Surface-Active Organics in Atmospheric Aerosols

  • V. Faye McNeill
  • Neha Sareen
  • Allison N. Schwier
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 339)

Abstract

Surface-active organic material is a key component of atmospheric aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry, cloud formation, and ice nucleation. We review the current state of the science on the sources, properties, and impacts of surfactants in atmospheric aerosols.

Keywords

Aerosol Cloud condensation nuclei Surface tension Surfactant 

List of Abbreviations and Symbols Used

AMS

Aerodyne aerosol mass spectrometer

ARG

Abdul-Razzak and Ghan

CCN

Cloud condensation nucleus/nuclei

CCNc

Thermal gradient static cloud diffusion chamber

CDN

Cloud droplet nuclei

CFSTGC

Continuous-flow streamwise thermal gradient chamber

CMC

Critical micelle concentration

DOM

Dissolved organic matter

ESP

Equilibrium spreading pressure

FTIR

Fourier transform infrared spectroscopy

HTDMA

Humidified tandem differential mobility analyzer

HULIS

Humic-like substances

IHSS

International Humic Substances Society

IN

Ice nucleus/nuclei

KTA

Köhler theory analysis

LC/ESI MS-MS

Liquid chromatography/electrospray ionization tandem mass spectrometry

MVK

Methylvinylketone

OA

Organic aerosol

OC

Organic carbon

SD CCNC

Static diffusion CCN counter

SDS

Sodium dodecyl sulfate

S–L

Szyszkowski–Langmuir

SFRA

Suwannee River fulvic acid

SOA

Secondary organic aerosol

TEM

Transmission electron microscopy

TOC

Total organic carbon

TOF-SIMS

Time of flight secondary ionization mass spectrometry

UV

Ultraviolet

VOC

Volatile organic compound

WSOC

Water-soluble organic compound

a

Parameter, Szyszkowski–Langmuir equation

ai

Activity of species i

b

Parameter, Szyszkowski–Langmuir equation

C

Molality of organic carbon

χi

Molality fraction of compound i, Szyszkowski–Langmuir equation

d

Diameter

dc

Critical diameter

γ

Reactive uptake coefficient

κ

Hygroscopicity parameter

M

Molarity

m

Mass, Köhler equation

Mi

Molecular weight of species i

ν

Number of ions

φ

Osmotic coefficient

R

Universal gas constant

r

Radius

ρ

Density

S

Saturation ratio

Sc

Critical supersaturation

σ

Surface tension

T

Temperature

V

Volume

Notes

Acknowledgments

The authors acknowledge the NASA Tropospheric Chemistry program (grant NNX09AF26G) for funding.

Neha Sareen and Allison N. Schwier have contributed equally to this work.

