Polyarenes I pp 249-290 | Cite as

Molecular Belts

  • Paul J. Evans
  • Ramesh Jasti
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 349)


Rigid hydrocarbon macrocycles with radially-oriented π-systems and continuous conjugation have attracted great interest in recent years. These molecular belts have novel optoelectronic properties and host–guest behavior. Certain belts may also ultimately lead to a rational synthesis of carbon nanotubes. The high strain associated with the nonplanar, conjugated backbones requires the development of new synthetic methods, and clever synthetic design. Herein we describe the synthetic history and properties of these structurally simple but synthetically challenging molecules.


Cyclacene Cycloparaphenylene Cycloparaphenyleneacetylene Cyclophenacene Molecular belt Picotube 


  1. 1.
    Scott LT (2003) Conjugated belts and nanorings with radially oriented p orbitals. Angew Chem Int Ed 42(35):4133–4135CrossRefGoogle Scholar
  2. 2.
    Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex π-π interaction. Chem Rev 106(12):5250–5273CrossRefGoogle Scholar
  3. 3.
    Parekh VC, Guha PC (1934) J Indian Chem Soc 11:95–100Google Scholar
  4. 4.
    Diederich F, Rubin Y, Knobler CB, Whetten RL, Schriver KE, Houk KN, Li Y (1989) All-carbon molecules: evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 245(4922):1088–1090CrossRefGoogle Scholar
  5. 5.
    Rubin Y, Knobler CB, Diederich F (1990) Precursors to the cyclo[n]carbons: from 3,4-dialkynyl-3-cyclobutene-1,2-diones and 3,4-dialkynyl-3-cyclobutene-1,2-diols to cyclobutenodehydroannulenes and higher oxides of carbon. J Am Chem Soc 112(4):1607–1617CrossRefGoogle Scholar
  6. 6.
    Tobe Y, Fujii T, Matsumoto H, Naemura K, Achiba Y, Wakabayashi T (1996) A new entry into cyclo[n]carbons: [2+2] cycloreversion of propellane-annelated dehydroannulenes. J Am Chem Soc 118(11):2758–2759CrossRefGoogle Scholar
  7. 7.
    Kammermeier S, Jones PG, Herges R (1996) Ring-expanding metathesis of tetradehydro-anthracene—synthesis and structure of a tubelike, fully conjugated hydrocarbon. Angew Chem Int Ed 35(22):2669–2671CrossRefGoogle Scholar
  8. 8.
    Deichmann M, Näther C, Herges R (2003) Pyrolysis of a tubular aromatic compound. Org Lett 5(8):1269–1271CrossRefGoogle Scholar
  9. 9.
    Herges R, Deichmann M, Wakita T, Okamoto Y (2003) Synthesis of a chiral tube. Angew Chem Int Ed 42(10):1170–1172CrossRefGoogle Scholar
  10. 10.
    Rosenkranz N, Thomsen C (2009) Molecular dynamics simulations of picotube peapods. Physica Status Solidi (B) 246(11–12):2622–2625CrossRefGoogle Scholar
  11. 11.
    Rosenkranz N, Machón M, Herges R, Thomsen C (2008) Vibrational properties of four consecutive carbon picotubes. Physica Status Solidi (B) 245(10):2145–2148CrossRefGoogle Scholar
  12. 12.
    Rosenkranz N, Machón M, Herges R, Thomsen C (2008) Vibrational properties of semitrimer picotubes. Chem Phys Lett 451(4–6):249–251CrossRefGoogle Scholar
  13. 13.
    Machón M, Reich S, Maultzsch J, Okudera H, Simon A, Herges R, Thomsen C (2005) Structural, electronic, and vibrational properties of (4,4) picotube crystals. Phys Rev B 72(15):155402CrossRefGoogle Scholar
  14. 14.
