Skip to main content

Relationship of Femtosecond–Picosecond Dynamics to Enzyme-Catalyzed H-Transfer

  • Chapter
  • First Online:
Dynamics in Enzyme Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 337))

Abstract

At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C–H → C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D IR:

Two-dimensional infrared spectroscopy

CLS:

Centerline slope

FFCF:

Frequency–frequency correlation function

KIE:

Kinetic isotope effects

PAAD+ :

Picolyl azide adenine dinucleotide

References

  1. Schowen RL (2009) The strengths and weaknesses of model reactions for the assessment of tunnelling in enzymic reactions. In: Allemann R, Scrutton N (eds) Quantum tunnelling in enzyme catalyzed reactions. Royal Society of Chemistry, London, pp 292–313 (Chap. 13)

    Google Scholar 

  2. Boekelheide N, Salomón-Ferrer R, Miller TF (2011) Proc Natl Acad Sci U S A 108:16159–16163

    Article  CAS  Google Scholar 

  3. Hammes-Schiffer S (2006) Acc Chem Res 39:93–100

    Article  CAS  Google Scholar 

  4. Cleland WW (2006) Enzyme mechanisms from isotope effects. In: Kohen A, Limbach HH (eds) Isotope effects in chemistry and biology. Taylor & Francis/CRC, Boca Raton, pp 915–930 (Chap. 37)

    Google Scholar 

  5. Cook PF (1991) Kinetic and regulatory mechanisms of enzymes from isotope effects. In: Cook PF (ed) Enzyme mechanism from isotope effects. CRC, Boca Raton, pp 203–230

    Google Scholar 

  6. Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Taylor & Francis Group LLC, New York

    Google Scholar 

  7. Bahnson BJ, Park DH, Kim K, Plapp BV, Klinman JP (1993) Biochemistry 32:5503–5507

    Article  CAS  Google Scholar 

  8. Northrop DB (1991) Intrinsic isotope effects in enzyme catalyzed reactions. In: Cook PF (ed) Enzyme mechanism from isotope effects. CRC, Boca Raton, pp 181–202

    Google Scholar 

  9. Sen A, Yahashiri A, Kohen A (2011) Biochemistry 50:6462–6468

    Article  CAS  Google Scholar 

  10. Swain CG, Stivers EC, Reuwer JF, Schaad LJ (1958) J Am Chem Soc 80:5885–5893

    Article  CAS  Google Scholar 

  11. Kohen A, Klinman JP (1998) Acc Chem Res 31:397–404

    Article  CAS  Google Scholar 

  12. Kohen A, Klinman JP (1999) Chem Biol 6:R191–R198

    Article  CAS  Google Scholar 

  13. Bell RP (1980) The tunnel effect in chemistry. Chapman & Hall, London

    Book  Google Scholar 

  14. Basran J, Patel S, Sutcliffe MJ, Scrutton NS (2001) J Biol Chem 276:6234–6242

    Article  CAS  Google Scholar 

  15. Limbach HH, Lopez JM, Kohen A (2006) Phil Trans R Soc B Biol Sci 361:1399–1415

    Article  CAS  Google Scholar 

  16. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  17. Kohen A, Roston D, Stojković V, Wang Z (2011) Kinetic isotope effects in enzymes. In: Meyers RA (ed) Encyclopedia of analytical chemistry, vols. S1–S3. Wiley, Chichester, pp 77–99

    Google Scholar 

  18. Knapp MJ, Klinman JP (2002) Eur J Biochem 269:3113–3121

    Article  CAS  Google Scholar 

  19. Nagel ZD, Klinman JP (2010) Chem Rev 110:PR41–PR67

    Article  Google Scholar 

  20. Schwartz SD (2006) Vibrationally enhanced tunneling from the temperature dependence of KIE. In: Kohen A, Limbach HH (eds) Isotope effects in chemistry and biology. CRC, Boca Raton, pp 475–498 (Chap. 18)

    Google Scholar 

  21. Kuznetsov AM, Ulstrup J (1999) Can J Chem 77:1085–1096

    CAS  Google Scholar 

  22. Pudney CR, Johannissen LO, Sutcliffe MJ, Hay S, Scrutton NS (2010) J Am Chem Soc 132:11329–11335

    Article  CAS  Google Scholar 

  23. Borgis DC, Lee SY, Hynes JT (1989) Chem Phys Lett 162:19–26

    Article  CAS  Google Scholar 

  24. Sen A, Kohen A (2010) J Phys Org Chem 23:613–619

    Article  CAS  Google Scholar 

  25. Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE (2011) Science 332:234–238

    Article  CAS  Google Scholar 

  26. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) Science 313:1638–1642

    Article  CAS  Google Scholar 

  27. Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011) Proc Natl Acad Sci U S A 108:14115–14120

