaries: preparation and use of a new family of chiral stationary phases for the chromatographic resolution of racemates. Tetrahedron 43:4969–4978

    CAS  Google Scholar 

  97. Uccello-Barretta G, Rosini C, Pini D, Salvadori P (1990) A spectroscopic study of the interaction of (d)- and (l)-N-(3,5-dinitrobenzoyl)valine methyl ester with n-butylamide of (S)-2-[(phenylcarbamoyl)oxy]propionic acid: direct evidence for a chromatographic chiral recognition rationale. J Am Chem Soc 112:2707–2710

    CAS  Google Scholar 

  98. Pirkle WH, Tsipouras A (1985) 3,5-Dinitrobenzoyl amino acid esters. Broadly applicable chiral solvating agents for NMR determination of enantiomeric purity. Tetrahedron Lett 26:2989–2992

    CAS  Google Scholar 

  99. Rosini C, Uccello-Barretta G, Pini D, Abete C, Salvadori P (1988) Quinine: an inexpensive chiral solvating agent for the determination of enantiomeric composition of binaphthyl derivatives and alkylarylcarbinols by NMR spectroscopy. J Org Chem 53:4579–4581

    CAS  Google Scholar 

  100. Salvadori P, Pini D, Rosini C, Bertucci C, Uccello-Barretta G (1992) Chiral discriminations with Cinchona alkaloids. Chirality 4:43–49

    CAS  Google Scholar 

  101. Uccello-Barretta G, Pini D, Mastantuono A, Salvadori P (1995) Direct NMR assay of enantiomeric purity of chiral β-hydroxy esters by using quinine as chiral solvating agent. Tetrahedron Asymmetry 6:1965–1972

    CAS  Google Scholar 

  102. Maly A, Lejczak B, Kafarski P (2003) Quinine as chiral discriminator for determination of enantiomeric excess of diethyl 1,2-dihydroxyalkanephosphonates. Tetrahedron Asymmetry 14:1019–1024

    CAS  Google Scholar 

  103. Uccello-Barretta G, Bardoni S, Balzano F, Salvadori P (2001) Versatile chiral auxiliaries for NMR spectroscopy based on carbamoyl derivatives of dihydroquinine. Tetrahedron Asymmetry 12:2019–2023

    CAS  Google Scholar 

  104. Uccello-Barretta G, Mirabella F, Balzano F, Salvadori P (2003) C11 versus C9 carbamoylation of quinine: a new class of versatile polyfunctional chiral solvating agents. Tetrahedron Asymmetry 14:1511–1516

    CAS  Google Scholar 

  105. Pini D, Uccello-Barretta G, Rosini C, Salvadori P (1991) N-(n-Butylamide) of (S)-2-(phenylcarbamoyloxy)propionic acid: a new chiral solvating agent, derived from l-lactic acid, for the enantiomeric purity determination of derivatized amino acids. Chirality 3:174–176

    CAS  Google Scholar 

  106. Heo KS, Hyun MH, Cho YJ, Ryoo JJ (2011) Determination of optical purity of 3,5-dimethoxybenzoyl-leucine diethylamide by chiral chromatography and 1H and 13C NMR spectroscopy. Chirality 23:281–286

    CAS  Google Scholar 

  107. Pirkle WH, Welch CJ, Lamm B (1992) Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J Org Chem 57:3854–3860

    CAS  Google Scholar 

  108. Pirkle WH, Welch CJ (1992) An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers. J Liq Chromatogr 15:1947–1955

    CAS  Google Scholar 

  109. Iwaniuk DP, Wolf C (2010) A versatile and practical solvating agent for enantioselective recognition and NMR analysis of protected amines. J Org Chem 75:6724–6727

    CAS  Google Scholar 

  110. Palomino-Schaetzlein M, Virgili A, Gil S, Jaime C (2006) Di-(R,R)-1-[10-(1-hydroxy-2,2,2-trifluoroethyl)-9-anthryl]-2,2,2-trifluoroethyl muconate: a highly chiral cavity for enantiodiscrimination by NMR. J Org Chem 71:8114–8120

    CAS  Google Scholar 

  111. Gil S, Palomino-Schaetzlein M, Burusco KK, Jaime C, Virgili A (2010) Molecular tweezers for enantiodiscrimination in NMR: di-(R,R)-1-[10-(1-hydroxy-2,2,2-trifluoroethyl)-9-anthryl]-2,2,2-trifluoroethyl benzenedicarboxylates. Chirality 22:548–556

    CAS  Google Scholar 

  112. Pena C, Gonzalez-Sabin J, Alfonso I, Rebolledo F, Gotor V (2007) New pincer-like receptor derived from trans-cyclopentane-1,2-diamine as a chiral shift reagent for carboxylic acids. Tetrahedron Asymmetry 18:1981–1985

    CAS  Google Scholar 

  113. Pena C, Gonzalez-Sabin J, Alfonso I, Rebolledo F, Gotor V (2008) Cycloalkane-1,2-diamine derivatives as chiral solvating agents. Study of the structural variables controlling the NMR enantiodiscrimination of chiral carboxylic acids. Tetrahedron 64:7709–7717

    CAS  Google Scholar 

  114. Liu L, Ye M, Hu X, Yu X, Zhang L, Lei X (2011) Chiral solvating agents for carboxylic acids based on the salen moiety. Tetrahedron Asymmetry 22:1667–1671

    CAS  Google Scholar 

  115. Altava B, Burguete MI, Carbo N, Escorihuela J, Luis SV (2010) Chiral bis(amino amides) as chiral solvating agents for enantiomeric excess determination of α-hydroxy and arylpropionic acids. Tetrahedron Asymmetry 21:982–989