    Kawase T, Darabi HR, Oda M (1996) Cyclic [6]- and [8]paraphenylacetylenes. Angew Chem Int Ed 35(22):2664–2666CrossRefGoogle Scholar
  15. 15.
    Kawase T, Ueda N, Darabi HR, Oda M (1996) []Metacyclophane-1,9,17,25-tetrayne. Angew Chem Int Ed 35(13–14):1556–1558CrossRefGoogle Scholar
  16. 16.
    Kawase T, Ueda N, Tanaka K, Seirai Y, Oda M (2001) The newly modified McMurry reaction toward the improved synthesis of cyclic paraphenylacetylenes. Tetrahedron Lett 42(32):5509–5511CrossRefGoogle Scholar
  17. 17.
    Kawase T, Seirai Y, Darabi HR, Oda M, Sarakai Y, Tashiro K (2003) All-hydrocarbon inclusion complexes of carbon nanorings: cyclic [6]- and [8]paraphenyleneacetylenes. Angew Chem Int Ed 42(14):1621–1624CrossRefGoogle Scholar
  18. 18.
    Kawase T, Tanaka K, Fujiwara N, Darabi HR, Oda M (2003) Complexation of a carbon nanoring with fullerenes. Angew Chem Int Ed 115(14):1662–1666CrossRefGoogle Scholar
  19. 19.
    Atwood JL, Koutsantonis GA, Raston CL (1994) Purification of C60 and C70 by selective complexation with calixarenes. Nature 368(6468):229–231CrossRefGoogle Scholar
  20. 20.
    Suzuki T, Nakashima K, Shinkai S (1994) Very convenient and efficient purification method for fullerene (C60) with 5,11,17,23,29,35,41,47-octa-tert-butylcalix[8]arene-49,50,51,52,53,54,55,56-octol. Chem Lett 23(4):699–702CrossRefGoogle Scholar
  21. 21.
    Kawase T, Fujiwara N, Tsutumi M, Oda M, Maeda Y, Wakahara T, Akasaka T (2004) Supramolecular dynamics of cyclic [6]paraphenyleneacetylene complexes with [60]- and [70]fullerene derivatives: electronic and structural effects on complexation. Angew Chem Int Ed 43(38):5060–5062CrossRefGoogle Scholar
  22. 22.
    Kawase T, Tanaka K, Seirai Y, Shiono N, Oda M (2003) Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew Chem Int Ed 42(45):5597–5600CrossRefGoogle Scholar
  23. 23.
    Kawase T, Oda M (2006) Complexation of carbon nanorings with fullerenes. Pure Appl Chem 78(4):831–839CrossRefGoogle Scholar
  24. 24.
    Kawase T, Tanaka K, Shiono N, Seirai Y, Oda M (2004) Onion-type complexation based on carbon nanorings and a buckminsterfullerene. Angew Chem Int Ed 116(13):1754–1756CrossRefGoogle Scholar
  25. 25.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  26. 26.
    Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359(6397):707–709CrossRefGoogle Scholar
  27. 27.
    Armitage JB, Entwistle N, Jones ERH, Whiting MC (1954) Researches on acetylenic compounds. Part XLI. The synthesis of diphenylpolyacetylenes. J Chem Soc (Resumed) 147–154Google Scholar
  28. 28.
    Srinivasan M, Sankararaman S, Hopf H, Varghese B (2003) Synthesis of buta-1,3-diyne-bridged macrocycles with (Z)-1,4-diethynyl1,4-dimethoxycyclohexa-2,5-diene as the building block. Eur J Org Chem 2003(4):660–665CrossRefGoogle Scholar
  29. 29.
    Ohkita M, Ando K, Suzuki T, Tsuji T (2000) Syntheses of acetylenic oligophenylene macrocycles based on a novel Dewar benzene building block approach. J Org Chem 65(14):4385–4390CrossRefGoogle Scholar
  30. 30.
