Skip to main content

Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations

Part of the Topics in Current Chemistry book series (TOPCURRCHEM,volume 337)

Abstract

The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In “simple” enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for “cracking” in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Toscano MD, Woycechowsky KJ, Hilvert D (2007) Angew Chem Int Ed 46:3212–3236

    CAS  Google Scholar 

  2. Gerlt JA, Babbitt PC (2009) Curr Opin Chem Biol 13:10–18

    CAS  Google Scholar 

  3. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Science 329:309–313

    CAS  Google Scholar 

  4. Hilvert D (2000) Annu Rev Biochem 69:751–793

    CAS  Google Scholar 

  5. Ma BY, Nussinov R (2010) Curr Opin Chem Biol 14:652–659

    CAS  Google Scholar 

  6. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) Science 313:1638–1642

    CAS  Google Scholar 

  7. Nagel ZD, Klinman JP (2006) Chem Rev 106:3095–3118

    CAS  Google Scholar 

  8. Boehr DD, Dyson HJ, Wright PE (2006) Chem Rev 106:3055–3079

    CAS  Google Scholar 

  9. Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196–1202

    CAS  Google Scholar 

  10. Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140–3169

    CAS  Google Scholar 

  11. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186–195

    CAS  Google Scholar 

  12. Antoniou D, Basner J, Nunez S, Schwartz SD (2006) Chem Rev 106:3170–3187

    CAS  Google Scholar 

  13. Cui Q, Karplus M (2003) Adv Protein Chem 66:315–372

    CAS  Google Scholar 

  14. Hammes-Schiffer S, Benkovic SJ (2006) Annu Rev Biochem 75:519–541

    CAS  Google Scholar 

  15. Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Biochemistry 50:10422–10430

    CAS  Google Scholar 

  16. Hill TL (1977) Free energy transduction in biology. Academic, New York

    Google Scholar 

  17. Eisenberg E, Hill TL (1985) Science 227:999–1006

    CAS  Google Scholar 

  18. Walsh R, Rutland C, Thomas R, Loughna S (2010) Cardiology 115:49–60

    CAS  Google Scholar 

  19. Kiaris H, Spandidos DA (1995) Int J Oncol 7:413–421

    CAS  Google Scholar 

  20. Roberts PJ, Der CJ (2007) Oncogene 26:3291–3310

    CAS  Google Scholar 

  21. Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, Chu JW, Yang H (2007) Proc Natl Acad Sci USA 104:18055–18060

    CAS  Google Scholar 

  22. Henzler-Wildman KA, Thai V, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hübner CG, Kern D (2007) Nature 450:838–843

    CAS  Google Scholar 

  23. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) Nature 450:913–916

    CAS  Google Scholar 

  24. Bae E, Phillips GN Jr (2006) Proc Natl Acad Sci USA 103:2132–2137

    CAS  Google Scholar 

  25. Arora A, Brooks CL III (2007) Proc Natl Acad Sci USA 104:18496–18501

    CAS  Google Scholar 

  26. Brokaw JB, Chu JW (2010) Biophys J 99:3420–3429

    CAS  Google Scholar 

  27. Cukier RI (2009) J Phys Chem B 113:1662–1672

    CAS  Google Scholar 

  28. Lou HF, Cukier RI (2006) J Phys Chem B 110:24121–24137

    CAS  Google Scholar 

  29. Kubitzki MB, de Groot BL (2008) Structure 16:1175–1182

    CAS  Google Scholar 

  30. Pontiggia F, Zen A, Micheletti C (2008) Biophys J 95:5901–5912

    CAS  Google Scholar 

  31. Beckstein O, Denning EJ, Perilla JR, Woolf TB (2009) J Mol Biol 394:160–176

    CAS  Google Scholar 

  32. Temiz NA, Meirovitch E, Bahar I (2004) Proteins Struct Funct Bioinf 57:468–480

    CAS  Google Scholar 

  33. Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100:12570–12575

    CAS  Google Scholar 

  34. Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) J Mol Biol 366:1661–1671

