Skip to main content

Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins

Part of the Topics in Current Chemistry book series (TOPCURRCHEM,volume 338)

Abstract

Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in “real time”. As such, the method can offer – qualitatively and, to a certain extent, quantitatively – residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their “path” to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.

Keywords

  • CIDNP
  • NMR
  • Nuclear spin polarization
  • Photosensitizer
  • Protein folding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/128_2013_427
  • Chapter length: 72 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39728-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Notes

  1. 1.

    The acronym “CIDNP” was suggested to Bargon et al. for the first time by Sir Rex E. Richards from the Physical Chemistry Laboratory (PCL) at Oxford University, Oxford, UK, who, long before the discovery of the CIDNP effect itself, had set out a thought experiment on how to induce the – already at that time – well-known Overhauser effect in a chemical way, i.e., by breaking a chemical bond [2].

  2. 2.

    Tumbling frequencies of around 1011 Hz for free amino acids and around 109 Hz for proteins are usually observed.

  3. 3.

    The RPM is also responsible for the ESR equivalent effect of CIDNP called chemically induced dynamic electron polarization (CIDEP) [14, 15], and for the magnetic field effect (MFE) observed during radical pair recombination reactions [16].

  4. 4.

    The Kaptein sign rules for CIDNP, however, do not apply in all cases [21, 22]. For example, an exception to the CIDNP sign rule for the net effect can occur when the dominant relaxation process in an electron-nucleus spin system is transverse ΔHFC–Δg cross-correlation. This phenomenon has been shown to lead to an inversion in the geminate fluorine-19 CIDNP phase provided the molecule of interest has a large rotational correlation time [23].

  5. 5.

    Generally speaking, the photo-CIDNP phenomenon is not restricted to the magnetic nuclei of the three aromatic amino acids but the radical pair can be formed between many different excited sensitizers and various electron donors provided the ionization potential of the latter is sufficiently low.

  6. 6.

    Given the photochemistry of the naturally occurring amino acids, it is not likely that additional polarization routes exist which could extend the observation of the photo-CIDNP effect beyond tryptophan, tyrosine, histidine, and methionine. Nonetheless, a number of amino acid derivatives are, under certain circumstances, polarizable [18]. Also, CIDNP can be induced in nucleic acids and oligophenols. However, the application of the photo-CIDNP technique to nucleic acids has received relatively little attention, compared to proteins, and is hence poorly understood. In particular, it is not yet clear what the conditions are for detecting polarization from the nucleotide bases in double-stranded nucleic acids [18]. In addition, photo-CIDNP spectra of linear and cyclic ortho-methylene-bridged oligophenols show significant polarization for the phenolic units with the largest number of ortho and para alkyl substituents [3133].

  7. 7.

    The emissive enhancement of the 3,5 protons allows an easy identification of exposed tyrosine residues in the CIDNP spectrum of a protein since neither histidine nor tryptophan produce a similar, i.e., negative, CIDNP enhancement in this region of the spectrum.

  8. 8.

    In NMR spectroscopy, protein sample solutions normally exhibit a D2O content between 5% and 10% which allows the detection of both the Trp indole NH proton as well as the deuterium lock reference signal.

  9. 9.

    CIDNP-related cross-polarization in 19F-labeled amino acids and proteins leads to interesting multiplet intensity patterns arising from the interaction of various relaxation pathways such as dipole–dipole interactions and relaxation arising from the chemical shift anisotropy (CSA) of the 19F nucleus [30]. In all cases, directly and indirectly polarized signals can normally be distinguished by comparing the time dependence of the polarization build-up as enhancements due to cross-polarization tend to increase both with the length of the laser flash used to generate CIDNP and with the delay separating the generation and detection of the polarization, i.e., the acquisition delay.

  10. 10.

    Even though this phenomenon is usually referred to in the literature as an electron “exchange” it is in fact based on an electron “hopping” process rather than on a swapping of electrons.

  11. 11.

    Utilizing this tip, a coupling of two lasers operating at different wavelengths – one to release calcium ions from the photolabile ion chelator DM-Nitrophen and the other to induce CIDNP – has been designed to observe the RT refolding of calcium-depleted BLA thereby making physical mixing of solutions superfluous. The potential gain in acquiring spectra right after the start of the reaction is, however, compromised by long irradiation times (~200 ms) required to release sufficient metal ions to fold the protein and difficulties in uniformly photolysing the entire sample volume associated with low SNRs (see below).

  12. 12.

    With the possible exception of the final pair, most of these sensitizers do not look very promising for biological photo-CIDNP studies as they suffer from extraneous product formation and undergo non-cyclic reactions with amino acids and proteins.

  13. 13.

    Prolonged irradiation of a protein–flavin solution can also result in photo-damage to the protein presumably caused by irreversible oxidation of side chains by excited flavin molecules. For example, extensive photolysis of hen egg-white lysozyme in the presence of FMN can, in some cases, cause a significant reduction in its thermal denaturation temperature [80, 81, 84].

  14. 14.

    These studies also provide a more thorough analysis of the origin of the photodegradation process of flavin photosensitizers observed during many CIDNP experiments.