References

  1. 1.
    Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529Google Scholar
  3. 3.
    Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123Google Scholar
  4. 4.
    Ellison GB, Tuck AF, Vaida V (1999) Atmospheric processing of organic aerosols. J Geophys Res Atmos 104:11633–11641Google Scholar
  5. 5.
    Gill PS, Graedel TE, Weschler CJ (1983) Organic films on atmospheric aerosol-particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev Geophys 21:903–920Google Scholar
  6. 6.
    Cistola DP, Hamilton JA, Jackson D, Small DM (1988) Ionization and phase-behavior of fatty-acids in water – application of the Gibbs phase rule. Biochemistry 27:1881–1888Google Scholar
  7. 7.
    Leck C, Bigg EK (2005) Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 57:305–316Google Scholar
  8. 8.
    Leck C, Bigg EK (2005) Source and evolution of the marine aerosol – a new perspective. Geophys Res Lett 32:L19803. doi: 10.1029/2005GL023651 Google Scholar
  9. 9.
    Posfai M, Gelencser A, Simonics R, Arato K, Li J, Hobbs PV, Buseck PR (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res Atmos 109:D06213. doi: 10.1029/2003JD004169 Google Scholar
  10. 10.
    Reid JP, Dennis-Smither BJ, Kwamena NO, Miles REH, Hanford KL, Homer CJ (2011) The morphology of aerosol particles consisting of hydrophobic and hydrophilic phases: hydrocarbons, alcohols and fatty acids as the hydrophobic component. Phys Chem Chem Phys 13:15559–15572Google Scholar
  11. 11.
    Tabazadeh A (2005) Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles. Atmos Environ 39:5472–5480Google Scholar
  12. 12.
    Bertram AK, Martin ST, Hanna SJ, Smith ML, Bodsworth A, Chen Q, Kuwata M, Liu A, You Y, Zorn SR (2011) Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos Chem Phys 11:10995–11006Google Scholar
  13. 13.
    Tong H-J, Reid JP, Bones DL, Luo BP, Krieger UK (2011) Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature. Atmos Chem Phys 11:4739–4754Google Scholar
  14. 14.
    Zobrist B, Marcolli C, Pedernera DA, Koop T (2008) Do atmospheric aerosols form glasses? Atmos Chem Phys 8:5221–5244Google Scholar
  15. 15.
    Blanchard DC (1964) Sea-to-air transport of surface active material. Science 146:396–397Google Scholar
  16. 16.
    Buseck PR, Posfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci USA 96:3372–3379Google Scholar
  17. 17.
    Peterson RE, Tyler BJ (2002) Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Atmos Environ 36:6041–6049Google Scholar
  18. 18.
    Peterson RE, Tyler BJ (2003) Surface composition of atmospheric aerosol: individual particle characterization by TOF-SIMS. Appl Surf Sci 203:751–756Google Scholar
  19. 19.
    Russell LM, Maria SF, Myneni SCB (2002) Mapping organic coatings on atmospheric particles. Geophys Res Lett 29. doi: 10.1029/2002GL014874
  20. 20.
    Tervahattu H, Hartonen K, Kerminen VM, Kupiainen K, Aarnio P, Koskentalo T, Tuck AF, Vaida V (2002) New evidence of an organic layer on marine aerosols. J Geophys Res Atmos 107:4053. doi: 10.1029/2000JD000282 Google Scholar
  21. 21.
    Tervahattu H, Juhanoja J, Kupiainen K (2002) Identification of an organic coating on marine aerosol particles by TOF-SIMS. J Geophys Res Atmos 107:4319. doi: 10.1029/2001JD001403 Google Scholar
  22. 22.
    Tervahattu H, Juhanoja J, Vaida V, Tuck AF, Niemi JV, Kupiainen K, Kulmala M, Vehkamaki H (2005) Fatty acids on continental sulfate aerosol particles. J Geophys Res Atmos 110. doi: 10.1029/2004JD005400
  23. 23.
    Takahama S, Liu S, Russell LM (2010) Coatings and clusters of carboxylic acids in carbon-containing atmospheric particles from spectromicroscopy and their implications for cloud-nucleating and optical properties. J Geophys Res Atmos 115. doi: 10.1029/2009JD012622
  24. 24.
    Pfann WG, Olsen KM (1953) Purification and prevention of segregation in single crystals of germanium. Phys Rev 89:322–323Google Scholar
  25. 25.
    Asa-Awuku A, Sullivan AP, Hennigan CJ, Weber RJ, Nenes A (2008) Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmos Chem Phys 8:799–812Google Scholar
  26. 26.
    Cavalli F, Facchini MC, Decesari S, Mircea M, Emblico L, Fuzzi S, Ceburnis D, Yoon YJ, O'Dowd CD, Putaud JP, Dell'Acqua A (2004) Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J Geophys Res Atmos 109. doi: 10.1029/2004JD005137
  27. 27.
    Decesari S, Facchini MC, Mircea M, Cavalli F, Fuzzi S (2003) Solubility properties of surfactants in atmospheric aerosol and cloud/fog water samples. J Geophys Res Atmos 108:4685. doi: 10.1029/2003JD003566 Google Scholar
  28. 28.
    Facchini MC, Decesari S, Mircea M, Fuzzi S, Loglio G (2000) Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmos Environ 34:4853–4857Google Scholar
  29. 29.
    Kiss G, Tombacz E, Hansson HC (2005) Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. J Atmos Chem 50:279–294Google Scholar
  30. 30.
    Salma I, Ocskay R, Varga I, Maenhaut W (2006) Surface tension of atmospheric humic-like substances in connection with relaxation, dilution, and solution pH. J Geophys Res Atmos 111:D23205. doi: 10.1029/2005JD007015 Google Scholar
  31. 31.
    Taraniuk I, Graber ER, Kostinski A, Rudich Y (2007) Surfactant properties of atmospheric and model humic-like substances (HULIS). Geophys Res Lett 34:L16807. doi: 10.1029/2007GL029576 Google Scholar
  32. 32.
    Facchini MC, Mircea M, Fuzzi S, Charlson RJ (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401:257–259Google Scholar
  33. 33.
    Mazurek AZ, Pogorzelski SJ, Kogut AD (2006) A novel approach for structure quantification of fatty acids films on rain water. Atmos Environ 40:4076–4087Google Scholar
  34. 34.
    Keene WC, Pszenny AAP, Maben JR, Stevenson E, Wall A (2004) Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer. J Geophys Res Atmos 109:D23202. doi: 10.1029/2004JD004801 Google Scholar
  35. 35.
    Zhang Q, Jimenez JL, Worsnop DR, Canagaratna M (2007) A case study of urban particle acidity and its influence on secondary organic aerosol. Environ Sci Technol 41:3213–3219Google Scholar
  36. 36.
    Buajarern J, Mitchem L, Reid JP (2007) Characterizing the formation of organic layers on the surface of inorganic/aqueous aerosols by Raman spectroscopy. J Phys Chem A 111:11852–11859Google Scholar
  37. 37.
    Voss LF, Bazerbashi MF, Beekman CP, Hadad CM, Allen HC (2007) Oxidation of oleic acid at air/liquid interfaces. J Geophys Res Atmos 112:D06209. doi: 10.1029/2006JD007677 Google Scholar
  38. 38.
    Voss LF, Hadad CM, Allen HC (2006) Competition between atmospherically relevant fatty acid monolayers at the air/water interface. J Phys Chem B 110:19487–19490Google Scholar
  39. 39.
    King MD, Rennie AR, Thompson KC, Fisher FN, Dong CC, Thomas RK, Pfrang C, Hughes AV (2009) Oxidation of oleic acid at the air-water interface and its potential effects on cloud critical supersaturations. Phys Chem Chem Phys 11:7699–7707Google Scholar
  40. 40.
    Rogge WF, Mazurek MA, Hildemann LM, Cass GR, Simoneit BRT (1993) Quantification of urban organic aerosols at a molecular-level – identification, abundance and seasonal-variation. Atmos Environ Part A 27:1309–1330Google Scholar
  41. 41.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 3. C-1-C-29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35:1716–1728Google Scholar
  42. 42.
    Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182Google Scholar
  43. 43.
    Hildemann LM, Markowski GR, Cass GR (1991) Chemical composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 25:744–759Google Scholar
  44. 44.
    Meyers PA, Hites RA (1982) Extractable organic compounds in midwest rain and snow. Atmos Environ 16:21692175Google Scholar
  45. 45.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27:2700–2711Google Scholar
  46. 46.
    Simoneit BRT (1977) Organic matter in eolian dusts over the Atlantic Ocean. Mar Chem 5:443–464Google Scholar
  47. 47.