    CAS  Google Scholar 

  116. Legouin B, Gayral M, Uriac P, Tomasi S, van de Weghe P (2010) Recognition of enantiomers with chiral molecular tweezers derived from (+)- or (−)-usnic acid. Tetrahedron Asymmetry 21:1307–1310

    CAS  Google Scholar 

  117. Ema T, Ouchi N, Doi T, Korenaga T, Sakai T (2005) Highly sensitive chiral shift reagent bearing two zinc porphyrins. Org Lett 7:3985–3988

    CAS  Google Scholar 

  118. Williams T, Pitcher RG, Bommer P, Gutzwiller J, Uskokovic M (1969) Diastereomeric solute–solute interactions of enantiomers in achiral solvents. Nonequivalence of the nuclear magnetic resonance spectra of racemic and optically active dihydroquinine. J Am Chem Soc 91:1871–1872

    CAS  Google Scholar 

  119. Uccello-Barretta G, Vanni L, Balzano F (2009) NMR enantiodiscrimination phenomena by quinine C9-carbamates. Eur J Org Chem 860–869

    Google Scholar 

  120. Uccello-Barretta G, Balzano F, Salvadori P (2005) Rationalization of the multireceptorial character of chiral solvating agents based on quinine and its derivatives: overview of selected NMR investigations. Chirality 17:S243–S248

    CAS  Google Scholar 

  121. Uccello-Barretta G, Vanni L, Berni MG, Balzano F (2011) NMR enantiodiscrimination by pentafluorophenylcarbamoyl derivatives of quinine: C10 versus C9 derivatization. Chirality 23:417–423

    CAS  Google Scholar 

  122. Abid M, Toeroek B (2005) Cinchona alkaloid induced chiral discrimination for the determination of the enantiomeric composition of α-trifluoromethylated-hydroxyl compounds by 19F NMR spectroscopy. Tetrahedron Asymmetry 16:1547–1555

    CAS  Google Scholar 

  123. Zymanczyk-Duda E, Skwarczynski M, Lejczak B, Kafarski P (1996) Accurate assay of enantiopurity of 1-hydroxy- and 2-hydroxyalkylphosphonate esters. Tetrahedron Asymmetry 7:1277–1280

    CAS  Google Scholar 

  124. Rudzinska E, Berlicki L, Kafarski P, Lammerhofer M, Mucha A (2009) Cinchona alkaloids as privileged chiral solvating agents for the enantiodiscrimination of N-protected aminoalkanephosphonates – a comparative NMR study. Tetrahedron Asymmetry 20:2709–2714

    CAS  Google Scholar 

  125. Gorecki L, Berlicki L, Mucha A, Kafarski P, Slepokura K, Rudzinska-Szostak E (2012) Phosphorylation as a method of tuning the enantiodiscrimination potency of quinine – an NMR study. Chirality 24:318–328

    CAS  Google Scholar 

  126. Faigl F, Vas-Feldhoffer B, Kubinyi M, Pal K, Tarkanyi G, Czugler M (2009) Efficient synthesis of optically active 1-(2-carboxymethyl-6-ethylphenyl)-1H-pyrrole-2-carboxylic acid: a novel atropisomeric 1-arylpyrrole derivative. Tetrahedron Asymmetry 20:98–103

    CAS  Google Scholar 

  127. Kwon C, Yoo KM, Jung S (2009) Chiral separation and discrimination of catechin by sinorhizobial octasaccharides in capillary electrophoresis and 13C NMR spectroscopy. Carbohydr Res 344:1347–1351

    CAS  Google Scholar 

  128. D’Acquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) HPLC chiral stationary phases containing macrocyclic antibiotics: practical aspects and recognition mechanism. Adv Chromatogr 46:109–173

    Google Scholar 

  129. Uccello-Barretta G, Vanni L, Balzano F (2010) Nuclear magnetic resonance approaches to the rationalization of chromatographic enantiorecognition processes. J Chromatogr A 1217:928–940

    CAS  Google Scholar 

  130. Chankvetadze B, Blaschke G (1999) Selector-selectand interactions in chiral capillary electrophoresis. Electrophoresis 20:2592–2604

    CAS  Google Scholar 

  131. Chankvetadze B, Burjanadze N, Maynard DM, Bergander K, Bergenthal D, Blaschke G (2002) Comparative enantioseparations with native β-cyclodextrin and heptakis-(2-O-methyl-3,6-di-O-sulfo)-β-cyclodextrin in capillary electrophoresis. Electrophoresis 23:3027–3034

    CAS  Google Scholar 

  132. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33:337–347

    CAS  Google Scholar 

  133. Vega ED, Lomsadze K, Chankvetadze L, Salgado A, Scriba GKE, Calvo E, Lopez JA, Crego AL, Marina ML, Chankvetadze B (2011) Separation of enantiomers of ephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE, NMR and high resolution MS studies. Electrophoresis 32:2640–2647

    CAS  Google Scholar 

  134. Lomsadze K, Vega ED, Salgado A, Crego AL, Scriba GKE, Marina ML, Chankvetadze B (2012) Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE and NMR studies. Electrophoresis 33:1637–1647

    CAS  Google Scholar 

  135. Schurig V (2012) Separation of enantiomers. In: Poole CF (ed) Gas chromatography. Elsevier, Oxford, pp 495–517

    Google Scholar 

  136. Schurig V (2011) Gas chromatographic enantioseparation of derivatized α-amino acids on chiral stationary phases – past and present. J Chromatogr B 879:3122–3140

    CAS  Google Scholar 

  137. Schurig V (2010) Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann Pharm Fr 68:82–98

    CAS  Google Scholar 

  138. Wistuba D, Schurig V (2009) The separation of enantiomers on modified cyclodextrins by capillary electrochromatography (CEC). LC-GC Eur 22:60, 62–64, 66–69