  15. 15.

    For tyrosine, the fall-off of CIDNP signal intensity at high pH is believed to arise from degenerate electron exchange. The same effect is also made responsible for the lack of tryptophan polarization at low pH. Luckily, cancellation by degenerate electron exchange is much less likely to be a problem in proteins whose greater bulk reduces the electron exchange rate constant considerably. Thus, in proteins, CIDNP has been observed for tyrosine residues [114] at pH 12 and for tryptophan residues [115] at pH 2. The small His enhancements at low pH are most likely due to reduced reaction rates between triplet excited flavin and histidine [67], both of which are protonated and positively charged below approximately pH 4.5.

  16. 16.

    As said before, the (potentially) CIDNP-active amino acid side chain must be accessible to the photosensitizer to generate the triplet-born radical pair and hence the nuclear polarization. “Native state” (static) solvent accessibilities, using either the high-resolution crystal or NMR structure, can be calculated prior to the CIDNP experiment to identify those residues that are exposed to the solvent and, thus, will most probably benefit from the CIDNP effect. The method, developed by Lee and Richards, calculates atomic accessible surfaces by rolling a probe of a given size around the outer sphere of the protein as defined by its PDB structure file [142]. When FMN is used as a photosensitizer, a probe radius of 1.4 Å is used in the calculations and the results are quoted relative to the accessibilities found for an extended conformation of the tripeptide Ala–Xaa–Ala, where Xaa is the residue of interest. Recently, it has been shown that the accessibility of the highest occupied molecular orbital (HOMO) of the aromatic side chain gives a more robust prediction of the observation of photo-CIDNP signals, particularly in the case of a limited static solvent accessibility [143].

  17. 17.

    One of the most important limitations of one-dimensional NMR experiments is the low spectral resolution and hence recent work has concentrated on the extension of “real time” NMR methods to utilize the higher resolution of multidimensional NMR spectroscopy in kinetic experiments [e.g., 151].

  18. 18.

    The distance dependence of the NOE requires that internuclear separations of more than 5 Å can normally not be observed due to the lack of a sufficiently strong mutual dipolar coupling interaction between the two potentially interacting spins.

  19. 19.

    During the processing of the data the acquired photo-CIDNP (NOE) pulse-labeling spectra are averaged over a series of several “light” and “dark” subtraction pairs – usually four or eight – to improve the signal-to-noise ratio. A new sample and a new injection event are necessary for each measurement.

  20. 20.

    In the meantime, independently performed experiments using state-of-the-art multidimensional NMR methodology have confirmed the presence of all inter-residue contacts in the 6 M urea-denatured state of TC5b derived from CIDNP NOE pulse-labeling data. In addition, the study provides an unambiguous assignment of all interacting side chain protons in the high-temperature hydrophobic cluster [168].

Abbreviations

ADC:

Analogue-to-digital converter

BLA:

Bovine α-lactalbumin

CD:

Circular dichroism

CHESS:

Chemical shift selective excitation

CIDEP:

Chemically induced dynamic electron polarization

CIDNP:

Chemically induced dynamic nuclear polarization

COSY:

Correlation spectroscopy

CSA:

Chemical shift anisotropy

CSD:

Chemical shift deviation

CW:

Continuous wave

DBPO:

Dibenzoylperoxide

DNA:

Deoxyribonucleic acid

DNP:

Dynamic nuclear polarization

DP:

2,2 ′-Dipyridyl

DPFGSE:

Double pulsed field gradient spin echo

DRYSTEAM:

Drastic reduction of water signals in spectroscopy based on the stimulated echo acquisition mode

EPR:

Electron paramagnetic resonance

FAD:

Flavin adenine dinucleotide

FID:

Free induction decay

FMN:

Flavin mononucleotide

FT:

Fourier transform

HEWL:

Hen egg-white lysozyme

HFC:

Hyperfine coupling constant

HMQC:

Heteronuclear multiple quantum coherence

HSQC:

Heteronuclear single quantum correlation

INEPT:

Insensitive nuclei enhanced by polarization transfer

IR:

Infrared

MFE:

Magnetic field effect

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser effect spectroscopy

PDB:

Protein data bank

PEEK:

Polyetheretherketone

PPII:

Polyproline II helix

Ppm:

Parts per million

PTFE:

Polytetrafluoroethylene

R 1 :

Spin–lattice relaxation rate constant

R 2 :

Spin–spin relaxation rate constant

RPM:

Radical pair mechanism

RT:

Real time

SNR:

Signal-to-noise ratio

T 1 :

Spin–lattice relaxation time constant

T 2 :

Spin–spin relaxation time constant

TOCSY:

Total correlation spectroscopy

VAPOR:

Variable pulse power and optimized relaxation delays

VCD:

Vibrational circular dichroism

WATERGATE:

Water suppression through gradient tailored excitation

WET:

Water suppression enhanced through T 1 effects

References

  1. Bargon J, Fischer H, Johnsen U (1967) Z Naturforschg A 22:1551

    CAS  Google Scholar 

  2. Bargon J (2006) Helv Chim Acta 89:2082

    CAS  Google Scholar 

  3. Ward HR, Lawler RG (1967) J Am Chem Soc 89:5518

    CAS  Google Scholar 

  4. Bargon J, Fischer H (1967) Z Naturforschg A 22:1556

    CAS  Google Scholar 

  5. Lawler RG (1967) J Am Chem Soc 89:5519

    CAS  Google Scholar 

  6. Fischer H, Bargon J (1969) Acc Chem Res 2:110

    CAS  Google Scholar 

  7. Closs GL (1969) J Am Chem Soc 91:4552

    CAS  Google Scholar 

  8. Kaptein R, Oosterhoff LJ (1969) Chem Phys Lett 4:214

    CAS  Google Scholar 

  9. Kaptein R (1975) Adv Free Radic Chem 5:319

    CAS  Google Scholar 

  10. Closs GL (1974) Adv Magn Reson 7:157

    CAS  Google Scholar 

  11. Lawler RG (1973) Progr NMR Spectrosc 9:147

    Google Scholar 

  12. Freed JH, Pedersen JB (1976) Adv Magn Reson 8:l

    Google Scholar 

  13. Kaptein R, Dijkstra K, Nicolay K (1978) Nature 274:293

    CAS  Google Scholar 

  14. Fessenden RW, Schuler RH (1963) J Chem Phys 39:2147

    CAS  Google Scholar 

  15. Kaptein R, Oosterhoff LJ (1969) Chem Phys Lett 4:195

    CAS  Google Scholar 

  16. Solov’yov IA, Schulten K (2012) J Phys Chem B 116:1089

    Google Scholar 

  17. Sørensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR (1983) Progr NMR Spectrosc 16:163

    Google Scholar 

  18. Hore PJ, Broadhurst RW (1993) Progr NMR Spectrosc 25:345

    CAS  Google Scholar 

  19. Kaptein R (1971) J Chem Soc D Chem Commun 732

    Google Scholar 

  20. Kaptein R (1972) J Am Chem Soc 94:6251

    CAS  Google Scholar 

  21. Salikhov KM (1982) Chem Phys 64:371

    CAS  Google Scholar 

  22. Hore PJ, Stob S, Kemmink J, Kaptein R (1983) Chem Phys Lett 98:409

    CAS  Google Scholar 

  23. Kuprov I, Craggs TD, Jackson SE, Hore PJ (2007) J Am Chem Soc 129:9004

    CAS  Google Scholar 

  24. Adrian FJ (1970) J Chem Phys 53:3374

    CAS  Google Scholar 

  25. Adrian FJ (1971) J Chem Phys 54:3912

    CAS  Google Scholar 

  26. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Pure Appl Chem 70:117

    CAS  Google Scholar 

  27. Mok KH, Hore PJ (2004) Methods 34:75

    CAS  Google Scholar 

  28. Martin CB, Tsao ML, Hadad CM, Platz MS (2002) J Am Chem Soc 124:7226

    CAS  Google Scholar 

  29. Lyon CE, Jones JA, Redfield C, Dobson CM, Hore PJ (1999) J Am Chem Soc 121:6505

    CAS  Google Scholar 

  30. Kuprov I, Hore PJ (2004) J Magn Reson 168:1

    CAS  Google Scholar 

  31. Zetta L, de Marco A, Casiraghi G, Cornia M, Kaptein R (1985) Macromolecules 18:1095

    CAS  Google Scholar 

  32. Böhmer V, Goldmann H, Kaptein, Zetta L (1987) Chem Commun 1358

    Google Scholar 

  33. Zetta L, Böhmer V, Kaptein R (1988) J Magn Reson 76:587

    CAS  Google Scholar 

  34. Day IJ (2004) Doctoral thesis, Oxford University, Oxford

    Google Scholar 

  35. Tsentalovich YP, Lopez JJ, Hore PJ, Sagdeev RZ (2002) Spectrochim Acta A 58:2043

    Google Scholar 

  36. Kaptein R (1982) Biol Magn Reson 4:145

    CAS  Google Scholar 

  37. Stob S, Kaptein R (1989) Photochem Photobiol 49:565

    CAS  Google Scholar 

  38. Stob S, Scheek RM, Boelens R, Kaptein R (1988) FEBS Lett 239:99

    CAS  Google Scholar 

  39. Closs GL, Czeropski MS (1977) Chem Phys Lett 45:115

    CAS  Google Scholar 

  40. de Kanter FJJ, Kaptein R (1979) Chem Phys Lett 62:421

    Google Scholar 

  41. Hore PJ, Egmond MR, Edzes HT, Kaptein R (1982) J Magn Reson 49:122

    CAS  Google Scholar 

