Skip to main content

Why Is N-Glycolylneuraminic Acid Rare in the Vertebrate Brain?

  • Chapter
  • First Online:
SialoGlyco Chemistry and Biology I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 366))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A, Schauer R (2009) Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  2. Warren L (1963) The distribution of sialic acids in nature. Comp Biochem Physiol 10:153–171

    CAS  Google Scholar 

  3. Schauer R (1982) Sialic acids: chemistry, metabolism, and function. Springer, New York

    Google Scholar 

  4. Bacic A, Kahane I, Zuckerman BM (1990) Panagrellus redivivus and Caenorhabditis elegans: evidence for the absence of sialic acids. Exp Parasitol 71:483–488

    CAS  Google Scholar 

  5. Bolognani L, Masserini M, Bodini PA et al (1981) Lipid composition in ganglia of Mollusca. J Neurochem 36:821–825

    CAS  Google Scholar 

  6. Saito M, Kitamura H, Sugiyama K (2001) Occurrence of gangliosides in the common squid and Pacific octopus among protostomia. Biochim Biophys Acta Biomembr 1511:271–280

    CAS  Google Scholar 

  7. Bürgmayr S, Grabher-Meier H, Staudacher E (2001) Sialic acids in gastropods. FEBS Lett 508:95–98

    Google Scholar 

  8. Repnikova E, Koles K, Nakamura M et al (2010) Sialyltransferase regulates nervous system function in Drosophila. J Neurosci 30:6466–6476

    CAS  Google Scholar 

  9. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469

    CAS  Google Scholar 

  10. Vimr ER, Kalivoda KA, Deszo EL et al (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    CAS  Google Scholar 

  11. Lewis AL, Desa N, Hansen EE et al (2009) Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc Natl Acad Sci U S A 106:13552–13557

    CAS  Google Scholar 

  12. Schauer R (1970) Biosynthesis of N-glycoloylneuraminic acid by an ascorbic acid- or NADP-dependent N-acetyl hydroxylating “N-acetylneuraminate: O2-oxidoreductase” in homogenates of porcine submaxillary gland. Hoppe Seylers Z Physiol Chem 351:783–791

    CAS  Google Scholar 

  13. Shaw L, Schauer R (1988) The biosynthesis of N-glycoloylneuraminic acid occurs by hydroxylation of the CMP-glycoside of N-acetylneuraminic acid. Biol Chem Hoppe Seyler 369:477–486

    CAS  Google Scholar 

  14. Muchmore EA, Milewski M, Varki A et al (1989) Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264:20216–20223

    CAS  Google Scholar 

  15. Kozutsumi Y, Kawano T, Yamakawa T et al (1990) Participation of cytochrome b5 in CMP-N-acetylneuraminic acid hydroxylation in mouse liver cytosol. J Biochem (Tokyo) 108:704–706

    CAS  Google Scholar 

  16. Kawano T, Koyama S, Takematsu H et al (1995) Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J Biol Chem 270:16458–16463

    CAS  Google Scholar 

  17. Schlenzka W, Shaw L, Kelm S et al (1996) CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya. FEBS Lett 385:197–200

    CAS  Google Scholar 

  18. Naito Y, Takematsu H, Koyama S et al (2007) Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol Cell Biol 27:3008–3022

    CAS  Google Scholar 

  19. Hedlund M, Tangvoranuntakul P, Takematsu H et al (2007) N-Glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol Cell Biol 27:4340–4346

    CAS  Google Scholar 

  20. Irie A, Koyama S, Kozutsumi Y et al (1998) The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem 273:15866–15871

    CAS  Google Scholar 

  21. Chou HH, Takematsu H, Diaz S et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95:11751–11756

    CAS  Google Scholar 

  22. Hayakawa T, Satta Y, Gagneux P et al (2001) Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci U S A 98:11399–11404

    CAS  Google Scholar 

  23. Tangvoranuntakul P, Gagneux P, Diaz S et al (2003) Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A 100:12045–12050

    CAS  Google Scholar 

  24. Schauer R, Srinivasan GV, Coddeville B et al (2009) Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus. Carbohydr Res 344:1494–1500

    CAS  Google Scholar 

  25. Yasue S, Handa S, Miyagawa S et al (1978) Difference in form of sialic acid in red blood cell glycolipids of different breeds of dogs. J Biochem (Tokyo) 83:1101–1107