    Ohkita M, Ando K, Tsuji T (2001) Synthesis and characterization of [46]paracyclophanedodecayne derivative. Chem Commun 24:2570–2571CrossRefGoogle Scholar
  31. 31.
    Tobe Y, Furukawa R, Sonoda M, Wakabayashi T (2001) [12.12]Paracyclophanedodecaynes C36H8 and C36Cl8: the smallest paracyclophynes and their transformation into the carbon cluster ion C36−. Angew Chem Int Ed 40(21):4072–4074CrossRefGoogle Scholar
  32. 32.
    Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR (2008) Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J Am Chem Soc 130(52):17646–17647CrossRefGoogle Scholar
  33. 33.
    Ohkita M, Ando K, Yamamoto K-i, Suzuki T, Tsuji T (2000) First Dewar benzene approach to acetylenic oligophenylene macrocycles: synthesis and structure of a molecular rectangle bearing two spindles. Chem Commun (1):83–84Google Scholar
  34. 34.
    Tobe Y, Fujii T, Matsumoto H, Tsumuraya K, Noguchi D, Nakagawa N, Sonoda M, Naemura K, Achiba Y, Wakabayashi T (2000) [2+2]Cycloreversion of [4.3.2]propella-1,3,11-trienes: an approach to cyclo[n]carbons from propellane-annelated dehydro[n]annulenes. J Am Chem Soc 122(8):1762–1775CrossRefGoogle Scholar
  35. 35.
    Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K (2009) Selective synthesis of [12]cycloparaphenylene. Angew Chem Int Ed 48(33):6112–6116CrossRefGoogle Scholar
  36. 36.
    Omachi H, Matsuura S, Segawa Y, Itami K (2010) A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew Chem Int Ed 49(52):10202–10205CrossRefGoogle Scholar
  37. 37.
    Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S (2011) Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed 50(36):8342–8344CrossRefGoogle Scholar
  38. 38.
    Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S (2011) Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties. J Am Chem Soc 133(21):8354–8361CrossRefGoogle Scholar
  39. 39.
    Hitosugi S, Nakanishi W, Yamasaki T, Isobe H (2011) Bottom-up synthesis of finite models of helical (n, m)-single-wall carbon nanotubes. Nat Commun 2:492CrossRefGoogle Scholar
  40. 40.
    Omachi H, Segawa Y, Itami K (2011) Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org Lett 13(9):2480–2483CrossRefGoogle Scholar
  41. 41.
    Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K (2011) Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew Chem Int Ed 50(14):3244–3248CrossRefGoogle Scholar
  42. 42.
    Segawa Y, Senel P, Matsuura S, Omachi H, Itami K (2011) [9]Cycloparaphenylene: nickel-mediated synthesis and crystal structure. Chem Lett 40(4):423–425CrossRefGoogle Scholar
  43. 43.
    Sisto TJ, Golder MR, Hirst ES, Jasti R (2011) Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. J Am Chem Soc 133(40):15800–15802CrossRefGoogle Scholar
  44. 44.
    Hitosugi S, Nakanishi W, Isobe H (2012) Atropisomerism in a belt-persistent nanohoop molecule: rotational restriction forced by macrocyclic ring strain. Chem Asian J 7:1550–2CrossRefGoogle Scholar
  45. 45.
    Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K (2012) Size-selective synthesis of [9]-[11] and [13]cycloparaphenylenes. Chem Sci 3:2340–2345CrossRefGoogle Scholar
  46. 46.
    Matsui K, Segawa Y, Itami K (2012) Synthesis and properties of cycloparaphenylene-2,5-pyridylidene: a nitrogen-containing carbon nanoring. Org Lett 14(7):1888–1891CrossRefGoogle Scholar
  47. 47.
    Yagi A, Segawa Y, Itami K (2012) Synthesis and properties of [9]cyclo-1,4-naphthylene: a π-extended carbon nanoring. J Am Chem Soc 134(6):2962–2965CrossRefGoogle Scholar
  48. 48.
