Abstract
The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In “simple” enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for “cracking” in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Toscano MD, Woycechowsky KJ, Hilvert D (2007) Angew Chem Int Ed 46:3212–3236
Gerlt JA, Babbitt PC (2009) Curr Opin Chem Biol 13:10–18
Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Science 329:309–313
Hilvert D (2000) Annu Rev Biochem 69:751–793
Ma BY, Nussinov R (2010) Curr Opin Chem Biol 14:652–659
Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) Science 313:1638–1642
Nagel ZD, Klinman JP (2006) Chem Rev 106:3095–3118
Boehr DD, Dyson HJ, Wright PE (2006) Chem Rev 106:3055–3079
Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196–1202
Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140–3169
Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186–195
Antoniou D, Basner J, Nunez S, Schwartz SD (2006) Chem Rev 106:3170–3187
Cui Q, Karplus M (2003) Adv Protein Chem 66:315–372
Hammes-Schiffer S, Benkovic SJ (2006) Annu Rev Biochem 75:519–541
Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Biochemistry 50:10422–10430
Hill TL (1977) Free energy transduction in biology. Academic, New York
Eisenberg E, Hill TL (1985) Science 227:999–1006
Walsh R, Rutland C, Thomas R, Loughna S (2010) Cardiology 115:49–60
Kiaris H, Spandidos DA (1995) Int J Oncol 7:413–421
Roberts PJ, Der CJ (2007) Oncogene 26:3291–3310
Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, Chu JW, Yang H (2007) Proc Natl Acad Sci USA 104:18055–18060
Henzler-Wildman KA, Thai V, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hübner CG, Kern D (2007) Nature 450:838–843
Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) Nature 450:913–916
Bae E, Phillips GN Jr (2006) Proc Natl Acad Sci USA 103:2132–2137
Arora A, Brooks CL III (2007) Proc Natl Acad Sci USA 104:18496–18501
Brokaw JB, Chu JW (2010) Biophys J 99:3420–3429
Cukier RI (2009) J Phys Chem B 113:1662–1672
Lou HF, Cukier RI (2006) J Phys Chem B 110:24121–24137
Kubitzki MB, de Groot BL (2008) Structure 16:1175–1182
Pontiggia F, Zen A, Micheletti C (2008) Biophys J 95:5901–5912
Beckstein O, Denning EJ, Perilla JR, Woolf TB (2009) J Mol Biol 394:160–176
Temiz NA, Meirovitch E, Bahar I (2004) Proteins Struct Funct Bioinf 57:468–480
Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100:12570–12575
Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) J Mol Biol 366:1661–1671
Bhatt D, Zuckerman DM (2010) J Chem Theory Comput 6:3527–3539
Maragakis P, Karplus M (2005) J Mol Biol 352:807–822
Lu Q, Wang J (2008) J Am Chem Soc 130:4772–4783
Chu JW, Voth GA (2007) Biophys J 93:3860–3871
van Wynsberghe AW, Ma L, Chen X, Cui Q (2008) Functional motions in biomolecules: insights from computational studies at multiple scales. In: Schwede T, Peitsch M (eds) Computational structural biology. World Scientific Publishing, Singapore, pp 253–298
Yu H, Ma L, Yang Y, Cui Q (2007) PLoS Comput Biol 3:0199
Yu H, Ma L, Yang Y, Cui Q (2007) PLoS Comput Biol 3:0214
Yang Y, Yu H, Cui Q (2008) J Mol Biol 381:1407–1420
Yu H, Yang Y, Ma L, Cui Q (2009) Mechanochemical coupling in molecular motors: insights from molecular simulations of the myosin motor domain. In: Leitner D, Straub JE (eds) Energy flows in proteins. Proteins: Energy, Heat and Signal Flow, CRC Press (2009) pp 23–47
Daily MD, Phillips GN Jr, Cui Q (2010) J Mol Biol 400:618–631