    Simoneit BRT, Mazurek MA (1982) Organic-matter of the troposphere. 2. Natural background of biogenic lipid matter in aerosols over the rural Western United-States. Atmos Environ 16:2139–2159Google Scholar
  48. 48.
    Zhang Q, Anastasio C (2003) Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. Atmos Environ 37:2247–2258Google Scholar
  49. 49.
    Fraser MP, Cass GR, Simoneit BRT (1999) Particulate organic compounds emitted from motor vehicle exhaust and in the urban atmosphere. Atmos Environ 33:2715–2724Google Scholar
  50. 50.
    Grosjean D, Vancauwenberghe K, Schmid JP, Kelley PE, Pitts JN (1978) Identification of C3-C10 aliphatic dicarboxylic-acids in airborne particulate matter. Environ Sci Technol 12:313–317Google Scholar
  51. 51.
    Kawamura K, Kaplan IR (1987) Motor exhaust emissions as a primary source for dicarboxylic-acids in Los-Angeles ambient air. Environ Sci Technol 21:105–110Google Scholar
  52. 52.
    Kawamura K, Ng LL, Kaplan IR (1985) Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils. Environ Sci Technol 19:1082–1086Google Scholar
  53. 53.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651Google Scholar
  54. 54.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904Google Scholar
  55. 55.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587Google Scholar
  56. 56.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180Google Scholar
  57. 57.
    Simoneit BRT (1985) Application of molecular marker analysis to vehicular exhaust for source reconciliations. Int J Environ Anal Chem 22:203–232Google Scholar
  58. 58.
    Sodeman D, Toner SM, Prather KA (2005) Determination of single particle mass spectral signatures from light-duty vehicle emissions. Environ Sci Technol 39:4569–4580Google Scholar
  59. 59.
    Warneck P (2003) In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos Environ 37:2423–2427Google Scholar
  60. 60.
    Cheng Y, Li SM, Leithead A, Brickell PC, Leaitch WR (2004) Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in the Lower Fraser Valley during Pacific 2001 Air Quality Study. Atmos Environ 38:5789–5800Google Scholar
  61. 61.
    He LY, Hu M, Huang XF, Yu BD, Zhang YH, Liu DQ (2004) Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos Environ 38:6557–6564Google Scholar
  62. 62.
    Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environ Sci Technol 40:7820–7827Google Scholar
  63. 63.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simonelt BRT (1991) Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ Sci Technol 25:1112–1125Google Scholar
  64. 64.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 1. C-1 through C-29 organic compounds from meat charbroiling. Environ Sci Technol 33:1566–1577Google Scholar
  65. 65.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 4. C-1-C-27 organic compounds from cooking with seed oils. Environ Sci Technol 36:567–575Google Scholar
  66. 66.
    Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855Google Scholar
  67. 67.
    Zhao Y, Hu M, Slanina S, Zhang Y (2007) Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environ Sci Technol 41:99–105Google Scholar
  68. 68.
    Barger WR, Garrett WD (1970) Surface active organic material in the marine atmosphere. J Geophys Res 75:4561–4566Google Scholar
  69. 69.
    Bezdek HF, Carlucci AF (1974) Concentration and removal of liquid microlayers from a seawater surface by bursting bubbles. Limnol Oceanogr 19:126–132Google Scholar
  70. 70.
    Garrett WD (1967) The organic chemical composition of the ocean surface. Deep Sea Res Oceanographic Abstracts 14:221–227Google Scholar
  71. 71.
    Gershey RM (1983) Characterization of seawater organic-matter carried by bubble-generated aerosols. Limnol Oceanogr 28:309–319Google Scholar
  72. 72.
    Kawamura K, Gagosian RB (1987) Implications of [omega]-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 325:330–332Google Scholar
  73. 73.
    Keene WC, Maring H, Maben JR, Kieber DJ, Pszenny AAP, Dahl EE, Izaguirre MA, Davis AJ, Long MS, Zhou XL, Smoydzin L, Sander R (2007) Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J Geophys Res Atmos 112:D21202. doi: 10.1029/2007JD008464 Google Scholar
  74. 74.
    Marty JC, Saliot A, Buat-Mqnard P, Chesselet R, Hunter KA (1979) Relationship between the lipid compositions of marine aerosols, the sea surface microlayer, and subsurface water. J Geophys Res 84:5707–5716Google Scholar
  75. 75.
    Mochida M, Kitamori Y, Kawamura K, Nojiri Y, Suzuki K (2002) Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea-salt particles. J Geophys Res Atmos 107:4325–4334Google Scholar
  76. 76.
    Morris RJ, Culkin F (1974) Lipid chemistry of eastern Mediterranean surface layers. Nature 250:640–642Google Scholar
  77. 77.
    O'Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud JP (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680Google Scholar
  78. 78.
    Fang J, Kawamura K, Ishimura Y, Matsumoto K (2002) Carbon isotopic composition of fatty acids in the marine aerosols from the Western North Pacific: implication for the source and atmospheric transport. Environ Sci Technol 36:2598–2604Google Scholar
  79. 79.
    Gagosian RB, Zafiriou OC, Peltzer ET, Alford JB (1982) Lipids in aerosols from the tropical North Pacific: temporal variability. J Geophys Res 87:11133–11144Google Scholar
  80. 80.
    Pankow JF (1994) An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ 28:189–193Google Scholar
  81. 81.
    Seinfeld JH, Pankow JF (2003) Organic atmospheric particulate material. Ann Rev Phys Chem 54:121–140Google Scholar
  82. 82.
    Ervens B, Volkamer R (2010) Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos Chem Phys 10:8219–8244Google Scholar
  83. 83.
    Nopmongcol U, Khamwichit W, Fraser MP, Allen DT (2007) Estimates of heterogeneous formation of secondary organic aerosol during a wood smoke episode in Houston. Texas Atmos Environ 41:3057–3070Google Scholar
  84. 84.
    Sareen N, Schwier AN, Shapiro EL, Mitroo DM, McNeill VF (2010) Secondary organic material formed by methylglyoxal in aqueous aerosol mimics. Atmos Chem Phys 10:997–1016Google Scholar
  85. 85.
    Schwier AN, Sareen N, Mitroo DM, Shapiro EL, McNeill VF (2010) Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation. Environ Sci Technol 44:6174–6182Google Scholar
  86. 86.
    Shapiro EL, Szprengiel J, Sareen N, Jen CN, Giordano MR, McNeill VF (2009) Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos Chem Phys 9:2289–2300Google Scholar
  87. 87.
    Tan Y, Carlton AG, Seitzinger SP, Turpin BJ (2010) SOA from methylglyoxal in clouds and wet aerosols: measurement and prediction of key products. Atmos Environ 44:5218–5226Google Scholar
  88. 88.
    Cole-Filipiak NC, O'Connor AE, Elrod MJ (2010) Kinetics of the hydrolysis of atmospherically relevant isoprene-derived hydroxy epoxides. Environ Sci Technol 44:6718–6723Google Scholar
  89. 89.
    Darer AI, Cole-Filipiak NC, O'Connor AE, Elrod MJ (2011) Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ Sci Technol 45:1895–1902Google Scholar
  90. 90.
    Eddingsaas NC, VanderVelde DG, Wennberg PO (2010) Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J Phys Chem A 114:8106–8113Google Scholar
  91. 91.
    Surratt JD, Chan AWH, Eddingsaas NC, Chan MN, Loza CL, Kwan AJ, Hersey SP, Flagan RC, Wennberg PO, Seinfeld JH (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci USA 107:6640–6645Google Scholar
  92. 92.
    Chebbi A, Carlier P (1996) Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos Environ 30:4233–4249Google Scholar
  93. 93.
    Shulman ML, Jacobson MC, Carlson RJ, Synovec RE, Young TE (1996) Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys Res Lett 23:277–280Google Scholar
  94. 94.
    Tuckermann R (2007) Surface tension of aqueous solutions of water-soluble organic and inorganic compounds. Atmos Environ 41:6265–6275Google Scholar
  95. 95.