    Segawa Y, Fukazawa A, Matsuura S, Omachi H, Yamaguchi S, Irle S, Itami K (2012) Combined experimental and theoretical studies on the photophysical properties of cycloparaphenylenes. Org Biomol Chem 10:5979–84CrossRefGoogle Scholar
  49. 49.
    Xia J, Jasti R (2012) Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. Angew Chem Int Ed 51(10):2474–2476CrossRefGoogle Scholar
  50. 50.
    Swager TM, Han GD (2011) The smaller the redder. Synfacts 2011(12):1309–1309Google Scholar
  51. 51.
    Sisto TJ, Jasti R (2012) Overcoming molecular strain: synthesis of [7]cycloparaphenylene. Synlett 23(EFirst):483–489Google Scholar
  52. 52.
    Li H-B, Page AJ, Irle S, Morokuma K (2012) Theoretical insights into chirality-controlled SWCNT growth from a cycloparaphenylene template. Chemphyschem 13(6):1479–1485CrossRefGoogle Scholar
  53. 53.
    Tian X, Jasti R (2011) Cycloparaphenylenes: the shortest possible segments of armchair carbon nanotubes. In: Petrukhina MA, Scott LT (eds) Fragments of fullerenes and carbon nanotubes. Wiley, Hoboken, pp 291–309CrossRefGoogle Scholar
  54. 54.
    Bachrach SM, Stück D (2010) DFT study of cycloparaphenylenes and heteroatom-substituted nanohoops. J Org Chem 75(19):6595–6604CrossRefGoogle Scholar
  55. 55.
    Segawa Y, Omachi H, Itami K (2010) Theoretical studies on the structures and strain energies of cycloparaphenylenes. Org Lett 12(10):2262–2265CrossRefGoogle Scholar
  56. 56.
    Jasti R, Bertozzi CR (2010) Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem Phys Lett 494(1–3):1–7CrossRefGoogle Scholar
  57. 57.
    Sundholm D, Taubert S, Pichierri F (2010) Calculation of absorption and emission spectra of [n]cycloparaphenylenes: the reason for the large Stokes shift. Phys Chem Chem Phys 12(11):2751–2757CrossRefGoogle Scholar
  58. 58.
    Wong BM (2009) Optoelectronic properties of carbon nanorings: excitonic effects from time-dependent density functional theory. J Phys Chem C 113(52):21921–21927CrossRefGoogle Scholar
  59. 59.
    Friederich R, Nieger M, Vögtle F (1993) Auf dem Weg zu makrocyclischen para-phenylenen. Chem Ber 126(7):1723–1732CrossRefGoogle Scholar
  60. 60.
    Ellis KK, Wilke B, Zhang Y, Diver ST (2000) A new method for the synthesis of imidazolidinone- and benzimidazolone-containing [2.2]cyclophanes. Org Lett 2(24):3785–3788CrossRefGoogle Scholar
  61. 61.
    Alonso F, Yus M (1992) Easy synthesis of 2,4-dialkyl substituted phenols and anisoles from p-bensoquinone. Tetrahedron 48(13):2709–2714CrossRefGoogle Scholar
  62. 62.
    Nijegorodov NI, Downey WS, Danailov MB (2000) Systematic investigation of absorption, fluorescence and laser properties of some p- and m-oligophenylenes. Spectrochim Acta A Mol Biomol Spectrosc 56(4):783–795CrossRefGoogle Scholar
  63. 63.
    Yamago S, Watanabe Y, Iwamoto T (2010) Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew Chem Int Ed 49(4):757–759CrossRefGoogle Scholar
  64. 64.
    Jagadeesh MN, Makur A, Chandrasekhar J (2000) The interplay of angle strain and aromaticity: molecular and electronic structures of [0n]paracyclophanes. J Mol Model 6(2):226–233CrossRefGoogle Scholar
  65. 65.