    Google Scholar 

  139. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825–1845

    CAS  Google Scholar 

  140. Dodziuk H (ed) (2008) Cyclodextrins and their complexes. Wiley-VCH, Weinheim

    Google Scholar 

  141. Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101:3019–3032

    CAS  Google Scholar 

  142. Perez-Trujillo M, Lindon JC, Parella T, Keun HC, Nicholson JK, Athersuch TJ (2012) Chiral metabonomics: 1H NMR-based enantiospecific differentiation of metabolites in human urine via direct cosolvation with β-cyclodextrin. Anal Chem 84:2868–2874

    CAS  Google Scholar 

  143. Dodziuk H, Kozminski W, Ejchart A (2004) NMR studies of chiral recognition by cyclodextrins. Chirality 16:90–105

    CAS  Google Scholar 

  144. Schneider H-J, Hacket F, Ruediger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1785

    CAS  Google Scholar 

  145. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    CAS  Google Scholar 

  146. Uccello-Barretta G, Balzano F, Cuzzola A, Menicagli R, Salvadori P (2000) NMR detection of the conformational distortion induced in cyclodextrins by introduction of alkyl or aromatic substituents. Eur J Org Chem 449–453

    Google Scholar 

  147. Uccello-Barretta G, Sicoli G, Balzano F, Salvadori P (2003) A conformational model of per-O-acetyl-cyclomaltoheptaose (-β-cyclodextrin) in solution: detection of partial inversion of glucopyranose units by NMR spectroscopy. Carbohydr Res 338:1103–1107

    CAS  Google Scholar 

  148. Uccello-Barretta G, Sicoli G, Balzano F, Salvadori P (2005) NMR spectroscopy: a powerful tool for detecting the conformational features of symmetrical per-substituted mixed cyclomaltoheptaoses (β-cyclodextrins). Carbohydr Res 340:271–281

    CAS  Google Scholar 

  149. Casy AF, Mercer AD (1988) Application of cyclodextrins to chiral analysis by proton NMR spectroscopy. Magn Reson Chem 26:765–774

    CAS  Google Scholar 

  150. Greatbanks D, Pickford R (1987) Cyclodextrins as chiral complexing agents in water, and their application to optical purity measurements. Magn Reson Chem 25:208–215

    CAS  Google Scholar 

  151. Blazewska KM, Ni F, Haiges R, Kashemirov BA, Coxon FP, Stewart CA, Baron R, Rogers MJ, Seabra MC, Ebetino FH, McKenna CE (2011) Synthesis, stereochemistry and SAR of a series of minodronate analogues as RGGT inhibitors. Eur J Med Chem 46:4820–4826

    CAS  Google Scholar 

  152. Redondo J, Capdevila A, Latorre I, Bertran J (2012) Host–guest complexation of omeprazole, pantoprazole and rabeprazole sodium salts with cyclodextrins: an NMR study on solution structures and enantiodiscrimination power. J Incl Phenom Macrocycl Chem 73:225–236

    CAS  Google Scholar 

  153. Esturau N, Espinosa JF (2006) Optimization of diffusion-filtered NMR experiments for selective suppression of residual nondeuterated solvent and water signals from 1H NMR spectra of organic compounds. J Org Chem 71:4103–4110

    CAS  Google Scholar 

  154. Lee Y-J, Choi S, Lee J, Nguyen NVT, Lee K, Kang JS, Mar W, Kim KH (2012) Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy. Arch Pharm Res 35:671–681

    CAS  Google Scholar 

  155. Molaabasi F, Talebpour Z (2011) Enantiomeric discrimination and quantification of the chiral organophosphorus pesticide fenamiphos in aqueous samples by a novel and selective 31P nuclear magnetic resonance spectroscopic method using cyclodextrins as chiral selector. J Agric Food Chem 59:803–808

    CAS  Google Scholar 

  156. Smith KJ, Wilcox JD, Mirick GE, Wacker LS, Ryan NS, Vensel DA, Readling R, Domush HL, Amonoo EP, Shariff SS, Wenzel TJ (2003) Calix[4]arene, calix[4]resorcarene, and cyclodextrin derivatives and their lanthanide complexes as chiral NMR shift reagents. Chirality 15:S150–S158

    CAS  Google Scholar 

  157. Wenzel TJ, Amonoo EP, Shariff SS, Aniagyei SE (2003) Sulfated and carboxymethylated cyclodextrins and their lanthanide complexes as chiral NMR discriminating agents. Tetrahedron Asymmetry 14:3099–3104

    CAS  Google Scholar 

  158. Dignam CF, Randall LA, Blacken RD, Cunningham PR, Lester S-KG, Brown MJ, French SC, Aniagyei SE, Wenzel TJ (2006) Carboxymethylated cyclodextrin derivatives as chiral NMR discriminating agents. Tetrahedron Asymmetry 17:1199–1208

    CAS  Google Scholar 

  159. Provencher KA, Weber MA, Randall LA, Cunningham PR, Dignam CF, Wenzel TJ (2010) Carboxymethylated cyclodextrins and their complexes with Pr(III) and Yb(III) as water-soluble chiral NMR solvating agents for cationic compounds. Chirality 22:336–346

    CAS  Google Scholar 

  160. Provencher KA, Wenzel TJ (2008) Carboxymethylated cyclodextrins and their paramagnetic lanthanide complexes as water-soluble chiral NMR solvating agents. Tetrahedron Asymmetry 19:1797–1803

    CAS  Google Scholar 

  161. Chisholm CD, Wenzel TJ (2011) Enantiomeric discrimination of aromatic-containing anionic substrates using cationic cyclodextrins. Tetrahedron Asymmetry 22:62–68

    CAS  Google Scholar 

  162. Rekharsky M, Yamamura H, Kawai M, Inoue Y (2001) Critical difference in chiral recognition of N-Cbz-d/l-aspartic and -glutamic acids by mono- and bis(trimethylammonio)-β-cyclodextrins. J Am Chem Soc 123:5360–5361