    CAS  Google Scholar 

  35. Bhatt D, Zuckerman DM (2010) J Chem Theory Comput 6:3527–3539

    CAS  Google Scholar 

  36. Maragakis P, Karplus M (2005) J Mol Biol 352:807–822

    CAS  Google Scholar 

  37. Lu Q, Wang J (2008) J Am Chem Soc 130:4772–4783

    CAS  Google Scholar 

  38. Chu JW, Voth GA (2007) Biophys J 93:3860–3871

    CAS  Google Scholar 

  39. van Wynsberghe AW, Ma L, Chen X, Cui Q (2008) Functional motions in biomolecules: insights from computational studies at multiple scales. In: Schwede T, Peitsch M (eds) Computational structural biology. World Scientific Publishing, Singapore, pp 253–298

    Google Scholar 

  40. Yu H, Ma L, Yang Y, Cui Q (2007) PLoS Comput Biol 3:0199

    CAS  Google Scholar 

  41. Yu H, Ma L, Yang Y, Cui Q (2007) PLoS Comput Biol 3:0214

    CAS  Google Scholar 

  42. Yang Y, Yu H, Cui Q (2008) J Mol Biol 381:1407–1420

    CAS  Google Scholar 

  43. Yu H, Yang Y, Ma L, Cui Q (2009) Mechanochemical coupling in molecular motors: insights from molecular simulations of the myosin motor domain. In: Leitner D, Straub JE (eds) Energy flows in proteins. Proteins: Energy, Heat and Signal Flow, CRC Press (2009) pp 23–47

    Google Scholar 

  44. Daily MD, Phillips GN Jr, Cui Q (2010) J Mol Biol 400:618–631

    CAS  Google Scholar 

  45. Daily MD, Phillips GN Jr, Cui Q (2011) PLoS Comput Biol 7:e1002103

    CAS  Google Scholar 

  46. Daily MD, Makowski L, Phillips GN Jr, Cui Q (2012) Chem Phys 396:84–91, Special issue on “Functional dynamics of proteins”

    CAS  Google Scholar 

  47. Cui Q, Bahar I (eds) (2005) Normal mode analysis: theory and applications to biological and chemical systems, Mathematical and computational biology series. Chapman and Hall/CRC, New York

    Google Scholar 

  48. Li GH, Cui Q (2004) Biophys J 86:743–763

    CAS  Google Scholar 

  49. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Curr Opin Struct Biol 19:120–127

    CAS  Google Scholar 

  50. Stone JE, Hardy DJ, Ufimtsev IS, Schulten K (2010) J Mol Graph Model 29:116–125

    CAS  Google Scholar 

  51. Ma J, Flynn TC, Cui Q, Leslie AGW, Walker JE, Karplus M (2002) Structure 10:921–931

    CAS  Google Scholar 

  52. Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Mol Simul 10:291–308

    CAS  Google Scholar 

  53. van der Vaart A, Karplus M (2005) J Chem Phys 122:114903

    Google Scholar 

  54. Sotomayor M, Schlten K (2007) Science 316:1144–1148

    CAS  Google Scholar 

  55. Wales DJ (2003) Energy landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  56. Huo SH, Straub JE (1997) J Chem Phys 107:5000–5006

    CAS  Google Scholar 

  57. Ovchinnikov V, Karplus M (2012) J Phys Chem B 116:8584–8603

    CAS  Google Scholar 

  58. McQuarrie DA (1973) Statistical mechanics. Harper and Row, New York

    Google Scholar 

  59. Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199

    Google Scholar 

  60. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic, San Diego

    Google Scholar 

  61. Barducci A, Bussi G, Parrinello M (2008) Phys Rev Lett 100:020603

    Google Scholar 

  62. Ma L, Cui Q (2007) J Am Chem Soc 129:10261–10268

    CAS  Google Scholar 

  63. Yang S, Banavali NK, Roux B (2009) Proc Natl Acad Sci USA 106:3776–3781

    CAS  Google Scholar 

  64. Elber R (2011) Curr Opin Struct Biol 21:1–6

    Google Scholar 

  65. E W, Vanden-Eijnden E (2010) Annu Rev Phys Chem 61:391–420

    CAS  Google Scholar 

  66. Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) J Chem Phys 131:124101

    Google Scholar 

  67. Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Proc Natl Acad Sci USA 106:19011–19016

    CAS  Google Scholar 

  68. Takada S (2012) Curr Opin Struct Biol 22:130–137

    CAS  Google Scholar 

  69. Tozzini V (2011) Q Rev Biophys 62:333–371

    Google Scholar 

  70. Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Proc Natl Acad Sci USA 103:11844–11849