    Matsuo Y, Sato Y, Hashiguchi M, Matsuo K, Nakamura E (2009) Synthesis, electrochemical and photophysical properties, and electroluminescent performance of the octa- and deca(aryl)[60]fullerene derivatives. Adv Funct Mater 19(14):2224–2229CrossRefGoogle Scholar
  66. 66.
    Matsuo Y, Tahara K, Morita K, Matsuo K, Nakamura E (2007) Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene. Angew Chem Int Ed 46(16):2844–2847CrossRefGoogle Scholar
  67. 67.
    Matsuo Y, Tahara K, Sawamura M, Nakamura E (2004) Creation of hoop- and bowl-shaped benzenoid systems by selective detraction of [60]fullerene conjugation. [10]Cyclophenacene and fused corannulene derivatives. J Am Chem Soc 126(28):8725–8734CrossRefGoogle Scholar
  68. 68.
    Nakamura E, Tahara K, Matsuo Y, Sawamura M (2003) Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. J Am Chem Soc 125(10):2834–2835CrossRefGoogle Scholar
  69. 69.
    Zhang X, Matsuo Y, Nakamura E (2008) Light emission of [10]cyclophenacene through energy transfer from neighboring carbazolylphenyl dendrons. Org Lett 10(18):4145–7CrossRefGoogle Scholar
  70. 70.
    Li C-Z, Matsuo Y, Nakamura E (2009) Luminescent bow-tie-shaped decaaryl[60]fullerene mesogens. J Am Chem Soc 131(47):17058–17059CrossRefGoogle Scholar
  71. 71.
    Ashton PR, Brown GR, Isaacs NS, Giuffrida D, Kohnke FH, Mathias JP, Slawin AMZ, Smith DR, Stoddart JF, Williams DJ (1992) Molecular LEGO. 1. Substrate-directed synthesis via stereoregular Diels-Alder oligomerizations. J Am Chem Soc 114(16):6330–6353CrossRefGoogle Scholar
  72. 72.
    Cory RM, McPhail CL (1996) Transformations of a macrocyclic cyclophane belt into advanced [8]cyclacene and [8]cyclacene triquinone precursors. Tetrahedron Lett 37(12):1987–1990CrossRefGoogle Scholar
  73. 73.
    Godt A, Enkelmann V, Schlüter A-D (1989) Double-stranded molecules: a [6] beltene derivative and the corresponding open-chain polymer. Angew Chem Int Ed 28(12):1680–1682CrossRefGoogle Scholar
  74. 74.
    Esser B, Rominger F, Gleiter R (2008) Synthesis of [6.8]3cyclacene: conjugated belt and model for an unusual type of carbon nanotube. J Am Chem Soc 130(21):6716–6717CrossRefGoogle Scholar
  75. 75.
    Kintzel O, Luger P, Weber M, Schlüter AD (1998) Ring-chain equilibrium between an [18]cyclacene derivative and a ladder oligomer. Eur J Org Chem 1998(1):99–105CrossRefGoogle Scholar
  76. 76.
    Neudorff WD, Lentz D, Anibarro M, Schlüter AD (2003) The carbon skeleton of the belt region of fullerene C84 (D2). Chemistry 9(12):2745–2757CrossRefGoogle Scholar
  77. 77.
    Denekamp C, Etinger A, Amrein W, Stanger A, Stuparu M, Schlüter AD (2008) Towards a fully conjugated, double-stranded cycle: a mass spectrometric and theoretical study. Chemistry 14(5):1628–1637CrossRefGoogle Scholar
  78. 78.
    Stuparu M, Lentz D, Rüegger H, Schlüter AD (2007) Exploring the chemistry of a double-stranded cycle with the carbon skeleton of the belt region of the C84 fullerene. Eur J Org Chem 2007(1):88–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paul J. Evans
    • 1
  • Ramesh Jasti
    • 1
  1. 1.Jasti LabBoston UniversityBostonUSA

Personalised recommendations