    CAS  Google Scholar 

  163. Park KK, Lim HS, Park JW (1999) Chiral discrimination of phenylacetic acid derivatives by xylylenediamine-modified β-cyclodextrins. Bull Korean Chem Soc 20:211–213

    CAS  Google Scholar 

  164. Sun P, MacDonnell FM, Armstrong DW (2009) Enantioselective host–guest complexation of Ru(II) trisdiimine complexes using neutral and anionic derivatized cyclodextrins. Inorg Chim Acta 362:3073–3078

    CAS  Google Scholar 

  165. Koehler JEH, Hohla M, Richters M, König WA (1992) Cyclodextrin derivatives as chiral selectors. Investigation of interaction with (R,S)-methyl 2-chloropropionate by enantioselective gas chromatography, NMR spectroscopy and molecular dynamics simulation. Angew Chem Int Ed Engl 31:319–320

    Google Scholar 

  166. Schmidt R, Roeder M, Oeckler O, Simon A, Schurig V (2000) Separation and absolute configuration of the enantiomers of a degradation product of the new inhalation anesthetic sevoflurane. Chirality 12:751–755

    CAS  Google Scholar 

  167. Sicoli G, Jiang Z, Jicsinsky L, Schurig V (2005) Modified linear dextrins (“acyclodextrins”) as new chiral selectors for the gas-chromatographic separation of enantiomers. Angew Chem Int Ed 44:4092–4095

    CAS  Google Scholar 

  168. Uccello-Barretta G, Sicoli G, Balzano F, Schurig V, Salvadori P (2006) Highly efficient NMR enantio-discrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane, a chiral degradation product of sevoflurane, by heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin. Tetrahedron Asymmetry 17:2504–2510

    CAS  Google Scholar 

  169. Uccello-Barretta G, Balzano F, Pertici F, Jicsinszky L, Sicoli G, Schurig V (2008) External vs. internal interactions in the enantio-discrimination of fluorinated α-amino acid derivatives by heptakis[2,3-di-O-acetyl-6-O-(tert-butyldimethylsilyl)]-β-cyclodextrin, a powerful chiral solvating agent for NMR spectroscopy. Eur J Org Chem 1855–1863

    Google Scholar 

  170. Uccello-Barretta G, Balzano F, Caporusso AM, Iodice A, Salvadori P (1995) Permethylated β-cyclodextrin as chiral solvating agent for the NMR assignment of the absolute configuration of chiral trisubstituted allenes. J Org Chem 60:2227–2231

    CAS  Google Scholar 

  171. Uccello-Barretta G, Balzano F, Caporusso AM, Salvadori P (1994) Direct determination of the enantiomeric purity of chiral trisubstituted allenes by using permethylated cyclodextrin as a chiral solvating agent. J Org Chem 59:836–839

    CAS  Google Scholar 

  172. Uccello-Barretta G, Balzano F, Menicagli R, Salvadori P (1996) NMR chiral analysis of aromatic hydrocarbons by using permethylated β-cyclodextrin as chiral solvating agent. J Org Chem 61:363–365

    CAS  Google Scholar 

  173. Uccello-Baretta G, Cuzzola A, Balzano F, Menicagli R, Salvadori P (1998) Benzoylated and benzylated cyclodextrins. A new class of chiral solvating agents for chiral recognition of 3,5-dinitrophenyl derivatives by 1H-NMR spectroscopy. Eur J Org Chem 2009–2012

    Google Scholar 

  174. Uccello-Barretta G, Cuzzola A, Balzano F, Menicagli R, Iuliano A, Salvadori P (1997) A new stereochemical model from NMR for benzoylated cyclodextrins, promising new chiral solvating agents for the chiral analysis of 3,5-dinitrophenyl derivatives. J Org Chem 62:827–835

    CAS  Google Scholar 

  175. Uccello-Barretta G, Ferri L, Balzano F, Salvadori P (2003) Partially versus exhaustively carbamoylated cyclodextrins: NMR investigation on enantiodiscriminating capabilities in solution. Eur J Org Chem 1741–1748

    Google Scholar 

  176. Yashima E, Yamada M, Yamamoto C, Nakashima M, Okamoto Y (1997) Chromatographic enantio-separation and chiral discrimination in NMR by trisphenylcarbamate derivatives of cellulose, amylose, oligosaccharides, and cyclodextrins. Enantiomer 2:225–240

    CAS  Google Scholar 

  177. Kubota T, Yamamoto C, Okamoto Y (2002) Chromatographic enantioseparation by cycloalkylcarbamate derivatives of cellulose and amylose. Chirality 14:372–376

    CAS  Google Scholar 

  178. Uccello-Barretta G, Balzano F, Sicoli G, Scarselli A, Salvadori P (2005) NMR enantio-discrimination of polar and apolar substrates by multifunctional cyclodextrins. Eur J Org Chem 5349–5355

    Google Scholar 

  179. Boger J, Corcoran RJ, Lehn JM (1978) Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α- and β-cyclodextrins. Helv Chim Acta 61:2190–2218

    CAS  Google Scholar 

  180. Ema T, Ura N, Eguchi K, Ise Y, Sakai T (2011) Chiral porphyrin dimer with a macrocyclic cavity for intercalation of aromatic guests. Chem Commun 47:6090–6092

    CAS  Google Scholar 

  181. Ema T (2012) Synthetic macrocyclic receptors in chiral analysis and separation. J Incl Phenom Macrocycl Chem 74:41–55

    CAS  Google Scholar 

  182. Shirakawa S, Moriyama A, Shimizu S (2007) Design of a novel inherently chiral calix[4]arene for chiral molecular recognition. Org Lett 9:3117–3119