  42. Berliner LJ, Kaptein R (1981) Biochemistry 20:799

    CAS  Google Scholar 

  43. Hore PJ, Kaptein R (1983) Biochemistry 22:1906

    CAS  Google Scholar 

  44. Zetta L, Kaptein R, Hore PJ (1982) FEBS Lett 145:277

    CAS  Google Scholar 

  45. Zetta L, Hore PJ, Kaptein R (1983) Eur J Biochem 134:371

    CAS  Google Scholar 

  46. de Marco A, Zetta L, Kaptein R (1985) Eur J Biochem 11:187

    Google Scholar 

  47. Zetta L, Kaptein R (1984) Eur J Biochem 145:181

    CAS  Google Scholar 

  48. Closs GL (1975) Chem Phys Lett 32:277

    CAS  Google Scholar 

  49. Winder SL, Broadhurst RW, Hore PJ (1995) Spectrochim Acta A 51:1753

    Google Scholar 

  50. Redfield C, Dobson CM, Scheek RM, Stob S, Kaptein R (1985) FEBS Lett 185:248

    CAS  Google Scholar 

  51. Berliner LJ, Koga K, Nishikawa H, Scheffler JE (1987) Biochemistry 26:5769

    CAS  Google Scholar 

  52. Alexandrescu AT, Broadhurst RW, Wormald C, Chyan CL, Baum J, Dobson CM (1992) Eur J Biochem 210:699

    CAS  Google Scholar 

  53. Radford SE, Dobson CM, Evans PA (1992) Nature 358:302

    CAS  Google Scholar 

  54. Hore PJ, Winder SL, Roberts CH, Dobson CM (1997) J Am Chem Soc 119:5049

    CAS  Google Scholar 

  55. Mok KH, Nagashima T, Day IJ, Jones JA, Jones CJV, Dobson CM, Hore PJ (2003) J Am Chem Soc 125:12484

    CAS  Google Scholar 

  56. Kühn T, Schwalbe H (2000) J Am Chem Soc 122:6169

    Google Scholar 

  57. Wirmer J, Kühn T, Schwalbe H (2001) Angew Chem Intl Ed 40:4248

    CAS  Google Scholar 

  58. Ptitsyn OB (1995) Curr Opin Struct Biol 5:74

    CAS  Google Scholar 

  59. Dobson CM (2003) Nature 426:884

    CAS  Google Scholar 

  60. Dobson CM (2005) Nature 435:747

    CAS  Google Scholar 

  61. Fersht AR (1994) Curr Opin Struct Biol 5:79

    Google Scholar 

  62. Daggett V, Fersht AR (2003) Nat Rev Mol Cell Biol 4:497

    CAS  Google Scholar 

  63. Morozova OB, Yurkovskaya AV, Tsentalovich YP, Forbes MDE, Sagdeev RZ (2002) J Phys Chem B 106:1455

    CAS  Google Scholar 

  64. Morozova OB, Yurkovskaya OB, Tsentalovich YP, Forbes MDE, Hore PJ, Sagdeev RZ (2002) Mol Phys 100:1187

    CAS  Google Scholar 

  65. Turro NJ, Zimmt MB, Gould IR (1983) J Am Chem Soc 105:6347

    CAS  Google Scholar 

  66. Läufer M, Dreeskamp H (1984) J Magn Reson 60:357

    Google Scholar 

  67. Leuschner R, Fischer H (1985) Chem Phys Lett 121:554

    CAS  Google Scholar 

  68. Vollenweider J, Fischer H, Hening J, Leuschner R (1985) Chem Phys 97:217

    CAS  Google Scholar 

  69. Scheffler JE, Cottrell CE, Berliner LJ (1985) J Magn Reson 63:199

    CAS  Google Scholar 

  70. Kuprov I, Hore PJ (2004) J Magn Reson 171:171

    CAS  Google Scholar 

  71. Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Planta 225:615

    CAS  Google Scholar 

  72. Reppert SM, Weaver DR (2002) Nature 418:935

    CAS  Google Scholar 

  73. Heelis PF (1982) Chem Soc Rev 11:15

    CAS  Google Scholar 

  74. Heelis PF, Parsons BJ, Phillips GO, McKellar JF (1978) Photochem Photobiol 28:169

    CAS  Google Scholar 

  75. Kaptein R, Dijkstra K, Müller F, van Schagen CG, Visser AJWG (1978) J Magn Reson 31:171

    CAS  Google Scholar 

  76. Muszkat KA (1977) J Chem Soc Chem Commun 872

    Google Scholar 

  77. Muszkat KA, Gilon C (1977) Biochem Biophys Res Commun 79:1059

    CAS  Google Scholar 

  78. Muszkat KA, Gilon C (1978) Nature 271:685

    CAS  Google Scholar 

  79. McCord EF, Boxer SG (1981) Biochem Biophys Res Commun 100:1436, http://www.ncbi.nlm.nih.gov/pubmed/7295309

  80. Broadhurst RW (1990) Doctoral thesis, Oxford University, Oxford

    Google Scholar 