    Tuckermann R, Cammenga HK (2004) The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds. Atmos Environ 38:6135–6138Google Scholar
  96. 96.
    Varga Z, Kiss G, Hansson HC (2007) Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements. Atmos Chem Phys 7:4601–4611Google Scholar
  97. 97.
    Asa-Awuku A, Nenes A, Gao S, Flagan RC, Seinfeld JH (2010) Water-soluble SOA from alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity. Atmos Chem Phys 10:1585–1597Google Scholar
  98. 98.
    George I, Abbatt JPD (2010) Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat Chem 2:713–722Google Scholar
  99. 99.
    Altieri KE, Carlton AG, Lim HJ, Turpin BJ, Seitzinger SP (2006) Evidence for oligomer formation in clouds: reactions of isoprene oxidation products. Environ Sci Technol 40:4956–4960Google Scholar
  100. 100.
    Lim HJ, Carlton AG, Turpin BJ (2005) Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ Sci Technol 39:4441–4446Google Scholar
  101. 101.
    Gelencser A, Hoffer A, Kiss G, Tombacz E, Kurdi R, Bencze L (2003) In-situ formation of light-absorbing organic matter in cloud water. J Atmos Chem 45:25–33Google Scholar
  102. 102.
    Li Z, Schwier AN, Sareen N, McNeill VF (2011) Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products. Atmos Chem Phys 11:11617–11629Google Scholar
  103. 103.
    Nozière B, Ekstrom S, Alsberg T, Holmstrom S (2010) Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys Res Lett 37:L05806. doi: 10.1029/2009GL041683 Google Scholar
  104. 104.
    Surratt JD, Kroll JH, Kleindienst TE, Edney EO, Claeys M, Sorooshian A, Ng NL, Offenberg JH, Lewandowski M, Jaoui M, Flagan RC, Seinfeld JH (2007) Evidence for organosulfates in secondary organic aerosol. Environ Sci Technol 41:517–527Google Scholar
  105. 105.
    Archer RJ, La Mer VK (1955) The rate of evaporation of water through fatty acid monolayers. J Phys Chem 59:200–208Google Scholar
  106. 106.
    Rideal EK (1925) On the influence of surface films in the evaporation of water. J Phys Chem 29:1585–1588Google Scholar
  107. 107.
    Rosano HL, La Mer VK (1956) The rate of evaporation of water through monolayers of esters, acids, and alcohols. J Phys Chem 60:348–353Google Scholar
  108. 108.
    Anttila T, Kiendler-Scharr A, Tillman R, Mentel TF (2006) On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. J Phys Chem A 110:10435–10443Google Scholar
  109. 109.
    Badger CL, Griffiths PT, George I, Abbatt JPD, Cox RA (2006) Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate. J Phys Chem A 110:6986–6994Google Scholar
  110. 110.
    Escoreia EN, Sjostedt SJ, Abbatt JPD (2010) Kinetics of N2O5 hydrolysis on secondary organic aerosol and mixed ammonium bisulfate-secondary organic aerosol particles. J Phys Chem A 114:13113–13121Google Scholar
  111. 111.
    Folkers M, Mentel TF, Wahner A (2003) Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5. Geophys Res Lett 30:1644–1647Google Scholar
  112. 112.
    McNeill VF, Wolfe GM, Thornton JA (2007) The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process. J Phys Chem A 111:1073–1083Google Scholar
  113. 113.
    McNeill VF, Patterson J, Wolfe GM, Thornton JA (2006) The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol. Atmos Chem Phys 6:1635–1644Google Scholar
  114. 114.
    Rouviere A, Ammann M (2010) The effect of fatty acid surfactants on the uptake of ozone to aqueous halogenide particles. Atmos Chem Phys 10:11489–11500Google Scholar
  115. 115.
    Stemmler K, Vlasenko A, Guimbaud C, Ammann M (2008) The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol. Atmos Chem Phys 8:5127–5141Google Scholar
  116. 116.
    Thornton JA, Abbatt JPD (2005) N2O5 reaction on sub-micron sea salt aerosol: effect of surface active organics. J Phys Chem A 109:10004–10012Google Scholar
  117. 117.
    Thornton JA, Braban CF, Abbatt JPD (2003) N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size. Phys Chem Chem Phys 5:4593–4603Google Scholar
  118. 118.
    Cosman LM, Bertram AK (2008) Reactive uptake of N2O5 on aqueous H2SO4 solutions coated with 1-component and 2-component monolayers. J Phys Chem A 112:4625–4635Google Scholar
  119. 119.
    Cosman LM, Knopf DA, Bertram AK (2008) N2O5 reactive uptake on aqueous sulfuric acid solutions coated with branched and straight-chain insoluble organic surfactants. J Phys Chem A 112:2386–2396Google Scholar
  120. 120.
    Knopf DA, Cosman LM, Mousavi P, Mokamati S, Bertram AK (2007) A novel flow reactor for studying reactions on liquid surfaces coated by organic monolayers: methods, validation, and initial results. J Phys Chem A 111:11021–11032Google Scholar
  121. 121.
    Chan MN, Lee AKY, Chan CK (2006) Responses of ammonium sulfate particles coated with glutaric acid to cyclic changes in relative humidity: hygroscopicity and Raman characterization. Environ Sci Technol 40:6983–6989Google Scholar
  122. 122.
    Cruz CN, Pandis SN (1998) The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J Geophys Res Atmos 103:13111–13123Google Scholar
  123. 123.
    Cruz CN, Pandis SN (2000) Deliquescence and hygroscopic growth of mixed inorganic–organic atmospheric aerosol. Environ Sci Technol 34:4313–4319Google Scholar
  124. 124.
    Glass SV, Park SC, Nathanson GM (2006) Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid. J Phys Chem A 110:7593–7601Google Scholar
  125. 125.
    Lawrence JR, Glass SV, Nathanson GM (2005) Evaporation of water through butanol films at the surface of supercooled sulfuric acid. J Phys Chem A 109:7449–7457Google Scholar
  126. 126.
    Lawrence JR, Glass SV, Park SC, Nathanson GM (2005) Surfactant control of gas uptake: effect of butanol films on HCl and HBr entry into supercooled sulfuric acid. J Phys Chem A 109:7458–7465Google Scholar
  127. 127.
    Park SC, Burden DK, Nathanson GM (2007) The inhibition of N2O5 hydrolysis in sulfuric acid by 1-butanol and 1-hexanol surfactant coatings. J Phys Chem A 111:2921–2929Google Scholar
  128. 128.
    Schofield RK, Rideal EK (1926) The kinetic theory of surface films – part II. Gaseous, expanded, and condensed films. Proc R Soc 110A:167–177Google Scholar
  129. 129.
    Myers D (1988) Surfactant science and technology. VCH, New YorkGoogle Scholar
  130. 130.
    Gilman JB, Vaida V (2006) Permeability of acetic acid through organic films at the air-aqueous interface. J Phys Chem A 110:7581–7587Google Scholar
  131. 131.
    Donaldson DJ, Vaida V (2006) The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem Rev 106:1445–1461Google Scholar
  132. 132.
    Donaldson DJ, Valsaraj KT (2010) Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review. Environ Sci Technol 44:865–873Google Scholar
  133. 133.
    Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ, Donaldson DJ, Garrett BC, George C, Griffiths PT, Hanson DR, Kulmala M, McFiggans G, Poschl U, Riipinen I, Rossi MJ, Rudich Y, Wagner PE, Winkler PM, Worsnop DR, O' Dowd CD (2010) An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos Chem Phys 10:10561–10605Google Scholar
  134. 134.
    Clifford D, Bartels-Rausch T, Donaldson DJ (2007) Suppression of aqueous surface hydrolysis by monolayers of short chain organic amphiphiles. Phys Chem Chem Phys 9:1362–1369Google Scholar
  135. 135.
    Park SC, Burden DK, Nathanson GM (2009) Surfactant control of gas transport and reactions at the surface of sulfuric acid. Acc Chem Res 42:379–387Google Scholar
  136. 136.
    Burden DK, Johnson AM, Nathanson GM (2009) HCl uptake through films of pentanoic acid and pentanoic acid/hexanol mixtures at the surface of sulfuric acid. J Phys Chem A 113:14131–14140Google Scholar
  137. 137.
    Dentener FJ, Crutzen PJ (1993) Reaction of N2O5 on tropospheric aerosols – impact on the global distributions of NOx, O3, and OH. J Geophys Res Atmos 98:7149–7163Google Scholar
  138. 138.
    Evans MJ, Jacob DJ (2005) Impact of new laboratory studies of N(2)O(5) hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH. Geophys Res Lett 32. doi: 10.1029/2005GL022469