    CAS  Google Scholar 

  26. Ando N, Yamakawa T (1982) On the minor gangliosides of erythrocyte membranes of Japanese cats. J Biochem (Tokyo) 91:873–881

    CAS  Google Scholar 

  27. Bighignoli B, Niini T, Grahn RA et al (2007) Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group. BMC Genet 8:27

    Google Scholar 

  28. Cariappa A, Takematsu H, Liu H et al (2009) B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J Exp Med 206:125–138

    CAS  Google Scholar 

  29. Kavaler S, Morinaga H, Jih A et al (2011) Pancreatic {beta}-cell failure in obese mice with human-like CMP-Neu5Ac hydroxylase deficiency. FASEB J 25(6):1887–1893

    CAS  Google Scholar 

  30. Ghaderi D, Springer SA, Ma F et al (2011) Sexual selection by female immunity against paternal antigens can fix loss of function alleles. Proc Natl Acad Sci U S A 108(43):17743–17748

    CAS  Google Scholar 

  31. Gottschalk A (1960) The chemistry and biology of sialic acids and related substances. Cambridge University Press, Cambridge

    Google Scholar 

  32. Davies LR, Pearce OM, Tessier MB et al (2012) Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage. J Biol Chem 287:28917–28931

    CAS  Google Scholar 

  33. Schauer R, Stoll S, Reuter G (1991) Differences in the amount of N-acetyl- and N-glycoloyl-neuraminic acid, as well as O-acylated sialic acids, of fetal and adult bovine tissues. Carbohydr Res 213:353–359

    CAS  Google Scholar 

  34. Ando S, Chang NC, Yu RK (1978) High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal Biochem 89:437–450

    CAS  Google Scholar 

  35. Yu RK, Ledeen RW (1970) Gas–liquid chromatographic assay of lipid-bound sialic acids: measurement of gangliosides in brain of several species. J Lipid Res 11:506–516

    CAS  Google Scholar 

  36. Klenk E, Uhlenbreck G (1956) Incidence of neuraminic acid in the mucins of pig and horse submaxillaries, and also in cow colostrum. Hoppe Seylers Z Physiol Chem 305:224–231

    CAS  Google Scholar 

  37. Menzeleev RF, Smirnova GP, Chekareva NV et al (1993) Ganglioside GM3 from horse erythrocytes: structure and effect on cell proliferation. Bioorg Khim 19:817–824

    CAS  Google Scholar 

  38. Martensson E, Svennerholm L (1957) Protein-bound sialic acids in human, hog, and horse kidneys. Acta Chem Scand 1604–1612

    Google Scholar 

  39. Muchmore EA (1992) Developmental sialic acid modifications in rat organs. Glycobiology 2:337–343

    CAS  Google Scholar 

  40. Malykh YN, Shaw L, Schauer R (1998) The role of CMP-N-acetylneuraminic acid hydroxylase in determining the level of N-glycolylneuraminic acid in porcine tissues. Glycoconjugate J 15:885–893

    CAS  Google Scholar 

  41. Martin MJ, Rayner JC, Gagneux P et al (2005) Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc Natl Acad Sci U S A 102:12819–12824

    CAS  Google Scholar 

  42. Rich SM, Leendertz FH, Xu G et al (2009) The origin of malignant malaria. Proc Natl Acad Sci U S A 106:14902–14907

    CAS  Google Scholar 

  43. Varki A, Gagneux P (2009) Human-specific evolution of sialic acid targets: explaining the malignant malaria mystery? Proc Natl Acad Sci U S A 106:14739–14740

    CAS  Google Scholar 

  44. Kelm S, Schauer R, Manuguerra J-C et al (1994) Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate J 11:576–585

    CAS  Google Scholar 

  45. Brinkman-Van der Linden ECM, Sjoberg ER, Juneja LR et al (2000) Loss of N-glycolylneuraminic acid in human evolution – implications for sialic acid recognition by siglecs. J Biol Chem 275:8633–8640