    CAS  Google Scholar 

  71. Best RB, Chen Y-G, Hummer G (2005) Structure 13:1755–1763

    CAS  Google Scholar 

  72. Hills RD Jr, Brooks CL III (2009) Int J Mol Sci 10:889–905

    CAS  Google Scholar 

  73. Hyeon C, Thirumalai D (2011) Nat Commun 2:487

    Google Scholar 

  74. Schliwa M (ed) (2002) Molecular motors. Wiley-VCH, Weinheim

    Google Scholar 

  75. Geeves MA, Holmes KC (1999) Annu Rev Biochem 68:687–728

    CAS  Google Scholar 

  76. Vale RD, Milligan RA (2000) Science 288:88–95

    CAS  Google Scholar 

  77. Geeves MA, Holmes KC (2005) Adv Protein Chem 71:161–193

    CAS  Google Scholar 

  78. Fischer S, Windshugel B, Horak D, Holmes KC, Smith JC (2005) Proc Natl Acad Sci USA 102:6873–6878

    CAS  Google Scholar 

  79. Elber R, West A (2010) Proc Natl Acad Sci USA 107:5001–5005

    CAS  Google Scholar 

  80. Woo HJ (2007) Biophys Chem 125:127–137

    CAS  Google Scholar 

  81. Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) J Biol Chem 275:38494–38499

    CAS  Google Scholar 

  82. Smith CA, Rayment I (1996) Biochemistry 35:5404–5417

    CAS  Google Scholar 

  83. Rayment I (1996) J Biol Chem 271:15850–15853

    CAS  Google Scholar 

  84. Cleland WW, Hengge AC (2006) Chem Rev 106:3252–3278

    CAS  Google Scholar 

  85. Koppole S, Smith JC, Fischer S (2007) Structure 15:825–837

    CAS  Google Scholar 

  86. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Nature 438:117–121

    CAS  Google Scholar 

  87. Olsson U, Wolf-Watz M (2010) Nat Commun 1. doi:10.1038/ncomms1106

  88. Best RB, Hummer G (2005) Proc Natl Acad Sci USA 102:6732–6737

    CAS  Google Scholar 

  89. Karanicolas J, Brooks CL (2002) Protein Sci 11:2351–2361

    CAS  Google Scholar 

  90. Zavodszky P, Kardos J, Svingor A, Petsko GA (1998) Proc Natl Acad Sci USA 95:7406–7411

    CAS  Google Scholar 

  91. Varley PG, Pain RH (1991) J Mol Biol 220:531–538

    CAS  Google Scholar 

  92. Rundqvist L, Aden J, Sparrman T, Wallgren M, Olsson U, Wolf-Watz M (2009) Biochemistry 48:1911–1927

    CAS  Google Scholar 

  93. Yang SC, Park S, Makowski L, Roux B (2009) Biophys J 96:4449–4463

    CAS  Google Scholar 

  94. Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) PLoS Comput Biol 4:e1000060