  81. Connolly PJ, Hoch JC (1969) J Magn Reson 95:165

    Google Scholar 

  82. Müller F (1987) Free Radic Biol Med 3:215

    Google Scholar 

  83. Hore PJ, Zuiderweg ERP, Kaptein R, Dijkstra K (1981) Chem Phys Lett 83:376

    CAS  Google Scholar 

  84. McCormick DB (1977) Photochem Photobiol 26:169

    CAS  Google Scholar 

  85. Scheek RM, Stob S, Boelens R, Dijkstra K, Kaptein R (1984) Faraday Discuss Chem Soc 78:245

    CAS  Google Scholar 

  86. Scheek RM, Stob S, Boelens R, Dijkstra K, Kaptein R (1985) J Am Chem Soc 107:705

    CAS  Google Scholar 

  87. Lyon CE (1999) Doctoral thesis, Oxford University, Oxford

    Google Scholar 

  88. Maeda K, Lyon CE, Lopez JJ, Cemazar M, Dobson CM, Hore PJ (2000) J Biomol NMR 16:235

    CAS  Google Scholar 

  89. Vogt W (1995) Free Radic Biol Med 18:93

    CAS  Google Scholar 

  90. Lee JH, Cavagnero S (2013) J Phys Chem B. doi:10.1021/jp4010168

    Google Scholar 

  91. Frieden C, Hoeltzli SD, Ropson IJ (1993) Prot Sci 2:2007

    CAS  Google Scholar 

  92. Kühne RO, Schaffhauser T, Wokaun A, Ernst RR (1979) J Magn Reson 35:39

    Google Scholar 

  93. Green DB, Lane J, Wing RM (1987) Appl Spectrosc 41:847

    CAS  Google Scholar 

  94. Hamang M, Sanson A, Liagre L, Forge V, Berthault P (2000) Rev Sci Inst 71:2180

    CAS  Google Scholar 

  95. Haase AJ, Frahm J, Hänicke W, Matthaei D (1985) Phys Med Biol 30:341

    Google Scholar 

  96. Mok KH, Kuhn LT, Goez M, Day IJ, Lin JC, Andersen NH, Hore PJ (2007) Nature 447:106

    CAS  Google Scholar 

  97. Schäublin S, Wokaun A, Ernst RR (1977) J Magn Reson 27:273

    Google Scholar 

  98. Barbieri R, Hore PJ, Luchinat C, Pierattelli R (2002) J Biomol NMR 23:303

    CAS  Google Scholar 

  99. Lyon CE, Suh ES, Dobson CM, Hore PJ (2002) J Am Chem Soc 124:13018

    CAS  Google Scholar 

  100. Hore PJ (1983) J Magn Reson 55:283

    CAS  Google Scholar 

  101. Hwang TL, Shaka AJ (1995) J Magn Reson A 112:275

    CAS  Google Scholar 

  102. Piotto M, Saudek V, Sklenář V (1992) J Biomol NMR 2:661

    CAS  Google Scholar 

  103. Liu M, Mao XA, Ye C, Huang H, Nicholson JK, Lindon JC (1998) J Magn Reson 132:125

    CAS  Google Scholar 

  104. Stob S, Scheek RM, Boelens R, Dijkstra K, Kaptein R (1988) Isr J Chem 28:319

    Google Scholar 

  105. Aue WP, Bartholdi E, Ernst RR (1976) J Chem Phys 64:2229

    CAS  Google Scholar 

  106. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546

    CAS  Google Scholar 

  107. Tsentalovich YP, Morozova OB, Yurkovskaya AV, Hore PJ (1999) J Phys Chem A 103:5362

    CAS  Google Scholar 

  108. de Marco A, Zetta L, Petros AM, Llinás M, Boelens R, Kaptein R (1986) Biochemistry 25:7918

    Google Scholar 

  109. Sekhar A, Cavagnero S (2009) J Magn Reson 200:207

    CAS  Google Scholar 

  110. Sekhar A, Cavagnero S (2009) J Phys Chem B 113:8310

    CAS  Google Scholar 

  111. Lee JH, Sekhar A, Cavagnero S (2011) J Am Chem Soc 133:8062

    CAS  Google Scholar 

  112. Muszkat KA, Wismontski-Knittel T (1985) Biochemistry 24:5416

    CAS  Google Scholar 

  113. Muszkat KA, Khait I, Hayashi K, Tamiya N (1984) Biochemistry 23:4913

    CAS  Google Scholar 

  114. Canioni P, Cozzone PJ, Kaptein R (1980) FEBS Lett 111:219

    CAS  Google Scholar 

  115. Broadhurst RW, Dobson CM, Hore PJ, Radford SE, Rees ML (1991) Biochemistry 30:405

    CAS  Google Scholar 

  116. Canet D, Lyon CE, Scheek RM, Robillard GT, Dobson CM, Hore PJ, van Nuland NAJ (2003) J Mol Bio 330:397

    CAS  Google Scholar 

  117. Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H (2002) Science 295:1719