    CAS  Google Scholar 

  46. Chandrasekharan K, Yoon JH, Xu Y et al (2010) A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2:42ra54

    Google Scholar 

  47. Schnaar RL (1991) Glycosphingolipids in cell surface recognition. Glycobiology 1:477–485

    CAS  Google Scholar 

  48. Wang B, Miller JB, McNeil Y et al (1998) Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Comp Biochem Physiol (A) 119:435–439

    CAS  Google Scholar 

  49. Wang B (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr 29:177–222

    Google Scholar 

  50. Wang B (2012) Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr 3:465S–472S

    CAS  Google Scholar 

  51. Banda K, Gregg CJ, Chow R et al (2012) Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J Biol Chem 287:28852–28864

    CAS  Google Scholar 

  52. Brunngraber EG, Witting LA, Haberland C et al (1972) Glycoproteins in Tay–Sachs disease: isolation and carbohydrate composition of glycopeptides. Brain Res 38:151–162

    CAS  Google Scholar 

  53. Eckhardt M, Mühlenhoff M, Bethe A et al (1995) Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373:715–718

    CAS  Google Scholar 

  54. Nakayama J, Fukuda MN, Fredette B et al (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci U S A 92:7031–7035

    CAS  Google Scholar 

  55. Kojima N, Kono M, Yoshida Y et al (1996) Biosynthesis and expression of polysialic acid on the neural cell adhesion molecule is predominantly directed by ST8Sia II/STX during in vitro neuronal differentiation. J Biol Chem 271:22058–22062

    CAS  Google Scholar 

  56. Oltmann-Norden I, Galuska SP, Hildebrandt H et al (2008) Impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid synthesis during postnatal mouse brain development. J Biol Chem 283:1463–1471

    CAS  Google Scholar 

  57. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    CAS  Google Scholar 

  58. Rutishauser U, Watanabe M, Silver J et al (1985) Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J Cell Biol 101:1842–1849

    CAS  Google Scholar 

  59. Ono S, Hane M, Kitajima K et al (2012) Novel regulation of fibroblast growth factor 2 (FGF2)-mediated cell growth by polysialic acid. J Biol Chem 287:3710–3722

    CAS  Google Scholar 

  60. Kanato Y, Kitajima K, Sato C (2008) Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 18:1044–1053

    CAS  Google Scholar 

  61. Muller D, Djebbara-Hannas Z, Jourdain P et al (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci U S A 97:4315–4320

    CAS  Google Scholar 

  62. Vutskits L, Djebbara-Hannas Z, Zhang H et al (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J Neurosci 13:1391–1402

    CAS  Google Scholar 

  63. Charles P, Hernandez MP, Stankoff B et al (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A 97:7585–7590

    CAS  Google Scholar 

  64. Fewou SN, Ramakrishnan H, Bussow H et al (2007) Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 282:16700–16711

    CAS  Google Scholar 

  65. Bonfanti L, Olive S, Poulain DA et al (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49:419–436

    CAS  Google Scholar 

  66. Galuska SP, Rollenhagen M, Kaup M et al (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci U S A 107:10250–10255

    CAS  Google Scholar 

  67. Zuber C, Lackie PM, Catterall WA et al (1992) Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J Biol Chem 267:9965–9971

    CAS  Google Scholar 

  68. Vitureira N, Andres R, Perez-Martinez E et al (2010) Podocalyxin is a novel polysialylated neural adhesion protein with multiple roles in neural development and synapse formation. PLoS One 5:e12003

    Google Scholar 

  69. Sato C, Fukuoka H, Ohta K et al (2000) Frequent occurrence of pre-existing alpha2 → 8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins - prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J Biol Chem 275:15422–15431

    CAS  Google Scholar 

  70. Inoko E, Nishiura Y, Tanaka H et al (2010) Developmental stage-dependent expression of an alpha2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 20:916–928

    CAS  Google Scholar 

  71. Wang X, Mitra N, Cruz P et al (2012) Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol 29(8):2073–2086

    CAS  Google Scholar 

  72. Angata T, Kerr SC, Greaves DR et al (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277:24466–24474

    CAS  Google Scholar 

  73. Hayakawa T, Angata T, Lewis AL et al (2005) A human-specific gene in microglia. Science 309:1693

    CAS  Google Scholar 

  74. Wang Y, Neumann H (2010) Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 30:3482–3488

    CAS  Google Scholar 

  75. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–S445

    Google Scholar 

  76. Tettamanti G, Bonali F, Marchesini S et al (1973) A new procedure for the extraction, purification and fractionation of brain ganglioside. Biochim Biophys Acta 296:160–170