Daily MD, Phillips GN Jr, Cui Q (2011) PLoS Comput Biol 7:e1002103
Daily MD, Makowski L, Phillips GN Jr, Cui Q (2012) Chem Phys 396:84–91, Special issue on “Functional dynamics of proteins”
Cui Q, Bahar I (eds) (2005) Normal mode analysis: theory and applications to biological and chemical systems, Mathematical and computational biology series. Chapman and Hall/CRC, New York
Li GH, Cui Q (2004) Biophys J 86:743–763
Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Curr Opin Struct Biol 19:120–127
Stone JE, Hardy DJ, Ufimtsev IS, Schulten K (2010) J Mol Graph Model 29:116–125
Ma J, Flynn TC, Cui Q, Leslie AGW, Walker JE, Karplus M (2002) Structure 10:921–931
Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Mol Simul 10:291–308
van der Vaart A, Karplus M (2005) J Chem Phys 122:114903
Sotomayor M, Schlten K (2007) Science 316:1144–1148
Wales DJ (2003) Energy landscapes. Cambridge University Press, Cambridge
Huo SH, Straub JE (1997) J Chem Phys 107:5000–5006
Ovchinnikov V, Karplus M (2012) J Phys Chem B 116:8584–8603
McQuarrie DA (1973) Statistical mechanics. Harper and Row, New York
Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199
Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic, San Diego
Barducci A, Bussi G, Parrinello M (2008) Phys Rev Lett 100:020603
Ma L, Cui Q (2007) J Am Chem Soc 129:10261–10268
Yang S, Banavali NK, Roux B (2009) Proc Natl Acad Sci USA 106:3776–3781
Elber R (2011) Curr Opin Struct Biol 21:1–6
E W, Vanden-Eijnden E (2010) Annu Rev Phys Chem 61:391–420
Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) J Chem Phys 131:124101
Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Proc Natl Acad Sci USA 106:19011–19016
Takada S (2012) Curr Opin Struct Biol 22:130–137
Tozzini V (2011) Q Rev Biophys 62:333–371
Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Proc Natl Acad Sci USA 103:11844–11849
Best RB, Chen Y-G, Hummer G (2005) Structure 13:1755–1763
Hills RD Jr, Brooks CL III (2009) Int J Mol Sci 10:889–905
Hyeon C, Thirumalai D (2011) Nat Commun 2:487
Schliwa M (ed) (2002) Molecular motors. Wiley-VCH, Weinheim
Geeves MA, Holmes KC (1999) Annu Rev Biochem 68:687–728
Vale RD, Milligan RA (2000) Science 288:88–95
Geeves MA, Holmes KC (2005) Adv Protein Chem 71:161–193
Fischer S, Windshugel B, Horak D, Holmes KC, Smith JC (2005) Proc Natl Acad Sci USA 102:6873–6878
Elber R, West A (2010) Proc Natl Acad Sci USA 107:5001–5005
Woo HJ (2007) Biophys Chem 125:127–137
Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) J Biol Chem 275:38494–38499
Smith CA, Rayment I (1996) Biochemistry 35:5404–5417
Rayment I (1996) J Biol Chem 271:15850–15853
Cleland WW, Hengge AC (2006) Chem Rev 106:3252–3278
Koppole S, Smith JC, Fischer S (2007) Structure 15:825–837
Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Nature 438:117–121
Olsson U, Wolf-Watz M (2010) Nat Commun 1. doi:10.1038/ncomms1106
Best RB, Hummer G (2005) Proc Natl Acad Sci USA 102:6732–6737
Karanicolas J, Brooks CL (2002) Protein Sci 11:2351–2361
Zavodszky P, Kardos J, Svingor A, Petsko GA (1998) Proc Natl Acad Sci USA 95:7406–7411
Varley PG, Pain RH (1991) J Mol Biol 220:531–538
Rundqvist L, Aden J, Sparrman T, Wallgren M, Olsson U, Wolf-Watz M (2009) Biochemistry 48:1911–1927
Yang SC, Park S, Makowski L, Roux B (2009) Biophys J 96:4449–4463
Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) PLoS Comput Biol 4:e1000060
Kamerlin SCL, Warshel A (2010) Proteins Struct Funct Bioinf 78:1339–1375