    CAS  Google Scholar 

  183. Shirakawa S, Moriyama A, Shimizu S (2008) Synthesis, optical resolution and enantiomeric recognition ability of novel, inherently chiral calix[4]arenes: trial application to asymmetric reactions as organocatalysts. Eur J Org Chem 5957–5964

    Google Scholar 

  184. Xia Y-X, Zhou H-H, Shi J, Li S-Z, Zhang M, Luo J, Xiang G-Y (2012) An inherently chiral calix[4]crown carboxylic acid in the 1,2-alternate conformation. J Incl Phenom Macrocycl Chem 74:277–284

    CAS  Google Scholar 

  185. Uccello-Barretta G, Berni M-G, Balzano F (2007) Enantiodiscrimination by inclusion phenomena inside a bis(ethyl lactate) p-tert-butylcalix[4]arene derivative. Tetrahedron Asymmetry 18:2565–2572

    CAS  Google Scholar 

  186. Durmaz M, Yilmaz M, Sirit A (2011) Synthesis of chiral calix[4]arenes bearing aminonaphthol moieties and their use in the enantiomeric recognition of carboxylic acids. Org Biomol Chem 9:571–580

    CAS  Google Scholar 

  187. Ben Sdira S, Felix CP, Giudicelli M-BA, Seigle-Ferrand PF, Perrin M, Lamartine RJ (2003) Synthesis and structure of lower rim C-linked N-tosyl peptidocalix[4]arenes. J Org Chem 68:6632–6638

    CAS  Google Scholar 

  188. Ben Sdira S, Baudry R, Felix CP, Giudicelli M-BA, Lamartine RJ (2004) Synthesis and structure of lower rim C-linked tetra-N-tosyl peptidocalix[4]arenes. Tetrahedron Lett 45:7801–7804

    CAS  Google Scholar 

  189. Bois J, Bonnamour I, Duchamp C, Parrot-Lopez H, Darbost U, Felix C (2009) Enantioselective recognition of amino acids by chiral peptido-calix[4]arenes and thiacalix[4]arenes. New J Chem 33:2128–2135

    CAS  Google Scholar 

  190. Lhotak P (2004) Chemistry of thiacalixarenes. Eur J Org Chem 1675–1692

    Google Scholar 

  191. Wenzel TJ (2013) Chiral derivatizing agents, macrocycles, metal complexes, and liquid crystals for enantiomer differentiation in NMR spectroscopy. Top Curr Chem. doi:10.1007/128_2013_433

    Google Scholar 

  192. Pham NH, Wenzel TJ (2012) A water-soluble calix[4]resorcinarene with l-pipecolinic acid groups as a chiral NMR solvating agent. Chirality 24:193–200

    CAS  Google Scholar 

  193. Pham NH, Wenzel TJ (2011) A water-soluble calix[4]resorcinarene with α-methyl-l-prolinylmethyl groups as a chiral NMR solvating agent. J Org Chem 76:986–989

    CAS  Google Scholar 

  194. O’Farrell CM, Chudomel JM, Collins JM, Dignam CF, Wenzel TJ (2008) Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents. J Org Chem 73:2843–2851

    Google Scholar 

  195. O’Farrell CM, Hagan KA, Wenzel TJ (2009) Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for bicyclic aromatic compounds. Chirality 21:911–921

    Google Scholar 

  196. Pham NH, Wenzel TJ (2011) A sulfonated calix[4]resorcinarene with α-methyl-l-prolinylmethyl groups as a water-soluble chiral NMR solvating agent. Tetrahedron Asymmetry 22:641–647

    CAS  Google Scholar 

  197. Pham NH, Wenzel TJ (2011) A sulfonated calix[4]resorcinarene with l-pipecolinic acid groups as a water-soluble chiral NMR solvating agent. Tetrahedron Asymmetry 22:1574–1580

    CAS  Google Scholar 

  198. Hagan KA, O’Farrell CM, Wenzel TJ (2009) Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents for phenyl- and pyridyl-containing compounds. Eur J Org Chem 4825–4832

    Google Scholar 

  199. O’Farrell CM, Wenzel TJ (2008) Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for phenyl-containing compounds. Tetrahedron Asymmetry 19:1790–1796

    Google Scholar 

  200. Wenzel TJ, Rollo RD, Clark RL (2012) Chiral discrimination of aliphatic amines and amino alcohols using NMR spectroscopy. Magn Reson Chem 50:261–265

    CAS  Google Scholar 

  201. Li N, Yang F, Stock HA, Dearden DV, Lamb JD, Harrison RG (2012) Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition. Org Biomol Chem 10:7392–7401

    CAS  Google Scholar 

  202. Amato ME, Ballistreri FP, D’Agata S, Pappalardo A, Tomaselli GA, Toscano RM, Sfrazzetto GT (2011) Enantioselective molecular recognition of chiral organic ammonium ions and amino acids using cavitand-salen-based receptors. Eur J Org Chem 5674–5680

    Google Scholar 

  203. Ema T, Tanida D, Sakai T (2006) Versatile and practical chiral shift reagent with hydrogen-bond donor/acceptor sites in a macrocyclic cavity. Org Lett 8:3773–3775

    CAS  Google Scholar 

  204. Ema T, Tanida D, Sakai T (2007) Versatile and practical macrocyclic reagent with multiple hydrogen-bonding sites for chiral discrimination in NMR. J Am Chem Soc 129:10591–10596

    CAS  Google Scholar 

  205. Ema T, Tanida D, Hamada K, Sakai T (2008) Tuning the chiral cavity of macrocyclic receptor for chiral recognition and discrimination. J Org Chem 73:9129–9132