    Article  CAS  Google Scholar 

  28. Pisliakov AV, Cao J, Kamerlin SCL, Warshel A (2009) Proc Natl Acad Sci U S A 106:17359–17364

    Article  CAS  Google Scholar 

  29. Hamm P, Zanni MT (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, New York

    Book  Google Scholar 

  30. Kwak K, Park S, Finkelstein IJ, Fayer MD (2007) J Chem Phys 127:124503

    Article  CAS  Google Scholar 

  31. Kwak K, Rosenfeld DE, Fayer MD (2008) J Chem Phys 128:204505

    Article  CAS  Google Scholar 

  32. Liu H, Warshel A (2007) J Phys Chem B 111:7852–7861

    Article  CAS  Google Scholar 

  33. Garcia-Viloca M, Truhlar DG, Gao JL (2003) J Mol Biol 327:549–560

    Article  CAS  Google Scholar 

  34. Garcia-Viloca M, Truhlar DG, Gao J (2003) Biochemistry 42:13558–13575

    Article  CAS  Google Scholar 

  35. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2003) Science 303:186–195

    Article  CAS  Google Scholar 

  36. Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196–1202

    Article  CAS  Google Scholar 

  37. Hammes-Schiffer S, Benkovic SJ (2006) Annu Rev Biochem 75:519–541

    Article  CAS  Google Scholar 

  38. Hammes-Schiffer S (2006) Kinetic isotope effects for proton-coupled electron transfer reactions. In: Kohen A, Limbach HH (eds) Isotope effects in chemistry and biology. CRC, Boca Raton, pp 499–520

    Google Scholar 

  39. Miller GP, Benkovic SJ (1998) Chem Biol 5:R105–R113

    Article  CAS  Google Scholar 

  40. McElheny D, Schnell JR, Lansing JC, Dyson HJ, Wright PE (2005) Proc Natl Acad Sci U S A 102:5032–5037

    Article  CAS  Google Scholar 

  41. Wang L, Goodey NM, Benkovic SJ, Kohen A (2006) Proc Natl Acad Sci U S A 103:15753–15758

    Article  CAS  Google Scholar 

  42. Wong KF, Selzer T, Benkovic SJ, Hammes-Schiffer S (2005) Proc Natl Acad Sci U S A 102:6807–6812

    Article  CAS  Google Scholar 

  43. Farnum MF, Magde D, Howell EE, Hirai JT, Warren MS, Grimsley JK, Kraut J (1991) Biochemistry 30:11567–11579

    Article  CAS  Google Scholar 

  44. Epstein DM, Benkovic SJ, Wright PE (1995) Biochemistry 34:11037–11048

    Article  CAS  Google Scholar 

  45. Sawaya MR, Kraut J (1997) Biochemistry 36:586–603

    Article  CAS  Google Scholar 

  46. Wang L, Tharp S, Selzer T, Benkovic SJ, Kohen A (2006) Biochemistry 45:1383–1392

    Article  CAS  Google Scholar 

  47. Wang L, Goodey NM, Benkovic SJ, Kohen A (2006) Phil Trans R Soc B Biol Sci 361:1307–1315

    Article  CAS  Google Scholar 

  48. Sikorski RS, Wang L, Markham KA, Rajagopalan PTR, Benkovic SJ, Kohen A (2004) J Am Chem Soc 126:4778–4779

    Article  CAS  Google Scholar 

  49. Stojković V, Perissinotti LL, Lee J, Benkovic SJ, Kohen A (2012) J Am Chem Soc 134:1738–1745

    Article  CAS  Google Scholar 

  50. Creighton TE (1984) Proteins. Structure and molecular principles. Freeman, New York

    Google Scholar 

  51. Rod TH, Brooks CL (2003) J Am Chem Soc 125:8718–8719

    Article  CAS  Google Scholar 

  52. Bruice TW, Santi DV (1991) Isotope effects in reactions catalyzed by thymidylate synthase. In: Cook PF (ed) Enzyme mechanism from isotope effects. CRC, Boca Raton, pp 457–479