Cui Q, Karplus M (2008) Protein Sci 17:1295–1307
Zhuravlel PI, Papoian GA (2010) Q Rev Biophys 43:295–332
Lockless SW, Ranganathan R (1999) Science 286:295–299
Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Nat Struct Biol 10:59–69
Demerdash ONA, Daily MD, Mitchell JC (2009) PLoS Comput Biol 5:e1000531
Zheng WJ, Brooks B (2005) J Mol Biol 346:745–759
Balabin IA, Yang WT, Beratan DN (2009) Proc Natl Acad Sci USA 106:14253–14258
Bahar I, Rader AJ (2005) Curr Opin Struct Biol 15:586–592
Tama F, Brooks CL III (2006) Annu Rev Biophys Biomol Struct 35:115–134
Zheng WJ, Brooks BR, Thirumalai D (2006) Proc Natl Acad Sci USA 103:7664–7669
Ma JP (2005) Structure 13:373–380
Wynsberghe AWV, Cui Q (2006) Structure 14:1647–1653
Kern D, Zuiderweg ERP (2003) Curr Opin Struct Biol 13:748–757
Gunasekaran K, Ma B, Nussinov R (2004) Proteins Struct Funct Bioinf 57:433–443
Whitford PC, Onuchic JN, Wolynes PG (2008) HFSP J 2:61–64
Sasaki N, Ohkura R, Sutoh K (2003) Biochemistry 42:90–95
Ito K, Uyeda QP, Suzuki Y, Sutoh K, Yamamoto K (2003) J Biol Chem 278:31049–31057
Eaton WA, Henry ER, Hofrichter J, Mozzarelli A (1999) Nat Struct Biol 6:351–358
Lee AW, Karplus M (1983) Proc Natl Acad Sci USA 80:7055–7059
Schrank TP, Bolen DW, Hilser VJ (2009) Proc Natl Acad Sci USA 106:16984–16989
Vreede J, Juraszek J, Bolhuis PG (2010) Proc Natl Acad Sci USA 107:2397–2402
Zhu FQ, Hummer G (2010) Proc Natl Acad Sci USA 107:19814–19819
Gan W, Yang S, Roux B (2009) Biophys J 97:L08–L10
Heath AP, Kavraki LE, Clementi C (2007) Proteins Struct Funct Bioinf 68:646–661
Das P, Moll M, Stamati H, Kavraki LE, Clementi C (2006) Proc Natl Acad Sci USA 103:9885–9890
Gfeller D, De Los Rios P, Caflisch A, Rao F (2007) Proc Natl Acad Sci USA 104:1817–1822
Das R, Baker D (2008) Annu Rev Biochem 77:363–382
Zhang Y (2008) BMC Bioinf 9:40
Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Structure 16:295–307
Jamros MA, Oliveira LC, Whitford PC, Onuchic JN, Adams JA, Blumenthal DK, Jennings PA (2010) J Biol Chem 285:36121–36128
Yang S, Blachowicz L, Makowski L, Roux B (2010) Proc Natl Acad Sci USA 107:15757–15762
Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Structure 16:673–683
Lu HP, Xun LY, Xie XS (1998) Science 282:1877–1882
Bai F, Wu Z, Jin J, Hochendoner P, Xing J (2012) Slow protein conformational change, allostery and network dynamics. In: Cai W (ed) Protein-protein interactions - computational and experimental tools. InTech, New York
Zhou HX, Rivas GN, Minton AP (2008) Annu Rev Biophys 37:375–397
Nobuhiko T, Tawfik DS (2009) Science 324:203–207
Johnston CA, Whitney DS, Volkman BF, Doe CO, Prehoda KE (2011) Proc Natl Acad Sci USA 108:E973–E978
Thornton JW (2004) Nat Rev Genet 5:366–375
Acknowledgments
We thank all other collaborators who have also made significant contributions to the studies discussed here. The research has been generously supported by NIH (R01GM071428, R01GM084028 and NLM training grant 5T15LM007359).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Daily, M.D., Yu, H., Phillips, G.N., Cui, Q. (2013). Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations. In: Klinman, J., Hammes- Schiffer, S. (eds) Dynamics in Enzyme Catalysis. Topics in Current Chemistry, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_409
Download citation
DOI: https://doi.org/10.1007/128_2012_409
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38961-0
Online ISBN: 978-3-642-38962-7
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)