  139. 139.
    Liao H, Seinfeld JH, Adams PJ, Mickley LJ (2004) Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J Geophys Res Atmos 109. doi: 10.1029/2003JD004456
  140. 140.
    Dash UN, Mohanty BK (1997) Thermodynamic functions of solutions of homologous dicarboxylic acids in water + acetone mixtures from surface tension measurements. Fluid Phase Equilibria 134:267–276Google Scholar
  141. 141.
    Ekström S, Nozière B, Hansson H-C (2009) The cloud condensation nuclei (CCN) properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements. Atmos Chem Phys 9:973–980Google Scholar
  142. 142.
    Hyvarinen AR, Lihavainen H, Gaman A, Vairila L, Ojala H, Kulmala M, Viisanen Y (2006) Surface tensions and densities of oxalic, malonic, succinic, maleic, malic, and cis-pinonic acids. J Chem Eng Data 51:255–260Google Scholar
  143. 143.
    Topping DO, McFiggans GB, Kiss G, Varga Z, Facchini MC, Decesari S, Mircea M (2007) Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions. Atmos Chem Phys 7:2371–2398Google Scholar
  144. 144.
    Finlayson-Pitts BJ, Hemminger JC (2000) Physical chemistry of airborne sea salt particles and their components. J Phys Chem A 104:11463–11477Google Scholar
  145. 145.
    Krisch MJ, D'Auria R, Brown MA, Tobias DJ, Hemminger JC, Ammann M, Starr DE, Bluhm H (2007) The effect of an organic surfactant on the liquid–vapor interface of an electrolyte solution. J Phys Chem C 111:13497–13509Google Scholar
  146. 146.
    Clifford D, Donaldson DJ (2007) Direct experimental evidence for a heterogeneous reaction of ozone with bromide at the air-aqueous interface. J Phys Chem A 111:9809–9814Google Scholar
  147. 147.
    Brown SS, Ryerson TB, Wollny AG, Brock CA, Peltier R, Sullivan AP, Weber RJ, Dube WP, Trainer M, Meagher JF, Fehsenfeld FC, Ravishankara AR (2006) Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 311:67–70Google Scholar
  148. 148.
    Bertram TH, Thornton JA, Riedel TP (2009) An experimental technique for the direct measurement of N2O5 reactivity on ambient particles. Atmos Meas Tech 2:231–242Google Scholar
  149. 149.
    Bertram TH, Thornton JA, Riedel TP, Middlebrook AM, Bahreini R, Bates TS, Quinn PK, Coffman DJ (2009) Direct observations of N2O5 reactivity on ambient aerosol particles. Geophys Res Lett 36:L19803. doi: 10.1029/2009GL040248 Google Scholar
  150. 150.
    Bertram TH, Thornton JA (2009) Toward a general parameterization of N(2)O(5) reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmos Chem Phys 9:8351–8363Google Scholar
  151. 151.
    Riemer N, Vogel H, Vogel B, Anttila T, Kiendler-Scharr A, Mentel TF (2009) Relative importance of organic coatings for the heterogeneous hydrolysis of N(2)O(5) during summer in Europe. J Geophys Res Atmos 114. doi: 10.1029/2008JD011369
  152. 152.
    Smoydzin L, von Glasow R (2007) Do organic surface films on sea salt aerosols influence atmospheric chemistry? A model study. Atmos Chem Phys 7:5555–5567Google Scholar
  153. 153.
    Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078Google Scholar
  154. 154.
    Gavish M, Popovitzbiro R, Lahav M, Leiserowitz L (1990) Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science 250:973–975Google Scholar
  155. 155.
    Majewski J, Popovitzbiro R, Bouwman WG, Kjaer K, AlsNielsen J, Lahav M, Leiserowitz L (1995) The structural-properties of uncompressed crystalline monolayers of alcohols CnH2n + 1OH (n = 13–31) on water and their role as ice nucleators. Chem Eur J 1:304–311Google Scholar
  156. 156.
    Majewski J, Popovitzbiro R, Kjaer K, Alsnielsen J, Lahav M, Leiserowitz L (1994) Toward a determination of the critical size of ice nuclei – a demonstration by grazing-incidence X-ray-diffraction of epitaxial-growth of ice under the C31H63OH alcohol monolayer. J Phys Chem 98:4087–4093Google Scholar
  157. 157.
    Popovitzbiro R, Wang JL, Majewski J, Shavit E, Leiserowitz L, Lahav M (1994) Induced freezing of supercooled water into ice by self-assembled crystalline monolayers of amphiphilic alcohols at the air-water-interface. J Am Chem Soc 116:1179–1191Google Scholar
  158. 158.
    Seeley LH, Seidler GT (2001) Two-dimensional nucleation of ice from supercooled water. Phys Rev Lett 87:055702. doi: 10.1103/PhysRevLett.87.055702 Google Scholar
  159. 159.
    Ochshorn E, Cantrell W (2006) Towards understanding ice nucleation by long chain alcohols. J Chem Phys 124. doi: 10.1063/1.2166368
  160. 160.
    Cantrell W, Robinson C (2006) Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols. Geophys Res Lett 33:L07802. doi: 10.1029/2005GL024945 Google Scholar
  161. 161.
    Zobrist B, Koop T, Luo BP, Marcolli C, Peter T (2007) Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J Phys Chem C 111:2149–2155Google Scholar
  162. 162.
    Zobrist B, Marcolli C, Peter T, Koop T (2008) Heterogeneous ice nucleation in aqueous solutions: the role of water activity. J Phys Chem A 112:3965–3975Google Scholar
  163. 163.
    Knopf DA, Forrester SM (2011) Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity. J Phys Chem A 115:5579–5591Google Scholar
  164. 164.
    Corrigan CE, Novakov T (1999) Cloud condensation nucleus activity of organic compounds: a laboratory study. Atmos Environ 33:2661–2668Google Scholar
  165. 165.
    Cruz CN, Pandis SN (1997) A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmos Environ 31:2205–2214Google Scholar
  166. 166.
    Henning S, Rosenorn T, D'Anna B, Gola AA, Svenningsson B, Bilde M (2005) Cloud droplet activation and surface tension of mixtures of slightly soluble organics and inorganic salt. Atmos Chem Phys 5:575–582Google Scholar
  167. 167.
    Prenni AJ, DeMott PJ, Kreidenweis SM, Sherman DE, Russell LM, Ming Y (2001) The effects of low molecular weight dicarboxylic acids on cloud formation. J Phys Chem A 105:11240–11248Google Scholar
  168. 168.
    Raymond TM, Pandis SN (2003) Formation of cloud droplets by multicomponent organic particles. J Geophys Res Atmos 108:4469. doi: 10.1029/2003JD003503 Google Scholar
  169. 169.
    Raymond TM, Pandis SN (2002) Cloud activation of single-component organic aerosol particles. J Geophys Res Atmos 107:4787. doi: 10.1029/2002JD002159 Google Scholar
  170. 170.
    Liu PSK, Leaitch WR, Banic CM, Li SM, Ngo D, Megaw WJ (1996) Aerosol observations at Chebogue Point during the 1993 North Atlantic Regional Experiment: relationships among cloud condensation nuclei, size distribution, and chemistry. J Geophys Res Atmos 101:28971–28990Google Scholar
  171. 171.
    Kohler H (1936) The nucleus in the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161Google Scholar
  172. 172.
    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New YorkGoogle Scholar
  173. 173.
    Chuang PY, Charlson RJ, Seinfeld JH (1997) Kinetic limitations on droplet formation in clouds. Nature 390:594–596Google Scholar
  174. 174.
    Nenes A, Ghan S, Abdul-Razzak H, Chuang PY, Seinfeld JH (2001) Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus B 53:133–149Google Scholar
  175. 175.
    Kulmala M, Laaksonen A, Korhonen P, Vesala T, Ahonen T, Barrett JC (1993) The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. J Geophys Res 98:22949–22958Google Scholar
  176. 176.
    Laaksonen A, Korhonen P, Kulmala M, Charlson RJ (1998) Modification of the Köhler equation to include soluble trace gases and slightly soluble substances. J Atmos Sci 55:853–862Google Scholar
  177. 177.
    Topping D, McFiggans G (2012) Tight coupling of particle size, number and composition in atmospheric cloud droplet activation. Atmos Chem Phys 12:3253–3260Google Scholar
  178. 178.
    Padró LT, Asa-Awuku A, Morrison R, Nenes A (2007) Inferring thermodynamic properties from CCN activation experiments: single-component and binary aerosols. Atmos Chem Phys 7:5263–5274Google Scholar
  179. 179.
    Kulmala M, Laaksonen A, Charlson RJ, Korhonen P (1997) Clouds without supersaturation. Nature 388:336–337Google Scholar