    Google Scholar 

  53. Carreras CW, Santi DV (1995) Annu Rev Biochem 64:721–762

    Article  CAS  Google Scholar 

  54. Stroud RM, Finer-Moore JS (2003) Biochemistry 42:239–247, and references cited therein

    Google Scholar 

  55. Finer-Moore JS, Santi DV, Stroud RM (2003) Biochemistry 42:248–256, and references cited therein

    Google Scholar 

  56. Agrawal N, Hong B, Mihai C, Kohen A (2004) Biochemistry 43:1998–2006

    Article  CAS  Google Scholar 

  57. Hong B, Haddad M, Maley F, Jensen JH, Kohen A (2006) J Am Chem Soc 128:5636–5637

    Article  CAS  Google Scholar 

  58. Hong B, Maley F, Kohen A (2007) Biochemistry 46:14188–14197

    Article  CAS  Google Scholar 

  59. Kanaan N, Martí M, Moliner V, Kohen A (2006) Biochemistry 46:3704–3713

    Article  CAS  Google Scholar 

  60. Kanaan N, Martí M, Moliner V, Kohen A (2009) J Phys Chem A 113:2176–2182

    Article  CAS  Google Scholar 

  61. Kanaan N, Martí M, Moliner V, Kohen A (2007) Biochemistry 46:3704–3713

    Article  CAS  Google Scholar 

  62. Kanaan N, Ferrer S, Martí S, Garcia-Viloca M, Kohen A, Moliner V (2011) J Am Chem Soc 133:6692–6702

    Article  CAS  Google Scholar 

  63. Wang Z, Kohen A (2010) J Am Chem Soc 132:9820–9825

    Article  CAS  Google Scholar 

  64. Spencer HT, Villafranca JE, Appleman JR (1997) Biochemistry 36:4212–4222

    Article  CAS  Google Scholar 

  65. Lomax S, Greenberg MI, Robert G (1967) J Biol Chem 242:109–113

    CAS  Google Scholar 

  66. Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D (2006) Science 312:237–241

    Article  CAS  Google Scholar 

  67. Hay S, Pudney CR, Sutcliffe MJ, Scrutton NS (2008) Angew Chem Int Ed 47:537–540

    Article  CAS  Google Scholar 

  68. Hay S, Sutcliffe MJ, Scrutton NS (2007) Proc Natl Acad Sci USA 104:507–512

    Article  CAS  Google Scholar 

  69. Kohen A, Cannio R, Bartolucci S, Klinman JP (1999) Nature 399:496–499

    Article  CAS  Google Scholar 

  70. Kiefer PM, Hynes JT (2003) J Phys Chem A 107:9022–9039

    Article  CAS  Google Scholar 

  71. Nagel ZD, Meadows CW, Dong M, Bahnson BJ, Klinman JP (2012) Biochemistry 51:4147–4156

    Article  CAS  Google Scholar 

  72. Kwart H (1982) Acc Chem Res 15:401–408

    Article  CAS  Google Scholar 

  73. Braun J, Schwesinger R, Williams PG, Morimoto H, Wemmer DE, Limbach HH (1996) J Am Chem Soc 118:11101–11110

    Article  CAS  Google Scholar 

  74. Thielges MC, Chung JK, Fayer MD (2011) J Am Chem Soc 133:3995–4004

    Article  CAS  Google Scholar 

  75. Thielges MC, Chung JK, Axup JY, Fayer MD (2011) Biochemistry 50:5799–5805

    Article  CAS  Google Scholar 

  76. Chung JK, Thielges MC, Bowman SEJ, Bren KL, Fayer MD (2011) J Am Chem Soc 133:6681–6691

    Article  CAS  Google Scholar 

  77. Bagchi S, Nebgen BT, Loring RF, Fayer MD (2010) J Am Chem Soc 132:18367–18376

    Article  CAS  Google Scholar 

  78. Kim S, Chung JK, Kwak K, Bowman SEJ, Bren KL, Bagchi B, Fayer MD (2008) J Phys Chem B 112:10054–10063

    Article  CAS  Google Scholar 

  79. Ishikawa H, Kwak K, Chung JK, Kim S, Fayer MD (2008) Proc Natl Acad Sci U S A 105:8619–8624

    Article  CAS  Google Scholar 

  80. Ishikawa H, Kim S, Kwak K, Wakasugi K, Fayer MD (2007) Proc Natl Acad Sci U S A 104:19309–19314

    Article  Google Scholar 

  81. Ishikawa H, Finkelstein IJ, Kim S, Kwak K, Chung JK, Wakasugi K, Massari AM, Fayer MD (2007) Proc Natl Acad Sci U S A 104:16116–16121

    Article  CAS  Google Scholar 

  82. Finkelstein IJ, Massari AM, Fayer MD (2007) Biophys J 92:3652–3662

    Article  CAS  Google Scholar 

  83. Finkelstein IJ, Ishikawa H, Kim S, Massari AM, Fayer MD (2007) Proc Natl Acad Sci U S A 104:2637–2642

    Article  CAS  Google Scholar 

  84. Massari AM, Finkelstein IJ, McClain BL, Goj A, Wen X, Bren KL, Loring RF, Fayer MD (2005) J Am Chem Soc 127:14279–14289