    CAS  Google Scholar 

  118. Capaldi AP, Kleanthous C, Radford SE (2002) Nat Struct Biol 9:209

    CAS  Google Scholar 

  119. Lenstra JA, Bolscher BGJM, Stob S, Beintema JJ, Kaptein R (1979) Eur J Biochem 98:385

    CAS  Google Scholar 

  120. Bolscher BGJM, Lenstra JA, Kaptein R (1979) J Magn Reson 35:163

    CAS  Google Scholar 

  121. Shelling JG, Sykes BD, O’Neil JDJ, Hofmann T (1983) Biochemistry 22:2649

    CAS  Google Scholar 

  122. Williams TC, Corson DC, McCubbin WD, Oikawa K, Kay CM, Sykes BD (1986) Biochemistry 25:1826

    CAS  Google Scholar 

  123. Norton RS, Beress L, Stob S, Boelens R, Kaptein R (1986) Eur J Biochem 157:343

    CAS  Google Scholar 

  124. Moonen CTW, Hore PJ, Müller F, Kaptein R, Mayhew SG (1982) FEBS Lett 149:141

    CAS  Google Scholar 

  125. van Schagen, Müller F, Kaptein R (1982) Biochemistry 21:402

    Google Scholar 

  126. Müller F, van Schagen CG, Kaptein R (1980) Methods Enzymol 66E:385

    Google Scholar 

  127. Draper RD, Ingraham LL (1970) Arch Biochem Biophys 139:265

    CAS  Google Scholar 

  128. Isenberg I, Szent-Gyorgi A (1958) Proc Natl Acad Sci USA 44:857

    CAS  Google Scholar 

  129. Stob S, Kemmink J, Kaptein R (1989) J Am Chem Soc 111:7036

    CAS  Google Scholar 

  130. Vogel HJ, Sykes BD (1984) J Magn Reson 59:197

    CAS  Google Scholar 

  131. Hore PJ, Volbeda A, Dijkstra K, Kaptein R (1982) J Am Chem Soc104:6262

    Google Scholar 

  132. Feeney J, Roberts GCK, Kaptein R, Birdsall B, Gronenborn A, Burgen ASV (1980) Biochemistry 19:2466

    CAS  Google Scholar 

  133. Fife DJ, Moore WM (1979) Photochem Photobiol 29:43

    CAS  Google Scholar 

  134. Hori A, Hayashi F, Kyogoku Y, Akutsu H (1988) Eur J Biochem 174:503

    CAS  Google Scholar 

  135. Day IJ, Wain R, Tozawa K, Smith LJ, Hore PJ (2005) J Magn Reson 175:330

    CAS  Google Scholar 

  136. Tsentalovich YP, Morozova OB (2000) J Photochem Photobiol A 131:33

    CAS  Google Scholar 

  137. Tsentalovich YP, Morozova OB, Yurkovskaya AV, Hore PJ, Sagdeev RZ (2000) J Phys Chem A 104:6912

    CAS  Google Scholar 

  138. Kuprov I, Goez MM, Abbott PA, Hore PJ (2005) Rev Sci Instrum 76:084103

    Google Scholar 

  139. Morozova OB, Yurkovskaya AV (2010) Angew Chem Int Ed Engl 49:7996

    CAS  Google Scholar 

  140. Miller RJ, Closs GL (1981) Rev Sci Instrum 52:1876

    CAS  Google Scholar 

  141. Blank B, Henne A, Fischer H (1974) Helv Chim Acta 57:920

    CAS  Google Scholar 

  142. Lee B, Richards FM (1971) J Mol Biol 55:379

    CAS  Google Scholar 

  143. Khan F, Kuprov I, Craggs TD, Hore PJ, Jackson SE (2006) J Am Chem Soc 128:10729

    CAS  Google Scholar 

  144. Dobson CM, Hore PJ (1998) Nat Struct Biol 5:504

    CAS  Google Scholar 

  145. van Nuland NAJ, Forge V, Balbach J, Dobson CM (1998) Acc Chem Res 31:773

    Google Scholar 

  146. Zeeb M, Balbach J (2004) Methods 34:65

    CAS  Google Scholar 

  147. Wenter P, Fürtig B, Hainard A, Schwalbe H, Pitsch S (2006) Chembiochem 7:417

    CAS  Google Scholar 

  148. Fürtig B, Wenter P, Reymond L, Richter C, Pitsch S, Schwalbe H (2007) J Am Chem Soc 129:16222

    Google Scholar 

  149. Fürtig B, Buck J, Manoharan V, Bermel W, Jäschke A, Wenter P, Pitsch S, Schwalbe H (2007) Biopolymers 86:360

    Google Scholar 

  150. van Nuland NAJ, Dobson CM, Regan L (2008) Protein Eng Des Sel 21:165

    Google Scholar 

  151. Balbach J, Forge V, Lau WS, van Nuland NA, Brew K, Dobson CM (1996) Science 274:1161

    CAS  Google Scholar 

  152. Schlörb C, Mensch S, Ritcher C, Schwalbe H (2006) J Am Chem Soc 128:1802