    CAS  Google Scholar 

  206. Ema T, Tanida D, Sugita K, Sakai T, Miyazawa K, Ohnishi A (2008) Chiral selector with multiple hydrogen-bonding sites in a macrocyclic cavity. Org Lett 10:2365–2368

    CAS  Google Scholar 

  207. Ema T, Ura N, Eguchi K, Sakai T (2012) Molecular recognition of chiral diporphyrin receptor with a macrocyclic cavity for intercalation of aromatic compounds. Bull Chem Soc Jpn 85:101–109

    CAS  Google Scholar 

  208. Gasparrini F, Misiti D, Pierini M, Villani C (2002) A chiral A2B2 macrocyclic minireceptor with extreme enantioselectivity. Org Lett 4:3993–3996

    CAS  Google Scholar 

  209. Uccello-Barretta G, Balzano F, Martinelli J, Berni M-G, Villani C, Gasparrini F (2005) NMR enantiodiscrimination by cyclic tetraamidic chiral solvating agents. Tetrahedron Asymmetry 16:3746–3751

    CAS  Google Scholar 

  210. Uccello-Barretta G, Balzano F, Martinelli J, Gasparrini F, Pierini M, Villani C (2011) NMR and computational investigations of the chiral discrimination processes involving a cyclic tetraamidic chiral selector. Eur J Org Chem 3738–3747

    Google Scholar 

  211. Tanaka K, Nakai Y, Takahashi H (2011) Efficient NMR chiral discrimination of carboxylic acids using rhombamine macrocycles as chiral shift reagent. Tetrahedron Asymmetry 22:178–184

    CAS  Google Scholar 

  212. Periasamy M, Dalai M, Padmaja M (2010) Chiral trans-1,2-diaminocyclohexane derivatives as chiral solvating agents for carboxylic acids. J Chem Sci 122:561–569

    CAS  Google Scholar 

  213. Gualandi A, Grilli S, Savoia D, Kwit M, Gawronski J (2011) C-Hexaphenyl-substituted trianglamine as a chiral solvating agent for carboxylic acids. Org Biomol Chem 9:4234–4241

    CAS  Google Scholar 

  214. Ma F, Shen X, Ming X, Wang J, Ou-Yang J, Zhang C (2008) The novel macrocyclic compounds as chiral solvating agents for determination of enantiomeric excess of carboxylic acids. Tetrahedron Asymmetry 19:1576–1586

    CAS  Google Scholar 

  215. Ma F, Shen X, Ou-Yang J, Deng Z, Zhang C (2008) Macrocyclic compounds as chiral solvating agents for phosphinic, phosphonic, and phosphoric acids. Tetrahedron Asymmetry 19:31–37

    CAS  Google Scholar 

  216. Tanaka K, Fukuda N, Fujiwara T (2007) Trianglamine as a new chiral shift reagent for secondary alcohols. Tetrahedron Asymmetry 18:2657–2661

    CAS  Google Scholar 

  217. Tanaka K, Fukuda N (2009) “Calixarene-like” chiral amine macrocycles as novel chiral shift reagents for carboxylic acids. Tetrahedron Asymmetry 20:111–114

    CAS  Google Scholar 

  218. Quinn TP, Atwood PD, Tanski JM, Moore TF, Folmer-Andersen JF (2011) Aza-crown macrocycles as chiral solvating agents for mandelic acid derivatives. J Org Chem 76:10020–10030

    CAS  Google Scholar 

  219. Carrillo R, Lopez-Rodriguez M, Martin VS, Martin T (2009) Quantification of a CH-π interaction responsible for chiral discrimination and evaluation of its contribution to enantioselectivity. Angew Chem Int Ed 48:7803–7808

    CAS  Google Scholar 

  220. Busto E, Gonzalez-Alvarez A, Gotor-Fernandez V, Alfonso I, Gotor V (2010) Optically active macrocyclic hexaazapyridinophanes decorated at the periphery: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron 66:6070–6077

    CAS  Google Scholar 

  221. Gonzalez-Alvarez A, Alfonso I, Gotor V (2006) An azamacrocyclic receptor as efficient polytopic chiral solvating agent for carboxylic acids. Tetrahedron Lett 47:6397–6400

    CAS  Google Scholar 

  222. Gospodarowicz K, Holynska M, Paluch M, Lisowski J (2012) Novel chiral hexaazamacrocycles for the enantiodiscrimination of carboxylic acids. Tetrahedron 68:9930–9935

    CAS  Google Scholar 

  223. Wenzel TJ, Thurston JE (2000) Enantiomeric discrimination in the NMR spectra of underivatized amino acids and α-methyl amino acids using (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Tetrahedron Lett 41:3769–3772

    CAS  Google Scholar 

  224. Wenzel TJ, Thurston JE (2000) (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic acid and its ytterbium(III) complex as chiral NMR discriminating agents. J Org Chem 65:1243–1248

    CAS  Google Scholar 

  225. Machida Y, Kagawa M, Nishi H (2003) Nuclear magnetic resonance studies for the chiral recognition of (+)-(R)-18-crown-6-tetracarboxylic acid to amino compounds. J Pharm Biomed Anal 30:1929–1942

    CAS  Google Scholar 

  226. Lee W, Bang E, Baek C-S, Lee W (2004) Chiral discrimination studies of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid by high-performance liquid chromatography and NMR spectroscopy. Magn Reson Chem 42:389–395

    CAS  Google Scholar 

  227. Lovely AE, Wenzel TJ (2006) Chiral NMR discrimination of secondary amines using (18-crown-6)-2,3,11,12-tetracarboxylic acid. Org Lett 8:2823–2826

    CAS  Google Scholar 

  228. Chisholm CD, Fueloep F, Forro E, Wenzel TJ (2010) Enantiomeric discrimination of cyclic β-amino acids using (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent. Tetrahedron Asymmetry 21:2289–2294