    CAS  Google Scholar 

  77. Derry DM, Wolfe LS (1967) Gangliosides in isolated neurons and glial cells. Science 158:1450–1452

    CAS  Google Scholar 

  78. Yamashita T, Wada R, Sasaki T et al (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A 96:9142–9147

    CAS  Google Scholar 

  79. Jennemann R, Sandhoff R, Wang S et al (2005) Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci U S A 102:12459–12464

    CAS  Google Scholar 

  80. Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A 93:10662–10667

    CAS  Google Scholar 

  81. Brigande JV, Seyfried TN (1998) Glycosphingolipid biosynthesis may not be necessary for vertebrate brain development. Ann N Y Acad Sci 845:215–218

    CAS  Google Scholar 

  82. Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A 96:7532–7537

    CAS  Google Scholar 

  83. Kelm S, Pelz A, Schauer R et al (1994) Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4:965–972

    CAS  Google Scholar 

  84. Fruttiger M, Montag D, Schachner M et al (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J Neurosci 7:511–515

    CAS  Google Scholar 

  85. Yin X, Crawford TO, Griffin JW et al (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    CAS  Google Scholar 

  86. Vinson M, Strijbos PJ, Rowles A et al (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285

    CAS  Google Scholar 

  87. Hedlund M, Padler-Karavani V, Varki NM et al (2008) Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci U S A 105:18936–18941

    CAS  Google Scholar 

  88. Seyfried TN, el-Abbadi M, Roy ML (1992) Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 17:147–167

    CAS  Google Scholar 

  89. el-Abbadi M, Seyfried TN (1994) Influence of growth environment on the ganglioside composition of an experimental mouse brain tumor. Mol Chem Neuropathol 21:273–285

    CAS  Google Scholar 

  90. Seyfried TN, el-Abbadi M, Ecsedy JA et al (1998) Ganglioside composition of a mouse brain tumor grown in the severe combined immunodeficiency (SCID) mouse. Mol Chem Neuropathol 33:27–37

    CAS  Google Scholar 

  91. Terabayashi T, Ogawa T, Kawanishi Y (1992) A comparative study on ceramide composition of cetacean brain gangliosides. Comp Biochem Physiol B 103:721–726

    CAS  Google Scholar 

  92. Ghidoni R, Sonnino S, Tettamanti G et al (1976) On the structure of two new gangliosides from beef brain. J Neurochem 27:511–515

    CAS  Google Scholar 

  93. Casellato R, Brocca P, Li SC et al (1995) Isolation and structural characterization of N-acetyl- and N-glycolylneuraminic-acid-containing GalNAc-GD1a isomers, IV4GalNAcIV3Neu5AcII3Neu5GcGgOse4Cer and IV4GalNAcIV3Neu5GcII3Neu5AcGgOse4Cer, from bovine brain. Eur J Biochem 234:786–793

    CAS  Google Scholar 

  94. Iwamori, Nagai Y (1978) A new chromatographic approach to the resolution of individual gangliosides. Biochim Biophys Acta 528:257–267

    CAS  Google Scholar 

  95. Chigorno V, Sonnino S, Ghidoni R et al (1982) Densitometric quantification of brain gangliosides separated by two-dimensional thin layer chromatography. Neurochem Int 4:397–404

    CAS  Google Scholar 

  96. Mikami T, Kashiwagi M, Tsuchihashi K et al (1998) Further characterization of equine brain gangliosides: the presence of GM3 having N-glycolyl neuraminic acid in the central nervous system. J Biochem (Tokyo) 123:487–491

    CAS  Google Scholar 

  97. Nakao T, Kon K, Ando S et al (1991) A NeuGc-containing trisialoganglioside of bovine brain. Biochim Biophys Acta Lipids Lipid Metab 1086:305–309

    CAS  Google Scholar 

  98. Duvar S, Suzuki M, Muruganandam A et al (2000) Glycosphingolipid composition of a new immortalized human cerebromicrovascular endothelial cell line. J Neurochem 75:1970–1976