    Google Scholar 

  153. Day IJ, Maeda K, Paisley HJ, Mok KH, Hore PJ (2009) J Biomol NMR 44:77

    CAS  Google Scholar 

  154. Balbach J, Forge V, Lau WS, Jones JA, van Nuland NAJ, Dobson CM (1997) Proc Natl Acad Sci USA 94:7182

    CAS  Google Scholar 

  155. Mok KH, Nagashima T, Day IJ, Hore PJ, Dobson CM (2005) Proc Natl Acad Sci USA 102:8899

    CAS  Google Scholar 

  156. Lin YY, Lisitza N, Ahn S, Warren WS (2000) Science 290:118

    CAS  Google Scholar 

  157. Huang SY, Lin YY, Lisitza N, Warren WS (2002) J Chem Phys 116:10325

    CAS  Google Scholar 

  158. Neidigh JW, Fesinmeyer RM, Andersen NH (2002) Nat Struc Biol 9:425

    CAS  Google Scholar 

  159. Neidigh JW, Fesinmeyer RM, Prickett KS, Andersen NH (2001) Biochemistry 40:13188

    CAS  Google Scholar 

  160. Koradi R, Billeter M, Wüthrich K (1996) J Mol Graph 14:51

    CAS  Google Scholar 

  161. Copps J, Murphy RF, Lovas S (2007) Peptide Sci 88:427

    CAS  Google Scholar 

  162. Qiu L, Pabit SA, Roitberg AE, Hagen SJ (2002) J Am Chem Soc 124:12952

    CAS  Google Scholar 

  163. Eaton WA, Muñoz V, Thompson PA, Henry ER, Hofrichter J (1998) Acc Chem Res 31:745

    CAS  Google Scholar 

  164. Mayor U, Johnson CM, Daggett V, Fersht AR (2000) Proc Natl Acad Sci USA 97:13518

    CAS  Google Scholar 

  165. Solomon I (1955) Phys Rev 99:559

    CAS  Google Scholar 

  166. Neuweiler H, Doose S, Sauer M (2005) Proc Natl Acad Sci USA 102:16650

    CAS  Google Scholar 

  167. Ahmed Z, Beta IA, Mikhonin AV, Asher SA (2005) J Am Chem Soc 127:10943

    CAS  Google Scholar 

  168. Rogne P, Ozdowy P, Richter C, Saxena K, Schwalbe H, Kuhn LT (2012) PLoS One 7:e41301

    CAS  Google Scholar 

  169. Dobson CM, Karplus M (1999) Curr Opin Struct Biol 9:92

    CAS  Google Scholar 

  170. Brockwell DJ, Smith DA, Radford SE (2000) Curr Opin Struct Biol 10:16

    CAS  Google Scholar 

  171. Dinner AR, Šali A, Smith LJ, Dobson CM, Karplus M (2000) Trends Biochem Sci 25:331

    CAS  Google Scholar 

  172. Ferguson N, Fersht AR (2003) Curr Opin Struct Biol 13:75

    CAS  Google Scholar 

Download references

Acknowledgements

This review is dedicated to Joe Bargon, the author’s former scientific mentor. Financial support from the German National Academic Foundation, the UK Biological and Biochemical Sciences Research Council (BBSRC), the European Commission, and the German Research Foundation (DFG) is gratefully acknowledged. The European Neuroscience Institute Göttingen (ENI-G) is jointly funded by the Göttingen University Medical School and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars T. Kuhn .

Editor information

Editors and Affiliations

Appendix

Appendix

The radical pair mechanism (RPM) as described in Sect. 2.4 can be recast in terms of the product operator formalism [17, 18]. The triplet T0 spin-state of the radical pair can be described by the following expression:

$$ \left| {{{\mathrm{ T}}_0}} \right\rangle \left\langle {{{\mathrm{ T}}_0}} \right|=\frac{1}{4}E-{S_{1z }}{S_{2z }}+{{\left\{ {\mathrm{ ZQ}} \right\}}_x}, $$
(1)

where \( E \) is the identity operator, \( {S_{1z }}{S_{2z }} \) is electron two-spin order, and \( \mathrm{ ZQ} \) is electronic zero-quantum coherence:

$$ {{\left\{ {\mathrm{ ZQ}} \right\}}_x}={S_{1x }}{S_{2x }}+{S_{1y }}{S_{2y }}, $$
(2)
$$ {{\left\{ {\mathrm{ ZQ}} \right\}}_y}={S_{1y }}{S_{2x }}+{S_{1x }}{S_{2y }}. $$
(3)

By analogy, the singlet state is described by

$$ \left| \mathrm{ S} \right\rangle \left\langle \mathrm{ S} \right|=\frac{1}{4}E-{S_{1z }}{S_{2z }}-{{\left\{ {\mathrm{ ZQ}} \right\}}_x}. $$
(4)