    CAS  Google Scholar 

  229. Lovely AE, Wenzel TJ (2008) Chiral NMR discrimination of amines: analysis of secondary, tertiary, and prochiral amines using (18-crown-6)-2,3,11,12-tetracarboxylic acid. Chirality 20:370–378

    CAS  Google Scholar 

  230. Koide T, Ueno K (2001) Mechanistic study of enantiomeric recognition of primary amino compounds using an achiral crown ether with cyclodextrin by capillary electrophoresis and nuclear magnetic resonance. J Chromatogr A 923:229–239

    CAS  Google Scholar 

  231. Wenzel TJ, Bourne CE, Clark RL (2009) (18-Crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent for determining the enantiomeric purity and absolute configuration of β-amino acids. Tetrahedron Asymmetry 20:2052–2060

    CAS  Google Scholar 

  232. Lovely AE, Wenzel TJ (2006) Chiral NMR discrimination of piperidines and piperazines using (18-crown-6)-2,3,11,12-tetracarboxylic acid. J Org Chem 71:9178–9182

    CAS  Google Scholar 

  233. Howard JA, Nonn M, Fulop F, Wenzel TJ (2013) Enantiomeric discrimination of isoxazoline fused β-amino acid derivatives using (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent. Chirality 25:48–53

    CAS  Google Scholar 

  234. Bang E, Jin JY, Hong JH, Kang JS, Lee W, Lee W (2012) Comparative studies on enantiomer resolution of α-amino acids and their esters using (18-crown-6)-tetracarboxylic acid as a chiral crown ether selector by NMR spectroscopy and high-performance liquid chromatography. Bull Korean Chem Soc 33:3481–3484

    CAS  Google Scholar 

  235. Szumna A (2009) Chiral encapsulation by directional interactions. Chem Eur J 15:12381–12388

    CAS  Google Scholar 

  236. Wehner M, Schrader T, Finocchiaro P, Failla S, Consiglio G (2000) A chiral sensor for arginine and lysine. Org Lett 2:605–608

    CAS  Google Scholar 

  237. Consiglio GA, Failla S, Finocchiaro P (2008) New cleft-like molecules and macrocycles from phosphonate substituted spirobisindanol. Molecules 13:678–700

    CAS  Google Scholar 

  238. Holman KT (2004) Cryptophanes: molecular containers. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. CRC, New York, pp 340–348

    Google Scholar 

  239. Canceill J, Lacombe L, Collet A (1985) Analytical optical resolution of bromochlorofluoromethane by enantioselective inclusion into a tailor-made cryptophane and determination of its maximum rotation. J Am Chem Soc 107:6993–6996

    CAS  Google Scholar 

  240. Soulard P, Asselin P, Cuisset A, Aviles Moreno JR, Huet TR, Petitprez D, Demaison J, Freedman TB, Cao X, Nafie LA, Crassous J (2006) Chlorofluoroiodomethane as a potential candidate for parity violation measurements. Phys Chem Chem Phys 8:79–92

    CAS  Google Scholar 

  241. Bouchet A, Brotin T, Linares M, Aagren H, Cavagnat D, Buffeteau T (2011) Enantioselective complexation of chiral propylene oxide by an enantiopure water-soluble cryptophane. J Org Chem 76:4178–4181

    CAS  Google Scholar 

  242. Bouchet A, Brotin T, Linares M, Cavagnat D, Buffeteau T (2011) Influence of the chemical structure of water-soluble cryptophanes on their overall chiroptical and binding properties. J Org Chem 76:7816–7825

    CAS  Google Scholar 

  243. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    CAS  Google Scholar 

  244. Sachnov SJ, Schneiders K, Schulz PS, Wasserscheid P (2010) Chirality transfer in mandelate ionic liquids through ion pairing effects. Tetrahedron Asymmetry 21:1821–1824

    CAS  Google Scholar 

  245. Bica K, Gaertner P (2008) Applications of chiral ionic liquids. Eur J Org Chem 3235–3250

    Google Scholar 

  246. Payagala T, Armstrong DW (2012) Chiral ionic liquids: a compendium of syntheses and applications (2005–2012). Chirality 24:17–53

    CAS  Google Scholar 

  247. Ding J, Welton T, Armstrong DW (2004) Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem 76:6819–6822

    CAS  Google Scholar 

  248. Rizvi SAA, Shamsi SA (2006) Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography. Anal Chem 78:7061–7069

    CAS  Google Scholar 

  249. Yuan LM, Han Y, Zhou Y, Meng X, Li ZY, Zi M, Chang YX (2006) (R)-N,N,N-Trimethyl-2-aminobutanol-bis(trifluoromethane-sulfon)imidate chiral ionic liquid used as chiral selector in HPCE, HPLC, and CGC. Anal Lett 39:1439–1449

    CAS  Google Scholar 

  250. Wasserscheid P, Boesmann A, Bolm C (2002) Synthesis and properties of ionic liquids derived from the “chiral pool”. Chem Commun 200–201

    Google Scholar 

  251. Ishida Y, Miyauchi H, Saigo K (2002) Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality. Chem Commun 2240–2241

    Google Scholar 

  252. Ishida Y, Sasaki D, Miyauchi H, Saigo K (2006) Synthesis and properties of a diastereopure ionic liquid with planar chirality. Tetrahedron Lett 47:7973–7976

    CAS  Google Scholar 

  253. Bwambok DK, Marwani HM, Fernand VE, Fakayode SO, Lowry M, Negulescu I, Strongin RM, Warner IM (2008) Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties. Chirality 20:151–158

    CAS  Google Scholar 

  254. Bwambok DK, Challa SK, Lowry M, Warner IM (2010) Amino acid-based fluorescent chiral ionic liquid for enantiomeric recognition. Anal Chem 82:5028–5037