    Article  CAS  Google Scholar 

  85. Finkelstein IJ, Goj A, McClain BL, Massari AM, Merchant KA, Loring RF, Fayer MD (2005) J Phys Chem B 109:16959–16966

    Article  CAS  Google Scholar 

  86. Fang C, Bauman JD, Das K, Remorino A, Arnold E, Hochstrasser RM (2008) Proc Natl Acad Sci U S A 105:1472–1477

    Article  CAS  Google Scholar 

  87. Lim MH, Hamm P, Hochstrasser RM (1998) Proc Natl Acad Sci U S A 95:15315–15320

    Article  CAS  Google Scholar 

  88. Thielges MC, Axup JY, Wong D, Lee HS, Chung JK, Schultz PG, Fayer MD (2011) J Phys Chem B 115:11294–11304

    Article  CAS  Google Scholar 

  89. Bandaria JN, Dutta S, Nydegger MW, Rock W, Kohen A, Cheatum CM (2010) Proc Natl Acad Sci U S A 107:17974–17979

    Article  CAS  Google Scholar 

  90. Bandaria JN, Dutta S, Hill SE, Kohen A, Cheatum CM (2008) J Am Chem Soc 130:22–23

    Article  CAS  Google Scholar 

  91. Hill SE, Bandaria J, Fox M, Vanderaugh E, Kohen A, Cheatum CM (2009) J Phys Chem B 113:11505–11510

    Article  CAS  Google Scholar 

  92. Lindquist BA, Furse KE, Corcelli SA (2009) Phys Chem Chem Phys 11:8119–8132

    Article  CAS  Google Scholar 

  93. Kuo CH, Hochstrasser RM (2007) Chem Phys 341:21–28

    Article  CAS  Google Scholar 

  94. Hamm P, Lim M, Hochstrasser RM (1998) Phys Rev Lett 81:5326–5329

    Article  CAS  Google Scholar 

  95. Fecko CJ, Loparo JJ, Roberts ST, Tokmakoff A (2005) J Chem Phys 122:054506

    Article  CAS  Google Scholar 

  96. Eaves JD, Tokmakoff A, Geissler PL (2005) J Phys Chem A 109:9424–9436

    Article  CAS  Google Scholar 

  97. Asbury JB, Steinel T, Kwak K, Corcelli SA, Lawrence CP, Skinner JL, Fayer MD (2004) J Chem Phys 121:12431–12446

    Article  CAS  Google Scholar 

  98. Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Science 301:1698–1702

    Article  CAS  Google Scholar 

  99. Venkitakrishnan RP, Zaborowski E, McElheny D, Benkovic SJ, Dyson HJ, Wright PE (2004) Biochemistry 43:16046–16055

    Article  CAS  Google Scholar 

  100. Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE (2001) Biochemistry 40:9846–9859

    Article  CAS  Google Scholar 

  101. Bandaria J, Cheatum C, Kohen A (2009) J Am Chem Soc 131:10151–10155

    Article  CAS  Google Scholar 

  102. Lamzin VS, Dauter Z, Popov VO, Harutyunyan EH, Wilson KS (1994) J Mol Biol 236:759–785

    Article  CAS  Google Scholar 

  103. Dutta S, Rock W, Cook RJ, Kohen A, Cheatum CM (2011) J Chem Phys 135:055106 (6)

    Article  CAS  Google Scholar 

  104. Dutta S, Cook RJ, Houtman JCD, Kohen A, Cheatum CM (2010) Anal Biochem 407:241–246

    Article  CAS  Google Scholar 

  105. Dutta S, Li Y-L, Rock W, Houtman JCD, Kohen A, Cheatum CM (2012) J Phys Chem B 116:542–548

    Google Scholar 

  106. Tucker MJ, Gai XS, Fenlon EE, Brewer SH, Hochstrasser RM (2011) Phys Chem Chem Phys 13:2237–2241

    Article  CAS  Google Scholar 

  107. Fafarman AT, Boxer SG (2010) J Phys Chem B 114:13536–13544

    Article  CAS  Google Scholar 

  108. Fafarman AT, Webb LJ, Chuang JI, Boxer SG (2006) J Am Chem Soc 128:13356–13357

    Article  CAS  Google Scholar 

  109. Hu W, Webb LJ (2011) J Phys Chem Lett 2:1925–1930

    Article  CAS  Google Scholar 

  110. Stafford AJ, Ensign DL, Webb LJ (2010) J Phys Chem B 114:15331–15344

    Article  CAS  Google Scholar 

  111. McMahon HA, Alfieri KN, Clark CAA, Londergan CH (2010) J Phys Chem Lett 1:850–855

    Article  CAS  Google Scholar 

  112. Maienschein-Cline MG, Londergan CH (2007) J Phys Chem A 111:10020–10025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Kohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheatum, C.M., Kohen, A. (2013). Relationship of Femtosecond–Picosecond Dynamics to Enzyme-Catalyzed H-Transfer. In: Klinman, J., Hammes- Schiffer, S. (eds) Dynamics in Enzyme Catalysis. Topics in Current Chemistry, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_407

Download citation

Publish with us

Policies and ethics