The initial density operator of the triplet-born radical pair – ignoring the T+ and T states – can be written in the following form:

$$ \hat{\rho}(0)=\frac{1}{2}\left| {{{\mathrm{ T}}_0}\alpha } \right\rangle \left\langle {{{\mathrm{ T}}_0}\alpha } \right|+\frac{1}{2}\left| {{{\mathrm{ T}}_0}\beta } \right\rangle \left\langle {{{\mathrm{ T}}_0}\beta } \right|=\frac{1}{4}E-{S_{1z }}{S_{2z }}+{{\left\{ {\mathrm{ ZQ}} \right\}}_x}, $$
(5)

where \( \alpha \) and \( \beta \) correspond to the nuclear spin states of a spin-\( \frac{1}{2} \) nucleus coupled to electron 1 with an isotropic hyperfine coupling constant a. This density operator is then allowed to evolve under the electronic Zeeman Hamiltonian \( {({\hat{H}}_z}=\left( {{\omega_{s1 }}{S_{1z }}+{\omega_{s2 }}{S_{2z }}} )\right) \) and the electron-nuclear hyperfine Hamiltonian (\( {{\hat{H}}_h}=\pi a2{S_{1z }}{I_z} \)) where \( I \) is the nuclear spin:

$$ \begin{array}{lll} {\hat{\rho}(0)} \hfill & {{\mathop---------\xrightarrow{{{(\omega_{s1} }S_{1z }+{\omega_{s2 }}{S_{2z }})t}}}} \hfill & {\displaystyle\frac{1}{4}E-{S_{1z }}{S_{2z }}} \hfill \\\hfill &\hfill & {+{{{\{\mathrm{ ZQ}\}}}_x}\cos ({\omega_{s1 }}-{\omega_{s2 }})t} \hfill \\\hfill &\hfill & {+{{{\{\mathrm{ ZQ}\}}}_y}\sin ({\omega_{s1 }}-{\omega_{s2 }})t,} \hfill \\\end{array} $$
(6)
$$ \begin{array}{lll} {\hat{\rho}(0)} \hfill & {{\mathop---\xrightarrow{{\pi at2{S_{1z }}{I_z}}}}} \hfill & {\displaystyle\frac{1}{4}E-{S_{1z }}{S_{2z }}} \hfill \cr\hfill &\hfill & {+{{{\{\mathrm{ ZQ}\}}}_x}[\cos ({\omega_{s1 }}-{\omega_{s2 }})t\cos (\pi at)]} \hfill \\\hfill &\hfill & {-2{{{\{\mathrm{ ZQ}\}}}_x}{I_z}[\sin ({\omega_{s1 }}-{\omega_{s2 }})t\sin (\pi at)]} \hfill \\\hfill &\hfill & {+{{{\{\mathrm{ ZQ}\}}}_y}[\sin ({\omega_{s1 }}-{\omega_{s2 }})t\cos (\pi at)]} \hfill \\\hfill &\hfill & {+2{{{\{\mathrm{ ZQ}\}}}_y}{I_z}[\cos ({\omega_{s1 }}-{\omega_{s2 }})t\sin (\pi at)],} \hfill \\\end{array} $$
(7)
$$ =\hat{\rho}(t). $$
(8)

The nuclear polarization in the recombination products, which is formed through the singlet channel, is then given by the trace of \( \hat{\rho}(0) \) with

$$ \left| \mathrm{ S} \right\rangle \left\langle \mathrm{ S} \right|{I_z}=\left( {\frac{1}{2}\left| {\mathrm{ S}\alpha } \right\rangle \left\langle {\mathrm{ S}\alpha } \right|+\frac{1}{2}\left| {\mathrm{ S}\beta } \right\rangle \left\langle {\mathrm{ S}\beta } \right|} \right){I_z}, $$
(9)
$$ \left| \mathrm{ S} \right\rangle \left\langle \mathrm{ S} \right|{I_z}=\left( {\frac{1}{4}E-{S_{1z }}{S_{2z }}-{{{\left\{ {\mathrm{ ZQ}} \right\}}}_x}} \right){I_z}. $$
(10)

Hence, the expression for the nuclear polarization \( {p^r} \) found in the recombination products of the radical reaction after electron back transfer has occurred takes the following form:

$$ {p^r}=\left[ {\hat{\rho}\left| \mathrm{ S} \right\rangle \left\langle \mathrm{ S} \right|{I_z}} \right]=-\frac{1}{4}\sin \left( {{\omega_{s1 }}-{\omega_{s2 }}} \right)t\sin \left( {\pi at} \right). $$
(11)

In addition, the nuclear polarization found in the escape products, which is equal and opposite in phase to the recombination products, is given by the trace of \( \hat{\rho}(t) \) with \( \left| {{{\mathrm{ T}}_0}} \right\rangle \left\langle {{{\mathrm{ T}}_0}} \right|{I_z} \):

$$ {p^e}=-\frac{1}{4}\sin \left( {{\omega_{s1 }}-{\omega_{s2 }}} \right)t\sin \left( {\pi at} \right). $$
(12)

From (11) and (12) it can easily be shown that no polarization is produced if the g-values of the two radicals are identical or if there is no hyperfine coupling. In these cases and in cases where \( \Delta g \) is very small, the CIDNP multiplet effect applies. Moreover, the phase of the polarization as predicted by Kaptein’s sign rule is evident from the signs of \( \Delta g \) and the hyperfine coupling constant \( {a_i} \) of nucleus \( i \) as displayed in the respective equations.

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhn, L.T. (2013). Photo-CIDNP NMR Spectroscopy of Amino Acids and Proteins. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_427

Download citation