  180. 180.
    Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971Google Scholar
  181. 181.
    Washburn, E.W. (1926–1930;2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (1st Electronic Edition). Knovel. Online version available at:http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=735&VerticalID=0
  182. 182.
    Dutcher CS, Wexler AS, Clegg SL (2010) Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts. J Phys Chem A 114:12216–12230Google Scholar
  183. 183.
    Hu Y-F, Lee H (2004) Prediction of the surface tension of mixed electrolyte solutions based on the equation of Patwardhan and Kumar and the fundamental Butler equations. J Colloid Interface Sci 269:442–448Google Scholar
  184. 184.
    Li ZB, Li YG, Lu JF (1999) Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation. Ind Eng Chem Res 38:1133–1139Google Scholar
  185. 185.
    Li ZB, Lu BCY (2001) Surface tension of aqueous electrolyte solutions at high concentrations – representation and prediction. Chem Eng Sci 56:2879–2888Google Scholar
  186. 186.
    Hu J, Zhang X, Wang Z (2010) A review on progress in QSPR studies for surfactants. Int J Mol Sci 11:1020–1047Google Scholar
  187. 187.
    Setschenow JZ (1889) Uber Die Konstitution Der Salzosungen auf Grund ihres Verhaltens zu Kohlensaure. Z Physik Chem 4:117–125Google Scholar
  188. 188.
    Matijevic E, Pethica BA (1958) The properties of ionized monolayers, part 1. Sodium dodecyl sulfate at the air/water interface. Trans Faraday Soc 54:1383–1389Google Scholar
  189. 189.
    Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New YorkGoogle Scholar
  190. 190.
    Booth AM, Topping DO, McFiggans G, Percival CJ (2009) Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions. Phys Chem Chem Phys 11:8021–8028Google Scholar
  191. 191.
    Fainerman VB, Miller R (2001) Simple method to estimate surface tension of mixed surfactant solutions. J Phys Chem B 105:11432–11438Google Scholar
  192. 192.
    Fainerman VB, Miller R, Aksenenko EV (2002) Simple model for prediction of surface tension of mixed surfactant solutions. Adv Colloid Interface Sci 96:339–359Google Scholar
  193. 193.
    Hitzenberger R, Berner A, Kasper-Giebl A, Loflund M, Puxbaum H (2002) Surface tension of Rax cloud water and its relation to the concentration of organic material. J Geophys Res 107:4752. doi: 10.1029/2002JD002506 Google Scholar
  194. 194.
    Barger WR, Garrett WD (1976) Surface active organic material in air over the Mediterranean and over the eastern equatorial Pacific. J Geophys Res 81:3151–3157Google Scholar
  195. 195.
    Seidl W, Hänel G (1983) Surface-active substances on rainwater and atmospheric particles. Pure Appl Geophys 121:1077–1093Google Scholar
  196. 196.
    Capel PD, Gunde R, Zuercher F, Giger W (1990) Carbon speciation and surface tension of fog. Environ Sci Technol 24:722–727Google Scholar
  197. 197.
    Moore RH, Ingall ED, Sorooshian A, Nenes A (2008) Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity. Geophys Res Lett 35:L07801. doi: 10.1029/2008GL033350 Google Scholar
  198. 198.
    Graber ER, Rudich Y (2006) Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753Google Scholar
  199. 199.
    Chen Y, Schnitzer M (1978) The surface tension of aqueous solutions of soil humic substances. Soil Sci 125:7–15Google Scholar
  200. 200.
    Anderson MA, Hung AYC, Mills D, Scott MS (1995) Factors affecting the surface tension of soil solutions and solutions of humic acids. Soil Sci 160:111–116Google Scholar
  201. 201.
    Yates LM, von Wandruszka R (1999) Effects of pH and metals on the surface tension of aqueous humic materials. Soil Sci Soc Am J 63:1645–1649Google Scholar
  202. 202.
    Aumann E, Tabazadeh A (2008) Rate of organic film formation and oxidation on aqueous drops. J Geophys Res Atmos 113:D23205. doi: 10.1029/2007JD009738 Google Scholar
  203. 203.
    Klavins M, Purmalis O (2010) Humic substances as surfactants. Environ Chem Lett 8:349–354Google Scholar
  204. 204.
    Aumann E, Hildemann LM, Tabazadeh A (2010) Measuring and modeling the composition and temperature-dependence of surface tension for organic solutions. Atmos Environ 44:329–337Google Scholar
  205. 205.
    Frosch M, Prisle NL, Bilde M, Varga Z, Kiss G (2011) Joint effect of organic acids and inorganic salts on cloud droplet activation. Atmos Chem Phys 11:3895–3911Google Scholar
  206. 206.
    Terashima M, Fukushima M, Tanaka S (2004) Influence of pH on the surface activity of humic acid: micelle-like aggregate formation and interfacial adsorption. Colloids Surf A 247:77–83Google Scholar
  207. 207.
    Hagenhoff K, Dong J, Chowdhry B, Leharne S (2010) Aqueous solution of anionic surfactants mixed with soils show a synergistic reduction in surface tension. Water Air Soil Pollut 209:3–13Google Scholar
  208. 208.
    Gaman AI, Kulmala M, Vehkamaki H, Napari I, Mircea M, Facchini MC, Laaksonen A (2004) Binary homogeneous nucleation in water-succinic acid and water-glutaric acid systems. J Chem Phys 120:282Google Scholar
  209. 209.
    Vanhanen J, Hyvarinen A-P, Anttila T, Viisanen Y, Lihavainen H (2008) Ternary solution of sodium chloride, succinic acid, and water – surface tension and its influence on cloud droplet activation. Atmos Chem Phys 8:4595–4604Google Scholar
  210. 210.
    Riipinen I, Koponen IK, Frank GP, Hyvärinen AP, Vanhanen J, Lihavainen H, Lehtinen KEJ, Bilde M, Kulmala M (2007) Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. J Phys Chem A 111:12995–13002Google Scholar
  211. 211.
    Langmuir I (1917) The shapes of group molecules forming the surfaces of liquids. Proc Natl Acad Sci USA 3:251–257Google Scholar
  212. 212.
    Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 39:1848–1906Google Scholar
  213. 213.
    De Mul MNG, Davis HT, Evans DF, Bhave AV, Wagner JR (2000) Solution phase behavior and solid phase structure of long-chain sodium soap mixtures. Langmuir 16:8276–8284Google Scholar
  214. 214.
    Johann R, Vollhardt D (1999) Texture features of long-chain fatty acid monolayers at high pH of the aqueous subphase. Mater Sci Eng C 8–9:35–42Google Scholar
  215. 215.
    Slauenwhite DE, Johnson BD (1996) Effect of organic matter on bubble surface tension. J Geophys Res 101:3769–3774Google Scholar
  216. 216.
    Schwier AN, Mitroo DM, McNeill VF (2012) Surface tension depression by low-solubility organic material in aqueous aerosol mimics. Atmos Environ 54:495–500Google Scholar
  217. 217.
    McNeill VF, Yattavelli RLN, Thornton JA, Stipe CB, Landgrebe O (2008) The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase. Atmos Chem Phys 8:5465–5476Google Scholar
  218. 218.
    Svenningsson B, Rissler J, Swietlicki E, Mircea M, Bilde M, Facchini MC, Decesari S, Fuzzi S, Zhou J, Mønster J, Rosenørn T (2006) Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos Chem Phys 6:1937–1952Google Scholar
  219. 219.
    Grosjean D (1982) Formaldehyde and other carbonyl in Los Angeles ambient air. Environ Sci Technol 16:254–262Google Scholar
  220. 220.
    Novakov T, Penner JE (1993) Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365:823–826Google Scholar
  221. 221.
    Rivera-Carpio CA, Corrigan CE, Novakov T, Penner JE, Rogers CF, Chow JC (1996) Derivation of contributions of sulfate and carbonaceous aerosols to cloud condensation nuclei from mass size distributions. J Geophys Res Atmos 101:19483–19493Google Scholar
  222. 222.
    Novakov T, Corrigan CE (1996) Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys Res Lett 23:2141–2144Google Scholar
  223. 223.
    Mochida M, Kuwata M, Miyakawa T, Takegawa N, Kawamura K, Kondo Y (2006) Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo. J Geophys Res Atmos 111:D23204. doi: 10.1029/2005JD006980 Google Scholar
  224. 224.