    CAS  Google Scholar 

  255. Gonzalez L, Altava B, Bolte M, Burguete MI, Garcia-Verdugo E, Luis SV (2012) Synthesis of chiral room temperature ionic liquids from amino acids – application in chiral molecular recognition. Eur J Org Chem 4996–5009

    Google Scholar 

  256. Altava B, Barbosa DS, Isabel Burguete M, Escorihuela J, Luis SV (2009) Synthesis of new chiral imidazolium salts derived from amino acids: their evaluation in chiral molecular recognition. Tetrahedron Asymmetry 20:999–1003

    CAS  Google Scholar 

  257. Tabassum S, Gilani MA, Wilhelm R (2011) Imidazolinium sulfonate and sulfamate zwitterions as chiral solvating agents for enantiomeric excess calculations. Tetrahedron Asymmetry 22:1632–1639

    CAS  Google Scholar 

  258. De Rooy SL, Li M, Bwambok DK, El-Zahab B, Challa S, Warner IM (2011) Ephedrinium-based protic chiral ionic liquids for enantiomeric recognition. Chirality 23:54–62

    Google Scholar 

  259. Winkel A, Wilhelm R (2010) New chiral ionic liquids based on enantiopure sulfate and sulfonate anions for chiral recognition. Eur J Org Chem 5817–5824

    Google Scholar 

  260. Kumar V, Pei C, Olsen CE, Schaeffer SJC, Parmar VS, Malhotra SV (2008) Novel carbohydrate-based chiral ammonium ionic liquids derived from isomannide. Tetrahedron Asymmetry 19:664–671

    CAS  Google Scholar 

  261. Yu S, Lindeman S, Tran CD (2008) Chiral ionic liquids: synthesis, properties, and enantiomeric recognition. J Org Chem 73:2576–2591

    CAS  Google Scholar 

  262. Li M, Gardella J, Bwambok DK, El-Zahab B, de Rooy S, Cole M, Lowry M, Warner IM (2009) Combinatorial approach to enantiomeric discrimination: synthesis and 19F NMR screening of a chiral ionic liquid-modified silane library. J Comb Chem 11:1105–1114

    CAS  Google Scholar 

  263. Folmer-Andersen JF, Kitamura M, Anslyn EV (2006) Pattern-based discrimination of enantiomeric and structurally similar amino acids: an optical mimic of the mammalian taste response. J Am Chem Soc 128:5652–5653

    CAS  Google Scholar 

  264. Zhu X, Jiang J, Lei X, Chen X (2012) Rapid determination of enantiomeric excess of protected amino acids by catalytic amounts of chiral reagent. Anal Methods 4:1920–1923

    CAS  Google Scholar 

  265. Prabhu UR, Suryaprakash N (2010) Selective homonuclear decoupling in 1H NMR: application to visualization of enantiomers in chiral aligning medium and simplified analyses of spectra in isotropic solutions. J Phys Chem A 114:5551–5557

    CAS  Google Scholar 

  266. Nath N, Kumari D, Suryaprakash N (2011) Application of selective F1 decoupled 1H NMR for enantiomer resolution and accurate measurement of enantiomeric excess at low chiral substrate/auxiliary concentration. Chem Phys Lett 508:149–154

    CAS  Google Scholar 

  267. Pirkle WH, Sikkenga DL (1975) Use of achiral shift reagents to indicate relative stabilities of diastereomeric solvates. J Org Chem 40:3430–3434

    CAS  Google Scholar 

  268. Shundo A, Labuta J, Hill JP, Ishihara S, Ariga K (2009) Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. J Am Chem Soc 131:9494–9495

    CAS  Google Scholar 

  269. Labuta J, Ishihara S, Shundo A, Arai S, Takeoka S, Ariga K, Hill JP (2011) Chirality sensing by nonchiral porphines. Chem Eur J 17:3558–3561

    CAS  Google Scholar 

  270. Shoji Y, Tashiro K, Aida T (2006) Sensing of chiral fullerenes by a cyclic host with an asymmetrically distorted π-electronic component. J Am Chem Soc 128:10690–10691

    CAS  Google Scholar 

  271. Shoji Y, Tashiro K, Aida T (2008) Chirality sensing of fullerenes using cyclic hosts having a chiral N-substituted porphyrin: a remote substituent effect. Chirality 20:420–424

    CAS  Google Scholar 

  272. Hanna GM (2006) NMR regulatory analysis: enantiomeric purity determination for (R)-(−)-desoxyephedrine and antipode methamphetamine. Pharmazie 61:188–193

    CAS  Google Scholar 

  273. Casy AF (1967) Applications of nuclear magnetic resonance spectroscopy in medicinal and pharmaceutical chemistry. J Pharm Sci 56:1049–1063

    CAS  Google Scholar 

  274. Holzgrabe U (2010) Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc 57:229–240

    CAS  Google Scholar 

  275. Rao RN, Ramachandra B, Santhakumar K (2012) Evaluation of (R)-(−)-α-methoxyphenylacetic acid as a chiral shift reagent for resolution and determination of R and S enantiomers of modafinil in bulk drugs and formulations by 1H NMR spectroscopy. Chirality 24:339–344

    CAS  Google Scholar 

  276. Nunez-Agueero C-J, Escobar-Llanos C-M, Diaz D, Jaime C, Garduno-Juarez R (2006) Chiral discrimination of ibuprofen isomers in β-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies. Tetrahedron 62:4162–4172

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Uccello-Barretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uccello-Barretta, G., Balzano, F. (2013). Chiral NMR Solvating Additives for Differentiation of Enantiomers. In: Schurig, V. (eds) Differentiation of Enantiomers II. Topics in Current Chemistry, vol 341. Springer, Cham. https://doi.org/10.1007/128_2013_445

Download citation

Publish with us

Policies and ethics