    Google Scholar 

  95. Kamerlin SCL, Warshel A (2010) Proteins Struct Funct Bioinf 78:1339–1375

    CAS  Google Scholar 

  96. Cui Q, Karplus M (2008) Protein Sci 17:1295–1307

    CAS  Google Scholar 

  97. Zhuravlel PI, Papoian GA (2010) Q Rev Biophys 43:295–332

    Google Scholar 

  98. Lockless SW, Ranganathan R (1999) Science 286:295–299

    CAS  Google Scholar 

  99. Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Nat Struct Biol 10:59–69

    Google Scholar 

  100. Demerdash ONA, Daily MD, Mitchell JC (2009) PLoS Comput Biol 5:e1000531

    Google Scholar 

  101. Zheng WJ, Brooks B (2005) J Mol Biol 346:745–759

    CAS  Google Scholar 

  102. Balabin IA, Yang WT, Beratan DN (2009) Proc Natl Acad Sci USA 106:14253–14258

    CAS  Google Scholar 

  103. Bahar I, Rader AJ (2005) Curr Opin Struct Biol 15:586–592

    CAS  Google Scholar 

  104. Tama F, Brooks CL III (2006) Annu Rev Biophys Biomol Struct 35:115–134

    CAS  Google Scholar 

  105. Zheng WJ, Brooks BR, Thirumalai D (2006) Proc Natl Acad Sci USA 103:7664–7669

    CAS  Google Scholar 

  106. Ma JP (2005) Structure 13:373–380

    CAS  Google Scholar 

  107. Wynsberghe AWV, Cui Q (2006) Structure 14:1647–1653

    Google Scholar 

  108. Kern D, Zuiderweg ERP (2003) Curr Opin Struct Biol 13:748–757

    CAS  Google Scholar 

  109. Gunasekaran K, Ma B, Nussinov R (2004) Proteins Struct Funct Bioinf 57:433–443

    CAS  Google Scholar 

  110. Whitford PC, Onuchic JN, Wolynes PG (2008) HFSP J 2:61–64

    CAS  Google Scholar 

  111. Sasaki N, Ohkura R, Sutoh K (2003) Biochemistry 42:90–95

    CAS  Google Scholar 

  112. Ito K, Uyeda QP, Suzuki Y, Sutoh K, Yamamoto K (2003) J Biol Chem 278:31049–31057

    CAS  Google Scholar 

  113. Eaton WA, Henry ER, Hofrichter J, Mozzarelli A (1999) Nat Struct Biol 6:351–358

    CAS  Google Scholar 

  114. Lee AW, Karplus M (1983) Proc Natl Acad Sci USA 80:7055–7059

    CAS  Google Scholar 

  115. Schrank TP, Bolen DW, Hilser VJ (2009) Proc Natl Acad Sci USA 106:16984–16989

    CAS  Google Scholar 

  116. Vreede J, Juraszek J, Bolhuis PG (2010) Proc Natl Acad Sci USA 107:2397–2402

    CAS  Google Scholar 

  117. Zhu FQ, Hummer G (2010) Proc Natl Acad Sci USA 107:19814–19819

    CAS  Google Scholar 

  118. Gan W, Yang S, Roux B (2009) Biophys J 97:L08–L10

    CAS  Google Scholar 

  119. Heath AP, Kavraki LE, Clementi C (2007) Proteins Struct Funct Bioinf 68:646–661

    CAS  Google Scholar 

  120. Das P, Moll M, Stamati H, Kavraki LE, Clementi C (2006) Proc Natl Acad Sci USA 103:9885–9890

    CAS  Google Scholar 

  121. Gfeller D, De Los Rios P, Caflisch A, Rao F (2007) Proc Natl Acad Sci USA 104:1817–1822

    CAS  Google Scholar 

  122. Das R, Baker D (2008) Annu Rev Biochem 77:363–382

    CAS  Google Scholar 

  123. Zhang Y (2008) BMC Bioinf 9:40

    Google Scholar 

  124. Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Structure 16:295–307

    CAS  Google Scholar 

  125. Jamros MA, Oliveira LC, Whitford PC, Onuchic JN, Adams JA, Blumenthal DK, Jennings PA (2010) J Biol Chem 285:36121–36128

    CAS  Google Scholar 

  126. Yang S, Blachowicz L, Makowski L, Roux B (2010) Proc Natl Acad Sci USA 107:15757–15762

    CAS  Google Scholar 

  127. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Structure 16:673–683

    CAS  Google Scholar 

  128. Lu HP, Xun LY, Xie XS (1998) Science 282:1877–1882

    CAS  Google Scholar 

  129. Bai F, Wu Z, Jin J, Hochendoner P, Xing J (2012) Slow protein conformational change, allostery and network dynamics. In: Cai W (ed) Protein-protein interactions - computational and experimental tools. InTech, New York

    Google Scholar 

  130. Zhou HX, Rivas GN, Minton AP (2008) Annu Rev Biophys 37:375–397

    CAS  Google Scholar 

  131. Nobuhiko T, Tawfik DS (2009) Science 324:203–207

    Google Scholar 

  132. Johnston CA, Whitney DS, Volkman BF, Doe CO, Prehoda KE (2011) Proc Natl Acad Sci USA 108:E973–E978

    CAS  Google Scholar 

  133. Thornton JW (2004) Nat Rev Genet 5:366–375

    CAS  Google Scholar 

Download references

Acknowledgments

We thank all other collaborators who have also made significant contributions to the studies discussed here. The research has been generously supported by NIH (R01GM071428, R01GM084028 and NLM training grant 5T15LM007359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daily, M.D., Yu, H., Phillips, G.N., Cui, Q. (2013). Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations. In: Klinman, J., Hammes- Schiffer, S. (eds) Dynamics in Enzyme Catalysis. Topics in Current Chemistry, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_409

Download citation

Publish with us

Policies and ethics