    Lance S, Nenes A, Mazzoleni C, Dubey MK, Gates H, Varutbangkul V, Rissman TA, Murphy SM, Sorooshian A, Flagan RC, Seinfeld JH, Feingold G, Jonsson HH (2009) Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J Geophys Res Atmos 114:D00F15. doi: 10.1029/2004JD004596 Google Scholar
  225. 225.
    Broekhuizen K, Kumar PP, Abbatt JPD (2004) Partially soluble organics as cloud condensation nuclei: role of trace soluble and surface active species. Geophys Res Lett 31:L01107. doi: 10.1029/2003GL018203 Google Scholar
  226. 226.
    Shilling JE, King SM, Mochida M, Worsnop DR, Martin ST (2007) Mass spectral evidence that small changes in composition caused by oxidative aging processes alter aerosol CCN properties. J Phys Chem A 111:3358–3368Google Scholar
  227. 227.
    Schwier AN, Sareen N, Lathem T, Nenes A, McNeill VF (2011) Ozone oxidation of oleic acid films decreases aerosol CCN activity. J Geophys Res Atmos 116. doi: 10.1029/2010JD015520
  228. 228.
    VanReken TM, Ng NL, Flagan RC, Seinfeld JH (2005) Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. J Geophys Res 110. doi: 10.1029/2004JD005465
  229. 229.
    Varutbangkul V, Brechtel FJ, Bahreini R, Ng NL, Keywood MD, Kroll JH, Flagan RC, Seinfeld JH, Lee A, Goldstein AH (2006) Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmos Chem Phys 6:2367–2388Google Scholar
  230. 230.
    Dinar E, Taraniuk I, Graber ER, Katsman S, Moise T, Anttila T, Mentel TF, Rudich Y (2006) Cloud condensation nuclei properties of model and atmospheric HULIS. Atmos Chem Phys 6:2465–2482Google Scholar
  231. 231.
    Dinar E, Taraniuk I, Graber ER, Anttila T, Mentel TF, Rudich Y (2007) Hygroscopic growth of atmospheric and model humic-like substances. J Geophys Res Atmos 112:D05211. doi: 10.1029/2006JD007442 Google Scholar
  232. 232.
    Wex H, Hennig T, Salma I, Ocskay R, Kiselev A, Henning S, Massling A, Wiedensohler A, Stratmann F (2007) Hygroscopic growth and measured and modeled critical super-saturations of an atmospheric HULIS sample. Geophys Res Lett 34:L02818. doi: 10.1029/2006GL028260 Google Scholar
  233. 233.
    Fors EO, Rissler J, Massling A, Svenningsson B, Andreae MO, Dusek U, Frank GP, Hoffer A, Bilde M, Kiss G, Janitsek S, Henning S, Facchini MC, Decesari S, Swietlicki E (2010) Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data. Atmos Chem Phys 10:5625–5639Google Scholar
  234. 234.
    Riipinen I, Koponen IK, Frank GP, Hyvaerinen AP, Vanhanen J, Lihavainen H, Lehtinen KEJ, Bilde M, Kulmala M (2007) Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. J Phys Chem A 111:12995–13002Google Scholar
  235. 235.
    Pradeep Kumar P, Broekhuizen K, Abbatt JPD (2003) Organic acids as cloud condensation nuclei: laboratory studies of highly soluble and insoluble species. Atmos Chem Phys 3:509–520Google Scholar
  236. 236.
    Hori M, Ohta S, Murao N, Yamagata S (2003) Activation capability of water soluble organic substances as CCN. J Aerosol Sci 34:419–448Google Scholar
  237. 237.
    Abbatt JPD, Broekhuizen K, Kumal PP (2005) Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmos Environ 39:4767–4778Google Scholar
  238. 238.
    Sareen N, Schwier AN, Lathem T, Nenes A, McNeill VF (2012) Gas-phase surfactants may enhance aerosol cloud nucleation. In press, Proc. Natl. Acad. Sci. USAGoogle Scholar
  239. 239.
    Kroll JH, Ng NL, Murphy SM, Varutbangkul V, Flagan RC, Seinfeld JH (2005) Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J Geophys Res Atmos 110:D23207. doi: 10.1029/2005JD006004 Google Scholar
  240. 240.
    Betterton EA, Hoffmann MR (1988) Henry’s law constants of some environmentally important aldehydes. Environ Sci Technol 22:1415–1418Google Scholar
  241. 241.
    Djikaev YS, Tabazadeh A (2003) Effect of adsorption on the uptake of organic trace gas by cloud droplets. J Geophys Res Atmos 108:4869. doi: 10.1029/2003JD003741 Google Scholar
  242. 242.
    Good N, Topping DO, Allan JD, Flynn M, Fuentes E, Irwin M, Williams PI, Coe H, McFiggans G (2010) Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise. Atmos Chem Phys 10:3189–3203Google Scholar
  243. 243.
    Irwin M, Good N, Crosier J, Choularton TW, McFiggans G (2010) Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany. Atmos Chem Phys 10:11737–11752Google Scholar
  244. 244.
    Asa-Awuku A, Nenes A (2007) Effect of solute dissolution kinetics on cloud droplet formation: extended Köhler theory. J Geophys Res Atmos 112:D22201. doi: 10.1029/2005JD006934 Google Scholar
  245. 245.
    Seidl W (2000) Model for a surface film of fatty acids on rain water and aerosol particles. Atmos Environ 34:4917–4932Google Scholar
  246. 246.
    Prisle NL, Asmi A, Topping D, Partanen AI, Romakkaniemi S, Dal Maso M, Kulmala M, Laaksonen A, Lehtinen KEJ, McFiggans G, Kokkola H (2012) Surfactant effects in global simulations of cloud droplet activation. Geophys Res Lett 39:L05802. doi: 10.1029/2011GL050467 Google Scholar
  247. 247.
    Chakraborty P, Zachariah MR (2007) “Effective” negative surface tension: a property of coated nanoaerosols relevant to the atmosphere. J Phys Chem A 111:5459–5464Google Scholar
  248. 248.
    Chakraborty P, Zachariah MR (2008) Sticking coefficient and processing of water vapor on organic-coated nanoaerosols. J Phys Chem A 112:966–972Google Scholar
  249. 249.
    Chakraborty P, Zachariah MR (2011) On the structure of organic-coated water droplets: from "net water attractors" to "oily" drops. J Geophys Res 116:D21205. doi: 10.1029/2011JD015961 Google Scholar
  250. 250.
    Hede T, Li X, Leck C, Tu Y, Ågren H (2011) Model HULIS compounds in nanoaerosol clusters - investigations of surface tension and aggregate formation using molecular dynamics simulations. Atmos Chem Phys 11:6549–6557Google Scholar
  251. 251.
    Li X, Hede T, Tu Y, Leck C, Ågren H (2011) Glycine in aerosol water droplets: a critical assessment of Köhler theory by predicting surface tension from molecular dynamics simulations. Atmos Chem Phys 11:519–527Google Scholar
  252. 252.
    Li X, Hede T, Tu Y, Leck C, Ågren H (2011) Amino acids in atmospheric droplets: perturbation of surfact tension and critical supersaturation predicted by computer simulations. Atmos Chem Phys Discuss 11:30919–30947Google Scholar
  253. 253.
    Li X, Hede T, Tu Y, Leck C, Ågren H (2010) Surface-active cis-pinonic acid in atmospheric droplets: a molecular dynamics study. J Phys Chem Lett 1:769–773Google Scholar
  254. 254.
    Ma X, Chakraborty P, Henz BJ, Zachariah MR (2011) Molecular dynamic simulation of dicarboxylic acid coated aqueous aerosol: structure and processing of water vapor. Phys Chem Chem Phys 13:9374–9384Google Scholar
  255. 255.
    Takahama S, Russell LM (2011) A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers. J Geophys Res Atmos 116. doi: 10.1029/2010JD014842
  256. 256.
    Kokkola H, Sorjamaa R, Peraniemi A, Raatikainen T, Laaksonen A (2006) Cloud formation of particles containing humic-like substances. Geophys Res Lett 33:L10816. doi: 10.1029/2006GL026107 Google Scholar
  257. 257.
    Li Z, Williams AL, Rood MJ (1998) Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J Atmos Sci 55:1859–1866Google Scholar
  258. 258.
    Prisle NL, Dal Maso M, Kokkola H (2011) A simple representation of surface active organic aerosol in cloud droplet formation. Atmos Chem Phys 11:4073–4083Google Scholar
  259. 259.
    Prisle NL, Raatikainen T, Laaksonen A, Bilde M (2010) Surfactants in cloud droplet activation: mixed organic–inorganic particles. Atmos Chem Phys 10:5663–5683Google Scholar
  260. 260.
    Prisle NL, Raatikainen T, Sorjamaa R, Svenningsson B, Laaksonen A, Bilde M (2008) Surfactant partitioning in cloud droplet activation: a study of C8, C10, C12 and C14 normal fatty acid sodium salts. Tellus B 60:416–431Google Scholar
  261. 261.
    Raatikainen T, Laaksonen A (2011) A simplified treatment of surfactant effects on cloud drop activation. Geosci Model Dev 4:107–116Google Scholar
  262. 262.
    Sorjamaa R, Laaksonen A (2006) The influence of surfactant properties on critical supersaturations of cloud condensation nuclei. J Aerosol Sci 37:1730–1736Google Scholar