    CAS  Google Scholar 

  99. Kanda T, Ariga T, Kubodera H et al (2004) Glycosphingolipid composition of primary cultured human brain microvascular endothelial cells. J Neurosci Res 78:141

    CAS  Google Scholar 

  100. Kanda T, Yoshino H, Ariga T et al (1994) Glycosphingolipid antigens in cultured microvascular bovine brain endothelial cells: sulfoglucuronosyl paragloboside as a target of monoclonal IgM in demyelinative neuropathy. J Cell Biol 126:235–246

    CAS  Google Scholar 

  101. Charter NW, Mahal LK, Koshland DEJ et al (2000) Biosynthetic incorporation of unnatural sialic acids into polysialic acid on neural cells. Glycobiology 10:1049–1056

    CAS  Google Scholar 

  102. Mahal LK, Charter NW, Angata K et al (2001) A small-molecule modulator of poly-alpha2,8-sialic acid expression on cultured neurons and tumor cells. Science 294:380–382

    CAS  Google Scholar 

  103. Sato C, Kitajima K, Tazawa I et al (1993) Structural diversity in the alpha 2 → 8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms. J Biol Chem 268:23675–23684

    CAS  Google Scholar 

  104. Yoshino H, Ariga T, Suzuki A et al (2008) Identification of gangliosides recognized by IgG anti-GalNAc-GD1a antibodies in bovine spinal motor neurons and motor nerves. Brain Res 1227:216–220

    CAS  Google Scholar 

  105. Margolis RU, Ledeen RW, Sbaschnig-Agler M et al (1987) Complex carbohydrate composition of large dense-cored vesicles from sympathetic nerve. J Neurochem 49:1839–1844

    CAS  Google Scholar 

  106. Lattin JE, Schroder K, Su AI et al (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5

    Google Scholar 

  107. Song KH, Kang YJ, Jin UH et al (2010) Cloning and functional characterization of pig CMP-N-acetylneuraminic acid hydroxylase(pCMAH) for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-to-human xenotransplantation. Biochem J 427(1):179–188

    CAS  Google Scholar 

  108. Su AI, Wiltshire T, Batalov S et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101:6062–6067

    CAS  Google Scholar 

  109. El-Abbadi M, Seyfried TN, Yates AJ et al (2001) Ganglioside composition and histology of a spontaneous metastatic brain tumour in the VM mouse. Br J Cancer 85:285–292

    CAS  Google Scholar 

  110. Bardor M, Nguyen DH, Diaz S et al (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280:4228–4237

    CAS  Google Scholar 

  111. Martin MJ, Muotri A, Gage F et al (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    CAS  Google Scholar 

  112. Scheinthal BM, Bettelheim FA (1968) Multiple forms of sialic acids. Carbohydr Res 6:257–265

    CAS  Google Scholar 

  113. Eylar EH, Madoff MA, Brody OV et al (1962) The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem 237:1992–2000

    CAS  Google Scholar 

  114. Higa HH, Paulson JC (1985) Sialylation of glycoprotein oligosaccharides with N-acetyl-, N-glycolyl-, and N-O-diacetylneuraminic acids. J Biol Chem 260:8838–8849

    CAS  Google Scholar 

  115. Collins BE, Fralich TJ, Itonori S et al (2000) Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10:11–20

    CAS  Google Scholar 

  116. Nystedt J, Anderson H, Hirvonen T et al (2010) Human CMP-N-acetylneuraminic acid hydroxylase is a novel stem cell marker linked to stem cell-specific mechanisms. Stem Cells 28:258–267

    CAS  Google Scholar 

  117. Raymond JB, Mahapatra S, Crick DC et al (2005) Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J Biol Chem 280:326–333

    CAS  Google Scholar 

  118. Yu RK, Ledeen RW, Gajdusek DC et al (1974) Ganglioside changes in slow virus diseases: analyses of chimpanzee brains infected with kuru and Creutzfeldt-Jakob agents. Brain Res 70:103–112

    CAS  Google Scholar 

  119. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Pascal Gagneux, Pascal Lanctot, and Nissi Varki for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davies, L.R.L., Varki, A. (2013). Why Is N-Glycolylneuraminic Acid Rare in the Vertebrate Brain?. In: SialoGlyco Chemistry and Biology I. Topics in Current Chemistry, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_419

Download citation

Publish with us

Policies and ethics