  263. 263.
    Sorjamaa R, Svenningsson B, Raatikainen T, Henning S, Bilde M, Laaksonen A (2004) The role of surfactants in Kohler theory reconsidered. Atmos Chem Phys 4:2107–2117Google Scholar
  264. 264.
    Romakkaniemi S, Kokkola H, Smith JN, Prisle NL, Schwier AN, McNeill VF, Laaksonen A (2011) Partitioning of semivolatile surface-active compounds between bulk, surface, and gas-phase. Geophys Res Lett 38:L03807. doi: 10.1029/2010GL046147 Google Scholar
  265. 265.
    Topping D (2010) An analytical solution to calculate bulk mole fractions for any number of components in aerosol droplets after considering partitioning to a surface layer. Geosci Model Dev 3:635–642Google Scholar
  266. 266.
    Ghan SJ, Chung CC, Penner JE (1993) A parameterization of cloud droplet nucleation part I: single aerosol type. Atmos Res 30:198–221Google Scholar
  267. 267.
    Abdul-Razzak H, Ghan SJ, Carpio CR (1998) A parameterization of aerosol activation 1. Single aerosol type. J Geophys Res Atmos 103:6123–6131Google Scholar
  268. 268.
    Abdul-Razzak H, Ghan SJ (2000) A parameterization of aerosol activation 2. Multiple aerosol types. J Geophys Res Atmos 105:6837–6844Google Scholar
  269. 269.
    Phinney LA, Lohmann U, Leaitch WR (2003) Limitations of using an equilibrium approximation in an aerosol activation parameterization. J Geophys Res Atmos 108:4371. doi: 10.1029/2002JD002391 Google Scholar
  270. 270.
    Anttila T, Kerminen VM (2002) Influence of organic compounds on the cloud droplet activation: a model investigation considering the volatility, water solubility, and surface activity of organic matter. J Geophys Res 107:4662. doi: 10.1029/2001JD001482 Google Scholar
  271. 271.
    Nenes A, Charlson RJ, Facchini MC, Kulmala M, Laaksonen A, Seinfeld JH (2002) Can chemical effects on cloud droplet number rival the first indirect effect? Geophys Res Lett 29:1848. doi: 10.1029/2002GL015295 Google Scholar
  272. 272.
    Rissman TA, Nenes A, Seinfeld JH (2004) Chemical amplification (or dampening) of the Twomey effect: conditions derived from droplet activation theory. J Atmos Sci 61:919–930Google Scholar
  273. 273.
    Ervens B, Feingold G, Kreidenweis SM (2005) Influence of water-soluble organic carbon on cloud drop number concentration. J Geophys Res Atmos 110:D18211. doi: 10.1029/2004JD005634 Google Scholar
  274. 274.
    Feingold G, Chuang PY (2002) Analysis of the influence of film-forming compounds on droplet growth: implications for cloud microphysical processes and climate. J Atmos Sci 59:2006–2018Google Scholar
  275. 275.
    Lance S, Nenes A, Rissman TA (2004) Chemical and dynamical effects on cloud droplet number: implications for estimates of the aerosol indirect effect. J Geophys Res Atmos 109:D22208. doi: 10.1029/2004JD004596 Google Scholar
  276. 276.
    Khvorostyanov VI, Curry JA (2008) Kinetics of cloud drop formation and its parameterization for cloud and climate models. J Atmos Sci 65:2784–2802Google Scholar
  277. 277.
    Asa-Awuku A, Engelhart GJ, Lee BH, Pandis SN, Nenes A (2009) Relating CCN activity, volatility, and droplet growth kinetics of beta-caryophyllene secondary organic aerosol. Atmos Chem Phys 9:795–812Google Scholar
  278. 278.
    Engelhart GJ, Asa-Awuku A, Nenes A, Pandis SN (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys 8:3937–3949Google Scholar
  279. 279.
    Shantz NC, Leaitch WR, Caffrey PF (2003) Effect of organics of low solubility on the growth rate of cloud droplets. J Geophys Res Atmos 108. doi: 10.1029/2002JD002540
  280. 280.
    Hegg DA, Gao S, Hoppel W, Frick G, Caffrey P, Leaitch WR, Shantz N, Ambrusko J, Albrechcinski T (2001) Laboratory studies of the efficiency of selected organic aerosols as CCN. Atmos Res 58:155–166Google Scholar
  281. 281.
    Bilde M, Svenningsson B (2004) CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase. Tellus B 56:128–134Google Scholar
  282. 282.
    Garland RM, Wise ME, Beaver MR, Dewitt HL, Aiken AC, Jimenez JL, Tolbert MA (2005) Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles. Atmos Chem Phys 5:1951–1961Google Scholar
  283. 283.
    Andrews E, Larson SM (1993) Effect of surfactant layers on the size changes of aerosol-particles as a function of relative-humidity. Environ Sci Technol 27:857–865Google Scholar
  284. 284.
    Chang RYW, Liu PSK, Leaitch WR, Abbatt JPD (2007) Comparison between measured and predicted CCN concentrations at Egbert, Ontario: focus on the organic aerosol fraction at a semi-rural site. Atmos Environ 41:8172–8182Google Scholar
  285. 285.
    Shantz NC, Chang RYW, Slowik JG, Vlasenko A, Abbatt JPD, Leaitch WR (2010) Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site. Atmos Chem Phys 10:299–312Google Scholar
  286. 286.
    Ruehl CR, Chuang PY, Nenes A (2008) How quickly do cloud droplets form on atmospheric particles? Atmos Chem Phys 8:1043–1055Google Scholar
  287. 287.
    Ruehl CR, Chuang PY, Nenes A (2009) Distinct CCN activation kinetics above the marine boundary layer along the California coast. Geophys Res Lett 36. doi: 10.1029/2009GL038839
  288. 288.
    Murphy SM, Agrawal H, Sorooshian A, Padró LT, Gates H, Hersey S, Welch WA, Jung H, Miller JW, Cocker DR, Nenes A, Jonsson HH, Flagan RC, Seinfeld JH (2009) Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ Sci Technol 43:4626–4640Google Scholar
  289. 289.
    Padró LT, Tkacik D, Lathem T, Hennigan CJ, Sullivan AP, Weber RJ, Huey LG, Nenes A (2010) Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City. J Geophys Res 115:D09204. doi: 10.1029/2009JD013195 Google Scholar
  290. 290.
    Fridlind AM, Jacobson MZ (2000) A study of gas-aerosol equilibrium and aerosol pH in the remote marine boundary layer during the first aerosol characterization experiment (ACE 1). J Geophys Res Atmos 105:17325–17340Google Scholar
  291. 291.
    Keene WC, Savoie DL (1998) The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys Res Lett 25:2181–2184Google Scholar
  292. 292.
    Pszenny AAP, Moldanov J, Keene WC, Sander R, Maben JR, Martinez M, Crutzen PJ, Perner D, Prinn RG (2004) Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos Chem Phys 4:147–168Google Scholar
  293. 293.
    Takahama S, Davidson CI, Pandis SN (2006) Semicontinuous measurements of organic carbon and acidity during the Pittsburgh air quality study: implications for acid-catalyzed organic aerosol formation. Environ Sci Technol 40:2191–2199Google Scholar
  294. 294.
    Tang IN, Munkelwitz HR (1994) Water activities, densities, and refractive-indexes of aqueous sulfates and sodium-nitrate droplets of atmospheric importance. J Geophys Res Atmos 99:18801–18808Google Scholar
  295. 295.
    Tang IN, Tridico AC, Fung KH (1997) Thermodynamic and optical properties of sea salt aerosols. J Geophys Res Atmos 102:23269–23275Google Scholar
  296. 296.
    Kroll JH, Donahue NM, Jimenez JL, Kessler SH, Canagaratna MR, Wilson KR, Altieri KE, Mazzoleni LR, Wozniak AS, Bluhm H, Mysak ER, Smith JD, Kolb CE, Worsnop DR (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139Google Scholar
  297. 297.
    Yatavelli RLN, Thornton JA (2010) Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS). Aerosol Sci Technol 44:67–74Google Scholar
  298. 298.
    Russell LM, Bahadur R, Ziemann PJ (2011) Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. Proc Natl Acad Sci USA 108:3516–3521Google Scholar
  299. 299.
    McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini MC, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohmann U, Mentel TF, Murphy DM, O'Dowd CD, Snider JR, Weingartner E (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics 6: 2593–2649.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Faye McNeill
    • 1
  • Neha Sareen
    • 1
  • Allison N. Schwier
    • 1
  1. 1.Department of Chemical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations