Skip to main content

Surface-Active Organics in Atmospheric Aerosols

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 339))

Abstract

Surface-active organic material is a key component of atmospheric aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry, cloud formation, and ice nucleation. We review the current state of the science on the sources, properties, and impacts of surfactants in atmospheric aerosols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMS:

Aerodyne aerosol mass spectrometer

ARG:

Abdul-Razzak and Ghan

CCN:

Cloud condensation nucleus/nuclei

CCNc:

Thermal gradient static cloud diffusion chamber

CDN:

Cloud droplet nuclei

CFSTGC:

Continuous-flow streamwise thermal gradient chamber

CMC:

Critical micelle concentration

DOM:

Dissolved organic matter

ESP:

Equilibrium spreading pressure

FTIR:

Fourier transform infrared spectroscopy

HTDMA:

Humidified tandem differential mobility analyzer

HULIS:

Humic-like substances

IHSS:

International Humic Substances Society

IN:

Ice nucleus/nuclei

KTA:

Köhler theory analysis

LC/ESI MS-MS:

Liquid chromatography/electrospray ionization tandem mass spectrometry

MVK:

Methylvinylketone

OA:

Organic aerosol

OC:

Organic carbon

SD CCNC:

Static diffusion CCN counter

SDS:

Sodium dodecyl sulfate

S–L:

Szyszkowski–Langmuir

SFRA:

Suwannee River fulvic acid

SOA:

Secondary organic aerosol

TEM:

Transmission electron microscopy

TOC:

Total organic carbon

TOF-SIMS:

Time of flight secondary ionization mass spectrometry

UV:

Ultraviolet

VOC:

Volatile organic compound

WSOC:

Water-soluble organic compound

a :

Parameter, Szyszkowski–Langmuir equation

a i :

Activity of species i

b :

Parameter, Szyszkowski–Langmuir equation

C :

Molality of organic carbon

χ i :

Molality fraction of compound i, Szyszkowski–Langmuir equation

d :

Diameter

d c :

Critical diameter

γ :

Reactive uptake coefficient

κ :

Hygroscopicity parameter

M :

Molarity

m :

Mass, Köhler equation

M i :

Molecular weight of species i

ν :

Number of ions

φ :

Osmotic coefficient

R :

Universal gas constant

r :

Radius

ρ :

Density

S :

Saturation ratio

S c :

Critical supersaturation

σ :

Surface tension

T :

Temperature

V :

Volume

References

  1. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  2. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529

    CAS  Google Scholar 

  3. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123

    CAS  Google Scholar 

  4. Ellison GB, Tuck AF, Vaida V (1999) Atmospheric processing of organic aerosols. J Geophys Res Atmos 104:11633–11641

    CAS  Google Scholar 

  5. Gill PS, Graedel TE, Weschler CJ (1983) Organic films on atmospheric aerosol-particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev Geophys 21:903–920

    CAS  Google Scholar 

  6. Cistola DP, Hamilton JA, Jackson D, Small DM (1988) Ionization and phase-behavior of fatty-acids in water – application of the Gibbs phase rule. Biochemistry 27:1881–1888

    CAS  Google Scholar 

  7. Leck C, Bigg EK (2005) Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 57:305–316

    Google Scholar 

  8. Leck C, Bigg EK (2005) Source and evolution of the marine aerosol – a new perspective. Geophys Res Lett 32:L19803. doi:10.1029/2005GL023651

    Google Scholar 

  9. Posfai M, Gelencser A, Simonics R, Arato K, Li J, Hobbs PV, Buseck PR (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res Atmos 109:D06213. doi:10.1029/2003JD004169

    Google Scholar 

  10. Reid JP, Dennis-Smither BJ, Kwamena NO, Miles REH, Hanford KL, Homer CJ (2011) The morphology of aerosol particles consisting of hydrophobic and hydrophilic phases: hydrocarbons, alcohols and fatty acids as the hydrophobic component. Phys Chem Chem Phys 13:15559–15572

    CAS  Google Scholar 

  11. Tabazadeh A (2005) Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles. Atmos Environ 39:5472–5480

    CAS  Google Scholar 

  12. Bertram AK, Martin ST, Hanna SJ, Smith ML, Bodsworth A, Chen Q, Kuwata M, Liu A, You Y, Zorn SR (2011) Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos Chem Phys 11:10995–11006

    CAS  Google Scholar 

  13. Tong H-J, Reid JP, Bones DL, Luo BP, Krieger UK (2011) Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature. Atmos Chem Phys 11:4739–4754

    CAS  Google Scholar 

  14. Zobrist B, Marcolli C, Pedernera DA, Koop T (2008) Do atmospheric aerosols form glasses? Atmos Chem Phys 8:5221–5244

    CAS  Google Scholar 

  15. Blanchard DC (1964) Sea-to-air transport of surface active material. Science 146:396–397

    CAS  Google Scholar 

  16. Buseck PR, Posfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci USA 96:3372–3379

    CAS  Google Scholar 

  17. Peterson RE, Tyler BJ (2002) Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Atmos Environ 36:6041–6049

    CAS  Google Scholar 

  18. Peterson RE, Tyler BJ (2003) Surface composition of atmospheric aerosol: individual particle characterization by TOF-SIMS. Appl Surf Sci 203:751–756

    Google Scholar 

  19. Russell LM, Maria SF, Myneni SCB (2002) Mapping organic coatings on atmospheric particles. Geophys Res Lett 29. doi:10.1029/2002GL014874

  20. Tervahattu H, Hartonen K, Kerminen VM, Kupiainen K, Aarnio P, Koskentalo T, Tuck AF, Vaida V (2002) New evidence of an organic layer on marine aerosols. J Geophys Res Atmos 107:4053. doi:10.1029/2000JD000282

    Google Scholar 

  21. Tervahattu H, Juhanoja J, Kupiainen K (2002) Identification of an organic coating on marine aerosol particles by TOF-SIMS. J Geophys Res Atmos 107:4319. doi:10.1029/2001JD001403

    Google Scholar 

  22. Tervahattu H, Juhanoja J, Vaida V, Tuck AF, Niemi JV, Kupiainen K, Kulmala M, Vehkamaki H (2005) Fatty acids on continental sulfate aerosol particles. J Geophys Res Atmos 110. doi:10.1029/2004JD005400

  23. Takahama S, Liu S, Russell LM (2010) Coatings and clusters of carboxylic acids in carbon-containing atmospheric particles from spectromicroscopy and their implications for cloud-nucleating and optical properties. J Geophys Res Atmos 115. doi:10.1029/2009JD012622

  24. Pfann WG, Olsen KM (1953) Purification and prevention of segregation in single crystals of germanium. Phys Rev 89:322–323

    CAS  Google Scholar 

  25. Asa-Awuku A, Sullivan AP, Hennigan CJ, Weber RJ, Nenes A (2008) Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmos Chem Phys 8:799–812

    CAS  Google Scholar 

  26. Cavalli F, Facchini MC, Decesari S, Mircea M, Emblico L, Fuzzi S, Ceburnis D, Yoon YJ, O'Dowd CD, Putaud JP, Dell'Acqua A (2004) Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J Geophys Res Atmos 109. doi:10.1029/2004JD005137

  27. Decesari S, Facchini MC, Mircea M, Cavalli F, Fuzzi S (2003) Solubility properties of surfactants in atmospheric aerosol and cloud/fog water samples. J Geophys Res Atmos 108:4685. doi:10.1029/2003JD003566

    Google Scholar 

  28. Facchini MC, Decesari S, Mircea M, Fuzzi S, Loglio G (2000) Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmos Environ 34:4853–4857

    CAS  Google Scholar 

  29. Kiss G, Tombacz E, Hansson HC (2005) Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. J Atmos Chem 50:279–294

    CAS  Google Scholar 

  30. Salma I, Ocskay R, Varga I, Maenhaut W (2006) Surface tension of atmospheric humic-like substances in connection with relaxation, dilution, and solution pH. J Geophys Res Atmos 111:D23205. doi:10.1029/2005JD007015

    Google Scholar 

  31. Taraniuk I, Graber ER, Kostinski A, Rudich Y (2007) Surfactant properties of atmospheric and model humic-like substances (HULIS). Geophys Res Lett 34:L16807. doi:10.1029/2007GL029576

    Google Scholar 

  32. Facchini MC, Mircea M, Fuzzi S, Charlson RJ (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401:257–259

    CAS  Google Scholar 

  33. Mazurek AZ, Pogorzelski SJ, Kogut AD (2006) A novel approach for structure quantification of fatty acids films on rain water. Atmos Environ 40:4076–4087

    CAS  Google Scholar 

  34. Keene WC, Pszenny AAP, Maben JR, Stevenson E, Wall A (2004) Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer. J Geophys Res Atmos 109:D23202. doi:10.1029/2004JD004801

    Google Scholar 

  35. Zhang Q, Jimenez JL, Worsnop DR, Canagaratna M (2007) A case study of urban particle acidity and its influence on secondary organic aerosol. Environ Sci Technol 41:3213–3219

    CAS  Google Scholar 

  36. Buajarern J, Mitchem L, Reid JP (2007) Characterizing the formation of organic layers on the surface of inorganic/aqueous aerosols by Raman spectroscopy. J Phys Chem A 111:11852–11859

    CAS  Google Scholar 

  37. Voss LF, Bazerbashi MF, Beekman CP, Hadad CM, Allen HC (2007) Oxidation of oleic acid at air/liquid interfaces. J Geophys Res Atmos 112:D06209. doi:10.1029/2006JD007677

    Google Scholar 

  38. Voss LF, Hadad CM, Allen HC (2006) Competition between atmospherically relevant fatty acid monolayers at the air/water interface. J Phys Chem B 110:19487–19490

    CAS  Google Scholar 

  39. King MD, Rennie AR, Thompson KC, Fisher FN, Dong CC, Thomas RK, Pfrang C, Hughes AV (2009) Oxidation of oleic acid at the air-water interface and its potential effects on cloud critical supersaturations. Phys Chem Chem Phys 11:7699–7707

    CAS  Google Scholar 

  40. Rogge WF, Mazurek MA, Hildemann LM, Cass GR, Simoneit BRT (1993) Quantification of urban organic aerosols at a molecular-level – identification, abundance and seasonal-variation. Atmos Environ Part A 27:1309–1330

    Google Scholar 

  41. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 3. C-1-C-29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35:1716–1728

    CAS  Google Scholar 

  42. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182

    CAS  Google Scholar 

  43. Hildemann LM, Markowski GR, Cass GR (1991) Chemical composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 25:744–759

    CAS  Google Scholar 

  44. Meyers PA, Hites RA (1982) Extractable organic compounds in midwest rain and snow. Atmos Environ 16:21692175

    Google Scholar 

  45. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27:2700–2711

    CAS  Google Scholar 

  46. Simoneit BRT (1977) Organic matter in eolian dusts over the Atlantic Ocean. Mar Chem 5:443–464

    CAS  Google Scholar 

  47. Simoneit BRT, Mazurek MA (1982) Organic-matter of the troposphere. 2. Natural background of biogenic lipid matter in aerosols over the rural Western United-States. Atmos Environ 16:2139–2159

    CAS  Google Scholar 

  48. Zhang Q, Anastasio C (2003) Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. Atmos Environ 37:2247–2258

    CAS  Google Scholar 

  49. Fraser MP, Cass GR, Simoneit BRT (1999) Particulate organic compounds emitted from motor vehicle exhaust and in the urban atmosphere. Atmos Environ 33:2715–2724

    CAS  Google Scholar 

  50. Grosjean D, Vancauwenberghe K, Schmid JP, Kelley PE, Pitts JN (1978) Identification of C3-C10 aliphatic dicarboxylic-acids in airborne particulate matter. Environ Sci Technol 12:313–317

    CAS  Google Scholar 

  51. Kawamura K, Kaplan IR (1987) Motor exhaust emissions as a primary source for dicarboxylic-acids in Los-Angeles ambient air. Environ Sci Technol 21:105–110

    CAS  Google Scholar 

  52. Kawamura K, Ng LL, Kaplan IR (1985) Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils. Environ Sci Technol 19:1082–1086

    CAS  Google Scholar 

  53. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651

    CAS  Google Scholar 

  54. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904

    CAS  Google Scholar 

  55. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587

    CAS  Google Scholar 

  56. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180

    CAS  Google Scholar 

  57. Simoneit BRT (1985) Application of molecular marker analysis to vehicular exhaust for source reconciliations. Int J Environ Anal Chem 22:203–232

    CAS  Google Scholar 

  58. Sodeman D, Toner SM, Prather KA (2005) Determination of single particle mass spectral signatures from light-duty vehicle emissions. Environ Sci Technol 39:4569–4580

    CAS  Google Scholar 

  59. Warneck P (2003) In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos Environ 37:2423–2427

    CAS  Google Scholar 

  60. Cheng Y, Li SM, Leithead A, Brickell PC, Leaitch WR (2004) Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in the Lower Fraser Valley during Pacific 2001 Air Quality Study. Atmos Environ 38:5789–5800

    CAS  Google Scholar 

  61. He LY, Hu M, Huang XF, Yu BD, Zhang YH, Liu DQ (2004) Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos Environ 38:6557–6564

    CAS  Google Scholar 

  62. Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environ Sci Technol 40:7820–7827

    CAS  Google Scholar 

  63. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simonelt BRT (1991) Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ Sci Technol 25:1112–1125

    CAS  Google Scholar 

  64. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 1. C-1 through C-29 organic compounds from meat charbroiling. Environ Sci Technol 33:1566–1577

    CAS  Google Scholar 

  65. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 4. C-1-C-27 organic compounds from cooking with seed oils. Environ Sci Technol 36:567–575

    CAS  Google Scholar 

  66. Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855

    CAS  Google Scholar 

  67. Zhao Y, Hu M, Slanina S, Zhang Y (2007) Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environ Sci Technol 41:99–105

    CAS  Google Scholar 

  68. Barger WR, Garrett WD (1970) Surface active organic material in the marine atmosphere. J Geophys Res 75:4561–4566

    CAS  Google Scholar 

  69. Bezdek HF, Carlucci AF (1974) Concentration and removal of liquid microlayers from a seawater surface by bursting bubbles. Limnol Oceanogr 19:126–132

    CAS  Google Scholar 

  70. Garrett WD (1967) The organic chemical composition of the ocean surface. Deep Sea Res Oceanographic Abstracts 14:221–227

    CAS  Google Scholar 

  71. Gershey RM (1983) Characterization of seawater organic-matter carried by bubble-generated aerosols. Limnol Oceanogr 28:309–319

    CAS  Google Scholar 

  72. Kawamura K, Gagosian RB (1987) Implications of [omega]-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 325:330–332

    CAS  Google Scholar 

  73. Keene WC, Maring H, Maben JR, Kieber DJ, Pszenny AAP, Dahl EE, Izaguirre MA, Davis AJ, Long MS, Zhou XL, Smoydzin L, Sander R (2007) Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J Geophys Res Atmos 112:D21202. doi:10.1029/2007JD008464

    Google Scholar 

  74. Marty JC, Saliot A, Buat-Mqnard P, Chesselet R, Hunter KA (1979) Relationship between the lipid compositions of marine aerosols, the sea surface microlayer, and subsurface water. J Geophys Res 84:5707–5716

    CAS  Google Scholar 

  75. Mochida M, Kitamori Y, Kawamura K, Nojiri Y, Suzuki K (2002) Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea-salt particles. J Geophys Res Atmos 107:4325–4334

    Google Scholar 

  76. Morris RJ, Culkin F (1974) Lipid chemistry of eastern Mediterranean surface layers. Nature 250:640–642

    CAS  Google Scholar 

  77. O'Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud JP (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680

    Google Scholar 

  78. Fang J, Kawamura K, Ishimura Y, Matsumoto K (2002) Carbon isotopic composition of fatty acids in the marine aerosols from the Western North Pacific: implication for the source and atmospheric transport. Environ Sci Technol 36:2598–2604

    CAS  Google Scholar 

  79. Gagosian RB, Zafiriou OC, Peltzer ET, Alford JB (1982) Lipids in aerosols from the tropical North Pacific: temporal variability. J Geophys Res 87:11133–11144

    Google Scholar 

  80. Pankow JF (1994) An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ 28:189–193

    CAS  Google Scholar 

  81. Seinfeld JH, Pankow JF (2003) Organic atmospheric particulate material. Ann Rev Phys Chem 54:121–140

    CAS  Google Scholar 

  82. Ervens B, Volkamer R (2010) Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos Chem Phys 10:8219–8244

    CAS  Google Scholar 

  83. Nopmongcol U, Khamwichit W, Fraser MP, Allen DT (2007) Estimates of heterogeneous formation of secondary organic aerosol during a wood smoke episode in Houston. Texas Atmos Environ 41:3057–3070

    CAS  Google Scholar 

  84. Sareen N, Schwier AN, Shapiro EL, Mitroo DM, McNeill VF (2010) Secondary organic material formed by methylglyoxal in aqueous aerosol mimics. Atmos Chem Phys 10:997–1016

    CAS  Google Scholar 

  85. Schwier AN, Sareen N, Mitroo DM, Shapiro EL, McNeill VF (2010) Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation. Environ Sci Technol 44:6174–6182

    CAS  Google Scholar 

  86. Shapiro EL, Szprengiel J, Sareen N, Jen CN, Giordano MR, McNeill VF (2009) Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos Chem Phys 9:2289–2300

    CAS  Google Scholar 

  87. Tan Y, Carlton AG, Seitzinger SP, Turpin BJ (2010) SOA from methylglyoxal in clouds and wet aerosols: measurement and prediction of key products. Atmos Environ 44:5218–5226

    CAS  Google Scholar 

  88. Cole-Filipiak NC, O'Connor AE, Elrod MJ (2010) Kinetics of the hydrolysis of atmospherically relevant isoprene-derived hydroxy epoxides. Environ Sci Technol 44:6718–6723

    CAS  Google Scholar 

  89. Darer AI, Cole-Filipiak NC, O'Connor AE, Elrod MJ (2011) Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ Sci Technol 45:1895–1902

    CAS  Google Scholar 

  90. Eddingsaas NC, VanderVelde DG, Wennberg PO (2010) Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J Phys Chem A 114:8106–8113

    CAS  Google Scholar 

  91. Surratt JD, Chan AWH, Eddingsaas NC, Chan MN, Loza CL, Kwan AJ, Hersey SP, Flagan RC, Wennberg PO, Seinfeld JH (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci USA 107:6640–6645

    CAS  Google Scholar 

  92. Chebbi A, Carlier P (1996) Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos Environ 30:4233–4249

    CAS  Google Scholar 

  93. Shulman ML, Jacobson MC, Carlson RJ, Synovec RE, Young TE (1996) Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys Res Lett 23:277–280

    CAS  Google Scholar 

  94. Tuckermann R (2007) Surface tension of aqueous solutions of water-soluble organic and inorganic compounds. Atmos Environ 41:6265–6275

    CAS  Google Scholar 

  95. Tuckermann R, Cammenga HK (2004) The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds. Atmos Environ 38:6135–6138

    CAS  Google Scholar 

  96. Varga Z, Kiss G, Hansson HC (2007) Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements. Atmos Chem Phys 7:4601–4611

    CAS  Google Scholar 

  97. Asa-Awuku A, Nenes A, Gao S, Flagan RC, Seinfeld JH (2010) Water-soluble SOA from alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity. Atmos Chem Phys 10:1585–1597

    CAS  Google Scholar 

  98. George I, Abbatt JPD (2010) Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat Chem 2:713–722

    CAS  Google Scholar 

  99. Altieri KE, Carlton AG, Lim HJ, Turpin BJ, Seitzinger SP (2006) Evidence for oligomer formation in clouds: reactions of isoprene oxidation products. Environ Sci Technol 40:4956–4960

    CAS  Google Scholar 

  100. Lim HJ, Carlton AG, Turpin BJ (2005) Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ Sci Technol 39:4441–4446

    CAS  Google Scholar 

  101. Gelencser A, Hoffer A, Kiss G, Tombacz E, Kurdi R, Bencze L (2003) In-situ formation of light-absorbing organic matter in cloud water. J Atmos Chem 45:25–33

    CAS  Google Scholar 

  102. Li Z, Schwier AN, Sareen N, McNeill VF (2011) Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products. Atmos Chem Phys 11:11617–11629

    CAS  Google Scholar 

  103. Nozière B, Ekstrom S, Alsberg T, Holmstrom S (2010) Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys Res Lett 37:L05806. doi:10.1029/2009GL041683

    Google Scholar 

  104. Surratt JD, Kroll JH, Kleindienst TE, Edney EO, Claeys M, Sorooshian A, Ng NL, Offenberg JH, Lewandowski M, Jaoui M, Flagan RC, Seinfeld JH (2007) Evidence for organosulfates in secondary organic aerosol. Environ Sci Technol 41:517–527

    CAS  Google Scholar 

  105. Archer RJ, La Mer VK (1955) The rate of evaporation of water through fatty acid monolayers. J Phys Chem 59:200–208

    CAS  Google Scholar 

  106. Rideal EK (1925) On the influence of surface films in the evaporation of water. J Phys Chem 29:1585–1588

    CAS  Google Scholar 

  107. Rosano HL, La Mer VK (1956) The rate of evaporation of water through monolayers of esters, acids, and alcohols. J Phys Chem 60:348–353

    Google Scholar 

  108. Anttila T, Kiendler-Scharr A, Tillman R, Mentel TF (2006) On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. J Phys Chem A 110:10435–10443

    CAS  Google Scholar 

  109. Badger CL, Griffiths PT, George I, Abbatt JPD, Cox RA (2006) Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate. J Phys Chem A 110:6986–6994

    CAS  Google Scholar 

  110. Escoreia EN, Sjostedt SJ, Abbatt JPD (2010) Kinetics of N2O5 hydrolysis on secondary organic aerosol and mixed ammonium bisulfate-secondary organic aerosol particles. J Phys Chem A 114:13113–13121

    Google Scholar 

  111. Folkers M, Mentel TF, Wahner A (2003) Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5. Geophys Res Lett 30:1644–1647

    Google Scholar 

  112. McNeill VF, Wolfe GM, Thornton JA (2007) The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process. J Phys Chem A 111:1073–1083

    CAS  Google Scholar 

  113. McNeill VF, Patterson J, Wolfe GM, Thornton JA (2006) The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol. Atmos Chem Phys 6:1635–1644

    CAS  Google Scholar 

  114. Rouviere A, Ammann M (2010) The effect of fatty acid surfactants on the uptake of ozone to aqueous halogenide particles. Atmos Chem Phys 10:11489–11500

    CAS  Google Scholar 

  115. Stemmler K, Vlasenko A, Guimbaud C, Ammann M (2008) The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol. Atmos Chem Phys 8:5127–5141

    CAS  Google Scholar 

  116. Thornton JA, Abbatt JPD (2005) N2O5 reaction on sub-micron sea salt aerosol: effect of surface active organics. J Phys Chem A 109:10004–10012

    CAS  Google Scholar 

  117. Thornton JA, Braban CF, Abbatt JPD (2003) N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size. Phys Chem Chem Phys 5:4593–4603

    CAS  Google Scholar 

  118. Cosman LM, Bertram AK (2008) Reactive uptake of N2O5 on aqueous H2SO4 solutions coated with 1-component and 2-component monolayers. J Phys Chem A 112:4625–4635

    CAS  Google Scholar 

  119. Cosman LM, Knopf DA, Bertram AK (2008) N2O5 reactive uptake on aqueous sulfuric acid solutions coated with branched and straight-chain insoluble organic surfactants. J Phys Chem A 112:2386–2396

    CAS  Google Scholar 

  120. Knopf DA, Cosman LM, Mousavi P, Mokamati S, Bertram AK (2007) A novel flow reactor for studying reactions on liquid surfaces coated by organic monolayers: methods, validation, and initial results. J Phys Chem A 111:11021–11032

    CAS  Google Scholar 

  121. Chan MN, Lee AKY, Chan CK (2006) Responses of ammonium sulfate particles coated with glutaric acid to cyclic changes in relative humidity: hygroscopicity and Raman characterization. Environ Sci Technol 40:6983–6989

    CAS  Google Scholar 

  122. Cruz CN, Pandis SN (1998) The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J Geophys Res Atmos 103:13111–13123

    CAS  Google Scholar 

  123. Cruz CN, Pandis SN (2000) Deliquescence and hygroscopic growth of mixed inorganic–organic atmospheric aerosol. Environ Sci Technol 34:4313–4319

    CAS  Google Scholar 

  124. Glass SV, Park SC, Nathanson GM (2006) Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid. J Phys Chem A 110:7593–7601

    CAS  Google Scholar 

  125. Lawrence JR, Glass SV, Nathanson GM (2005) Evaporation of water through butanol films at the surface of supercooled sulfuric acid. J Phys Chem A 109:7449–7457

    CAS  Google Scholar 

  126. Lawrence JR, Glass SV, Park SC, Nathanson GM (2005) Surfactant control of gas uptake: effect of butanol films on HCl and HBr entry into supercooled sulfuric acid. J Phys Chem A 109:7458–7465

    CAS  Google Scholar 

  127. Park SC, Burden DK, Nathanson GM (2007) The inhibition of N2O5 hydrolysis in sulfuric acid by 1-butanol and 1-hexanol surfactant coatings. J Phys Chem A 111:2921–2929

    CAS  Google Scholar 

  128. Schofield RK, Rideal EK (1926) The kinetic theory of surface films – part II. Gaseous, expanded, and condensed films. Proc R Soc 110A:167–177

    Google Scholar 

  129. Myers D (1988) Surfactant science and technology. VCH, New York

    Google Scholar 

  130. Gilman JB, Vaida V (2006) Permeability of acetic acid through organic films at the air-aqueous interface. J Phys Chem A 110:7581–7587

    CAS  Google Scholar 

  131. Donaldson DJ, Vaida V (2006) The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem Rev 106:1445–1461

    CAS  Google Scholar 

  132. Donaldson DJ, Valsaraj KT (2010) Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review. Environ Sci Technol 44:865–873

    CAS  Google Scholar 

  133. Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ, Donaldson DJ, Garrett BC, George C, Griffiths PT, Hanson DR, Kulmala M, McFiggans G, Poschl U, Riipinen I, Rossi MJ, Rudich Y, Wagner PE, Winkler PM, Worsnop DR, O' Dowd CD (2010) An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos Chem Phys 10:10561–10605

    CAS  Google Scholar 

  134. Clifford D, Bartels-Rausch T, Donaldson DJ (2007) Suppression of aqueous surface hydrolysis by monolayers of short chain organic amphiphiles. Phys Chem Chem Phys 9:1362–1369

    CAS  Google Scholar 

  135. Park SC, Burden DK, Nathanson GM (2009) Surfactant control of gas transport and reactions at the surface of sulfuric acid. Acc Chem Res 42:379–387

    CAS  Google Scholar 

  136. Burden DK, Johnson AM, Nathanson GM (2009) HCl uptake through films of pentanoic acid and pentanoic acid/hexanol mixtures at the surface of sulfuric acid. J Phys Chem A 113:14131–14140

    CAS  Google Scholar 

  137. Dentener FJ, Crutzen PJ (1993) Reaction of N2O5 on tropospheric aerosols – impact on the global distributions of NOx, O3, and OH. J Geophys Res Atmos 98:7149–7163

    CAS  Google Scholar 

  138. Evans MJ, Jacob DJ (2005) Impact of new laboratory studies of N(2)O(5) hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH. Geophys Res Lett 32. doi:10.1029/2005GL022469

  139. Liao H, Seinfeld JH, Adams PJ, Mickley LJ (2004) Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J Geophys Res Atmos 109. doi:10.1029/2003JD004456

  140. Dash UN, Mohanty BK (1997) Thermodynamic functions of solutions of homologous dicarboxylic acids in water + acetone mixtures from surface tension measurements. Fluid Phase Equilibria 134:267–276

    Google Scholar 

  141. Ekström S, Nozière B, Hansson H-C (2009) The cloud condensation nuclei (CCN) properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements. Atmos Chem Phys 9:973–980

    Google Scholar 

  142. Hyvarinen AR, Lihavainen H, Gaman A, Vairila L, Ojala H, Kulmala M, Viisanen Y (2006) Surface tensions and densities of oxalic, malonic, succinic, maleic, malic, and cis-pinonic acids. J Chem Eng Data 51:255–260

    Google Scholar 

  143. Topping DO, McFiggans GB, Kiss G, Varga Z, Facchini MC, Decesari S, Mircea M (2007) Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions. Atmos Chem Phys 7:2371–2398

    CAS  Google Scholar 

  144. Finlayson-Pitts BJ, Hemminger JC (2000) Physical chemistry of airborne sea salt particles and their components. J Phys Chem A 104:11463–11477

    CAS  Google Scholar 

  145. Krisch MJ, D'Auria R, Brown MA, Tobias DJ, Hemminger JC, Ammann M, Starr DE, Bluhm H (2007) The effect of an organic surfactant on the liquid–vapor interface of an electrolyte solution. J Phys Chem C 111:13497–13509

    CAS  Google Scholar 

  146. Clifford D, Donaldson DJ (2007) Direct experimental evidence for a heterogeneous reaction of ozone with bromide at the air-aqueous interface. J Phys Chem A 111:9809–9814

    CAS  Google Scholar 

  147. Brown SS, Ryerson TB, Wollny AG, Brock CA, Peltier R, Sullivan AP, Weber RJ, Dube WP, Trainer M, Meagher JF, Fehsenfeld FC, Ravishankara AR (2006) Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 311:67–70

    CAS  Google Scholar 

  148. Bertram TH, Thornton JA, Riedel TP (2009) An experimental technique for the direct measurement of N2O5 reactivity on ambient particles. Atmos Meas Tech 2:231–242

    CAS  Google Scholar 

  149. Bertram TH, Thornton JA, Riedel TP, Middlebrook AM, Bahreini R, Bates TS, Quinn PK, Coffman DJ (2009) Direct observations of N2O5 reactivity on ambient aerosol particles. Geophys Res Lett 36:L19803. doi:10.1029/2009GL040248

    Google Scholar 

  150. Bertram TH, Thornton JA (2009) Toward a general parameterization of N(2)O(5) reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmos Chem Phys 9:8351–8363

    CAS  Google Scholar 

  151. Riemer N, Vogel H, Vogel B, Anttila T, Kiendler-Scharr A, Mentel TF (2009) Relative importance of organic coatings for the heterogeneous hydrolysis of N(2)O(5) during summer in Europe. J Geophys Res Atmos 114. doi:10.1029/2008JD011369

  152. Smoydzin L, von Glasow R (2007) Do organic surface films on sea salt aerosols influence atmospheric chemistry? A model study. Atmos Chem Phys 7:5555–5567

    CAS  Google Scholar 

  153. Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078

    CAS  Google Scholar 

  154. Gavish M, Popovitzbiro R, Lahav M, Leiserowitz L (1990) Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science 250:973–975

    CAS  Google Scholar 

  155. Majewski J, Popovitzbiro R, Bouwman WG, Kjaer K, AlsNielsen J, Lahav M, Leiserowitz L (1995) The structural-properties of uncompressed crystalline monolayers of alcohols CnH2n + 1OH (n = 13–31) on water and their role as ice nucleators. Chem Eur J 1:304–311

    CAS  Google Scholar 

  156. Majewski J, Popovitzbiro R, Kjaer K, Alsnielsen J, Lahav M, Leiserowitz L (1994) Toward a determination of the critical size of ice nuclei – a demonstration by grazing-incidence X-ray-diffraction of epitaxial-growth of ice under the C31H63OH alcohol monolayer. J Phys Chem 98:4087–4093

    CAS  Google Scholar 

  157. Popovitzbiro R, Wang JL, Majewski J, Shavit E, Leiserowitz L, Lahav M (1994) Induced freezing of supercooled water into ice by self-assembled crystalline monolayers of amphiphilic alcohols at the air-water-interface. J Am Chem Soc 116:1179–1191

    CAS  Google Scholar 

  158. Seeley LH, Seidler GT (2001) Two-dimensional nucleation of ice from supercooled water. Phys Rev Lett 87:055702. doi:10.1103/PhysRevLett.87.055702

    CAS  Google Scholar 

  159. Ochshorn E, Cantrell W (2006) Towards understanding ice nucleation by long chain alcohols. J Chem Phys 124. doi:10.1063/1.2166368

  160. Cantrell W, Robinson C (2006) Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols. Geophys Res Lett 33:L07802. doi:10.1029/2005GL024945

    Google Scholar 

  161. Zobrist B, Koop T, Luo BP, Marcolli C, Peter T (2007) Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J Phys Chem C 111:2149–2155

    CAS  Google Scholar 

  162. Zobrist B, Marcolli C, Peter T, Koop T (2008) Heterogeneous ice nucleation in aqueous solutions: the role of water activity. J Phys Chem A 112:3965–3975

    CAS  Google Scholar 

  163. Knopf DA, Forrester SM (2011) Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity. J Phys Chem A 115:5579–5591

    CAS  Google Scholar 

  164. Corrigan CE, Novakov T (1999) Cloud condensation nucleus activity of organic compounds: a laboratory study. Atmos Environ 33:2661–2668

    CAS  Google Scholar 

  165. Cruz CN, Pandis SN (1997) A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmos Environ 31:2205–2214

    CAS  Google Scholar 

  166. Henning S, Rosenorn T, D'Anna B, Gola AA, Svenningsson B, Bilde M (2005) Cloud droplet activation and surface tension of mixtures of slightly soluble organics and inorganic salt. Atmos Chem Phys 5:575–582

    CAS  Google Scholar 

  167. Prenni AJ, DeMott PJ, Kreidenweis SM, Sherman DE, Russell LM, Ming Y (2001) The effects of low molecular weight dicarboxylic acids on cloud formation. J Phys Chem A 105:11240–11248

    CAS  Google Scholar 

  168. Raymond TM, Pandis SN (2003) Formation of cloud droplets by multicomponent organic particles. J Geophys Res Atmos 108:4469. doi:10.1029/2003JD003503

    Google Scholar 

  169. Raymond TM, Pandis SN (2002) Cloud activation of single-component organic aerosol particles. J Geophys Res Atmos 107:4787. doi:10.1029/2002JD002159

    Google Scholar 

  170. Liu PSK, Leaitch WR, Banic CM, Li SM, Ngo D, Megaw WJ (1996) Aerosol observations at Chebogue Point during the 1993 North Atlantic Regional Experiment: relationships among cloud condensation nuclei, size distribution, and chemistry. J Geophys Res Atmos 101:28971–28990

    CAS  Google Scholar 

  171. Kohler H (1936) The nucleus in the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161

    CAS  Google Scholar 

  172. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  173. Chuang PY, Charlson RJ, Seinfeld JH (1997) Kinetic limitations on droplet formation in clouds. Nature 390:594–596

    CAS  Google Scholar 

  174. Nenes A, Ghan S, Abdul-Razzak H, Chuang PY, Seinfeld JH (2001) Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus B 53:133–149

    Google Scholar 

  175. Kulmala M, Laaksonen A, Korhonen P, Vesala T, Ahonen T, Barrett JC (1993) The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. J Geophys Res 98:22949–22958

    CAS  Google Scholar 

  176. Laaksonen A, Korhonen P, Kulmala M, Charlson RJ (1998) Modification of the Köhler equation to include soluble trace gases and slightly soluble substances. J Atmos Sci 55:853–862

    Google Scholar 

  177. Topping D, McFiggans G (2012) Tight coupling of particle size, number and composition in atmospheric cloud droplet activation. Atmos Chem Phys 12:3253–3260

    CAS  Google Scholar 

  178. Padró LT, Asa-Awuku A, Morrison R, Nenes A (2007) Inferring thermodynamic properties from CCN activation experiments: single-component and binary aerosols. Atmos Chem Phys 7:5263–5274

    Google Scholar 

  179. Kulmala M, Laaksonen A, Charlson RJ, Korhonen P (1997) Clouds without supersaturation. Nature 388:336–337

    CAS  Google Scholar 

  180. Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971

    CAS  Google Scholar 

  181. Washburn, E.W. (1926–1930;2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (1st Electronic Edition). Knovel. Online version available at:http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=735&VerticalID=0

  182. Dutcher CS, Wexler AS, Clegg SL (2010) Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts. J Phys Chem A 114:12216–12230

    CAS  Google Scholar 

  183. Hu Y-F, Lee H (2004) Prediction of the surface tension of mixed electrolyte solutions based on the equation of Patwardhan and Kumar and the fundamental Butler equations. J Colloid Interface Sci 269:442–448

    CAS  Google Scholar 

  184. Li ZB, Li YG, Lu JF (1999) Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation. Ind Eng Chem Res 38:1133–1139

    CAS  Google Scholar 

  185. Li ZB, Lu BCY (2001) Surface tension of aqueous electrolyte solutions at high concentrations – representation and prediction. Chem Eng Sci 56:2879–2888

    CAS  Google Scholar 

  186. Hu J, Zhang X, Wang Z (2010) A review on progress in QSPR studies for surfactants. Int J Mol Sci 11:1020–1047

    CAS  Google Scholar 

  187. Setschenow JZ (1889) Uber Die Konstitution Der Salzosungen auf Grund ihres Verhaltens zu Kohlensaure. Z Physik Chem 4:117–125

    Google Scholar 

  188. Matijevic E, Pethica BA (1958) The properties of ionized monolayers, part 1. Sodium dodecyl sulfate at the air/water interface. Trans Faraday Soc 54:1383–1389

    Google Scholar 

  189. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

    Google Scholar 

  190. Booth AM, Topping DO, McFiggans G, Percival CJ (2009) Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions. Phys Chem Chem Phys 11:8021–8028

    CAS  Google Scholar 

  191. Fainerman VB, Miller R (2001) Simple method to estimate surface tension of mixed surfactant solutions. J Phys Chem B 105:11432–11438

    CAS  Google Scholar 

  192. Fainerman VB, Miller R, Aksenenko EV (2002) Simple model for prediction of surface tension of mixed surfactant solutions. Adv Colloid Interface Sci 96:339–359

    CAS  Google Scholar 

  193. Hitzenberger R, Berner A, Kasper-Giebl A, Loflund M, Puxbaum H (2002) Surface tension of Rax cloud water and its relation to the concentration of organic material. J Geophys Res 107:4752. doi:10.1029/2002JD002506

    Google Scholar 

  194. Barger WR, Garrett WD (1976) Surface active organic material in air over the Mediterranean and over the eastern equatorial Pacific. J Geophys Res 81:3151–3157

    CAS  Google Scholar 

  195. Seidl W, Hänel G (1983) Surface-active substances on rainwater and atmospheric particles. Pure Appl Geophys 121:1077–1093

    CAS  Google Scholar 

  196. Capel PD, Gunde R, Zuercher F, Giger W (1990) Carbon speciation and surface tension of fog. Environ Sci Technol 24:722–727

    CAS  Google Scholar 

  197. Moore RH, Ingall ED, Sorooshian A, Nenes A (2008) Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity. Geophys Res Lett 35:L07801. doi:10.1029/2008GL033350

    Google Scholar 

  198. Graber ER, Rudich Y (2006) Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753

    CAS  Google Scholar 

  199. Chen Y, Schnitzer M (1978) The surface tension of aqueous solutions of soil humic substances. Soil Sci 125:7–15

    CAS  Google Scholar 

  200. Anderson MA, Hung AYC, Mills D, Scott MS (1995) Factors affecting the surface tension of soil solutions and solutions of humic acids. Soil Sci 160:111–116

    CAS  Google Scholar 

  201. Yates LM, von Wandruszka R (1999) Effects of pH and metals on the surface tension of aqueous humic materials. Soil Sci Soc Am J 63:1645–1649

    CAS  Google Scholar 

  202. Aumann E, Tabazadeh A (2008) Rate of organic film formation and oxidation on aqueous drops. J Geophys Res Atmos 113:D23205. doi:10.1029/2007JD009738

    Google Scholar 

  203. Klavins M, Purmalis O (2010) Humic substances as surfactants. Environ Chem Lett 8:349–354

    CAS  Google Scholar 

  204. Aumann E, Hildemann LM, Tabazadeh A (2010) Measuring and modeling the composition and temperature-dependence of surface tension for organic solutions. Atmos Environ 44:329–337

    CAS  Google Scholar 

  205. Frosch M, Prisle NL, Bilde M, Varga Z, Kiss G (2011) Joint effect of organic acids and inorganic salts on cloud droplet activation. Atmos Chem Phys 11:3895–3911

    CAS  Google Scholar 

  206. Terashima M, Fukushima M, Tanaka S (2004) Influence of pH on the surface activity of humic acid: micelle-like aggregate formation and interfacial adsorption. Colloids Surf A 247:77–83

    CAS  Google Scholar 

  207. Hagenhoff K, Dong J, Chowdhry B, Leharne S (2010) Aqueous solution of anionic surfactants mixed with soils show a synergistic reduction in surface tension. Water Air Soil Pollut 209:3–13

    CAS  Google Scholar 

  208. Gaman AI, Kulmala M, Vehkamaki H, Napari I, Mircea M, Facchini MC, Laaksonen A (2004) Binary homogeneous nucleation in water-succinic acid and water-glutaric acid systems. J Chem Phys 120:282

    CAS  Google Scholar 

  209. Vanhanen J, Hyvarinen A-P, Anttila T, Viisanen Y, Lihavainen H (2008) Ternary solution of sodium chloride, succinic acid, and water – surface tension and its influence on cloud droplet activation. Atmos Chem Phys 8:4595–4604

    CAS  Google Scholar 

  210. Riipinen I, Koponen IK, Frank GP, Hyvärinen AP, Vanhanen J, Lihavainen H, Lehtinen KEJ, Bilde M, Kulmala M (2007) Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. J Phys Chem A 111:12995–13002

    CAS  Google Scholar 

  211. Langmuir I (1917) The shapes of group molecules forming the surfaces of liquids. Proc Natl Acad Sci USA 3:251–257

    CAS  Google Scholar 

  212. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 39:1848–1906

    CAS  Google Scholar 

  213. De Mul MNG, Davis HT, Evans DF, Bhave AV, Wagner JR (2000) Solution phase behavior and solid phase structure of long-chain sodium soap mixtures. Langmuir 16:8276–8284

    Google Scholar 

  214. Johann R, Vollhardt D (1999) Texture features of long-chain fatty acid monolayers at high pH of the aqueous subphase. Mater Sci Eng C 8–9:35–42

    Google Scholar 

  215. Slauenwhite DE, Johnson BD (1996) Effect of organic matter on bubble surface tension. J Geophys Res 101:3769–3774

    CAS  Google Scholar 

  216. Schwier AN, Mitroo DM, McNeill VF (2012) Surface tension depression by low-solubility organic material in aqueous aerosol mimics. Atmos Environ 54:495–500

    Google Scholar 

  217. McNeill VF, Yattavelli RLN, Thornton JA, Stipe CB, Landgrebe O (2008) The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase. Atmos Chem Phys 8:5465–5476

    CAS  Google Scholar 

  218. Svenningsson B, Rissler J, Swietlicki E, Mircea M, Bilde M, Facchini MC, Decesari S, Fuzzi S, Zhou J, Mønster J, Rosenørn T (2006) Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos Chem Phys 6:1937–1952

    CAS  Google Scholar 

  219. Grosjean D (1982) Formaldehyde and other carbonyl in Los Angeles ambient air. Environ Sci Technol 16:254–262

    CAS  Google Scholar 

  220. Novakov T, Penner JE (1993) Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365:823–826

    CAS  Google Scholar 

  221. Rivera-Carpio CA, Corrigan CE, Novakov T, Penner JE, Rogers CF, Chow JC (1996) Derivation of contributions of sulfate and carbonaceous aerosols to cloud condensation nuclei from mass size distributions. J Geophys Res Atmos 101:19483–19493

    CAS  Google Scholar 

  222. Novakov T, Corrigan CE (1996) Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys Res Lett 23:2141–2144

    CAS  Google Scholar 

  223. Mochida M, Kuwata M, Miyakawa T, Takegawa N, Kawamura K, Kondo Y (2006) Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo. J Geophys Res Atmos 111:D23204. doi:10.1029/2005JD006980

    Google Scholar 

  224. Lance S, Nenes A, Mazzoleni C, Dubey MK, Gates H, Varutbangkul V, Rissman TA, Murphy SM, Sorooshian A, Flagan RC, Seinfeld JH, Feingold G, Jonsson HH (2009) Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J Geophys Res Atmos 114:D00F15. doi:10.1029/2004JD004596

    Google Scholar 

  225. Broekhuizen K, Kumar PP, Abbatt JPD (2004) Partially soluble organics as cloud condensation nuclei: role of trace soluble and surface active species. Geophys Res Lett 31:L01107. doi:10.1029/2003GL018203

    Google Scholar 

  226. Shilling JE, King SM, Mochida M, Worsnop DR, Martin ST (2007) Mass spectral evidence that small changes in composition caused by oxidative aging processes alter aerosol CCN properties. J Phys Chem A 111:3358–3368

    CAS  Google Scholar 

  227. Schwier AN, Sareen N, Lathem T, Nenes A, McNeill VF (2011) Ozone oxidation of oleic acid films decreases aerosol CCN activity. J Geophys Res Atmos 116. doi:10.1029/2010JD015520

  228. VanReken TM, Ng NL, Flagan RC, Seinfeld JH (2005) Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. J Geophys Res 110. doi:10.1029/2004JD005465

  229. Varutbangkul V, Brechtel FJ, Bahreini R, Ng NL, Keywood MD, Kroll JH, Flagan RC, Seinfeld JH, Lee A, Goldstein AH (2006) Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmos Chem Phys 6:2367–2388

    CAS  Google Scholar 

  230. Dinar E, Taraniuk I, Graber ER, Katsman S, Moise T, Anttila T, Mentel TF, Rudich Y (2006) Cloud condensation nuclei properties of model and atmospheric HULIS. Atmos Chem Phys 6:2465–2482

    CAS  Google Scholar 

  231. Dinar E, Taraniuk I, Graber ER, Anttila T, Mentel TF, Rudich Y (2007) Hygroscopic growth of atmospheric and model humic-like substances. J Geophys Res Atmos 112:D05211. doi:10.1029/2006JD007442

    Google Scholar 

  232. Wex H, Hennig T, Salma I, Ocskay R, Kiselev A, Henning S, Massling A, Wiedensohler A, Stratmann F (2007) Hygroscopic growth and measured and modeled critical super-saturations of an atmospheric HULIS sample. Geophys Res Lett 34:L02818. doi:10.1029/2006GL028260

    Google Scholar 

  233. Fors EO, Rissler J, Massling A, Svenningsson B, Andreae MO, Dusek U, Frank GP, Hoffer A, Bilde M, Kiss G, Janitsek S, Henning S, Facchini MC, Decesari S, Swietlicki E (2010) Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data. Atmos Chem Phys 10:5625–5639

    CAS  Google Scholar 

  234. Riipinen I, Koponen IK, Frank GP, Hyvaerinen AP, Vanhanen J, Lihavainen H, Lehtinen KEJ, Bilde M, Kulmala M (2007) Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. J Phys Chem A 111:12995–13002

    CAS  Google Scholar 

  235. Pradeep Kumar P, Broekhuizen K, Abbatt JPD (2003) Organic acids as cloud condensation nuclei: laboratory studies of highly soluble and insoluble species. Atmos Chem Phys 3:509–520

    Google Scholar 

  236. Hori M, Ohta S, Murao N, Yamagata S (2003) Activation capability of water soluble organic substances as CCN. J Aerosol Sci 34:419–448

    CAS  Google Scholar 

  237. Abbatt JPD, Broekhuizen K, Kumal PP (2005) Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmos Environ 39:4767–4778

    CAS  Google Scholar 

  238. Sareen N, Schwier AN, Lathem T, Nenes A, McNeill VF (2012) Gas-phase surfactants may enhance aerosol cloud nucleation. In press, Proc. Natl. Acad. Sci. USA

    Google Scholar 

  239. Kroll JH, Ng NL, Murphy SM, Varutbangkul V, Flagan RC, Seinfeld JH (2005) Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J Geophys Res Atmos 110:D23207. doi:10.1029/2005JD006004

    Google Scholar 

  240. Betterton EA, Hoffmann MR (1988) Henry’s law constants of some environmentally important aldehydes. Environ Sci Technol 22:1415–1418

    CAS  Google Scholar 

  241. Djikaev YS, Tabazadeh A (2003) Effect of adsorption on the uptake of organic trace gas by cloud droplets. J Geophys Res Atmos 108:4869. doi:10.1029/2003JD003741

    Google Scholar 

  242. Good N, Topping DO, Allan JD, Flynn M, Fuentes E, Irwin M, Williams PI, Coe H, McFiggans G (2010) Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise. Atmos Chem Phys 10:3189–3203

    CAS  Google Scholar 

  243. Irwin M, Good N, Crosier J, Choularton TW, McFiggans G (2010) Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany. Atmos Chem Phys 10:11737–11752

    CAS  Google Scholar 

  244. Asa-Awuku A, Nenes A (2007) Effect of solute dissolution kinetics on cloud droplet formation: extended Köhler theory. J Geophys Res Atmos 112:D22201. doi:10.1029/2005JD006934

    Google Scholar 

  245. Seidl W (2000) Model for a surface film of fatty acids on rain water and aerosol particles. Atmos Environ 34:4917–4932

    CAS  Google Scholar 

  246. Prisle NL, Asmi A, Topping D, Partanen AI, Romakkaniemi S, Dal Maso M, Kulmala M, Laaksonen A, Lehtinen KEJ, McFiggans G, Kokkola H (2012) Surfactant effects in global simulations of cloud droplet activation. Geophys Res Lett 39:L05802. doi:10.1029/2011GL050467

    Google Scholar 

  247. Chakraborty P, Zachariah MR (2007) “Effective” negative surface tension: a property of coated nanoaerosols relevant to the atmosphere. J Phys Chem A 111:5459–5464

    CAS  Google Scholar 

  248. Chakraborty P, Zachariah MR (2008) Sticking coefficient and processing of water vapor on organic-coated nanoaerosols. J Phys Chem A 112:966–972

    CAS  Google Scholar 

  249. Chakraborty P, Zachariah MR (2011) On the structure of organic-coated water droplets: from "net water attractors" to "oily" drops. J Geophys Res 116:D21205. doi:10.1029/2011JD015961

    Google Scholar 

  250. Hede T, Li X, Leck C, Tu Y, Ågren H (2011) Model HULIS compounds in nanoaerosol clusters - investigations of surface tension and aggregate formation using molecular dynamics simulations. Atmos Chem Phys 11:6549–6557

    CAS  Google Scholar 

  251. Li X, Hede T, Tu Y, Leck C, Ågren H (2011) Glycine in aerosol water droplets: a critical assessment of Köhler theory by predicting surface tension from molecular dynamics simulations. Atmos Chem Phys 11:519–527

    Google Scholar 

  252. Li X, Hede T, Tu Y, Leck C, Ågren H (2011) Amino acids in atmospheric droplets: perturbation of surfact tension and critical supersaturation predicted by computer simulations. Atmos Chem Phys Discuss 11:30919–30947

    Google Scholar 

  253. Li X, Hede T, Tu Y, Leck C, Ågren H (2010) Surface-active cis-pinonic acid in atmospheric droplets: a molecular dynamics study. J Phys Chem Lett 1:769–773

    CAS  Google Scholar 

  254. Ma X, Chakraborty P, Henz BJ, Zachariah MR (2011) Molecular dynamic simulation of dicarboxylic acid coated aqueous aerosol: structure and processing of water vapor. Phys Chem Chem Phys 13:9374–9384

    CAS  Google Scholar 

  255. Takahama S, Russell LM (2011) A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers. J Geophys Res Atmos 116. doi:10.1029/2010JD014842

  256. Kokkola H, Sorjamaa R, Peraniemi A, Raatikainen T, Laaksonen A (2006) Cloud formation of particles containing humic-like substances. Geophys Res Lett 33:L10816. doi:10.1029/2006GL026107

    Google Scholar 

  257. Li Z, Williams AL, Rood MJ (1998) Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J Atmos Sci 55:1859–1866

    Google Scholar 

  258. Prisle NL, Dal Maso M, Kokkola H (2011) A simple representation of surface active organic aerosol in cloud droplet formation. Atmos Chem Phys 11:4073–4083

    CAS  Google Scholar 

  259. Prisle NL, Raatikainen T, Laaksonen A, Bilde M (2010) Surfactants in cloud droplet activation: mixed organic–inorganic particles. Atmos Chem Phys 10:5663–5683

    CAS  Google Scholar 

  260. Prisle NL, Raatikainen T, Sorjamaa R, Svenningsson B, Laaksonen A, Bilde M (2008) Surfactant partitioning in cloud droplet activation: a study of C8, C10, C12 and C14 normal fatty acid sodium salts. Tellus B 60:416–431

    Google Scholar 

  261. Raatikainen T, Laaksonen A (2011) A simplified treatment of surfactant effects on cloud drop activation. Geosci Model Dev 4:107–116

    Google Scholar 

  262. Sorjamaa R, Laaksonen A (2006) The influence of surfactant properties on critical supersaturations of cloud condensation nuclei. J Aerosol Sci 37:1730–1736

    CAS  Google Scholar 

  263. Sorjamaa R, Svenningsson B, Raatikainen T, Henning S, Bilde M, Laaksonen A (2004) The role of surfactants in Kohler theory reconsidered. Atmos Chem Phys 4:2107–2117

    CAS  Google Scholar 

  264. Romakkaniemi S, Kokkola H, Smith JN, Prisle NL, Schwier AN, McNeill VF, Laaksonen A (2011) Partitioning of semivolatile surface-active compounds between bulk, surface, and gas-phase. Geophys Res Lett 38:L03807. doi:10.1029/2010GL046147

    Google Scholar 

  265. Topping D (2010) An analytical solution to calculate bulk mole fractions for any number of components in aerosol droplets after considering partitioning to a surface layer. Geosci Model Dev 3:635–642

    Google Scholar 

  266. Ghan SJ, Chung CC, Penner JE (1993) A parameterization of cloud droplet nucleation part I: single aerosol type. Atmos Res 30:198–221

    Google Scholar 

  267. Abdul-Razzak H, Ghan SJ, Carpio CR (1998) A parameterization of aerosol activation 1. Single aerosol type. J Geophys Res Atmos 103:6123–6131

    CAS  Google Scholar 

  268. Abdul-Razzak H, Ghan SJ (2000) A parameterization of aerosol activation 2. Multiple aerosol types. J Geophys Res Atmos 105:6837–6844

    CAS  Google Scholar 

  269. Phinney LA, Lohmann U, Leaitch WR (2003) Limitations of using an equilibrium approximation in an aerosol activation parameterization. J Geophys Res Atmos 108:4371. doi:10.1029/2002JD002391

    Google Scholar 

  270. Anttila T, Kerminen VM (2002) Influence of organic compounds on the cloud droplet activation: a model investigation considering the volatility, water solubility, and surface activity of organic matter. J Geophys Res 107:4662. doi:10.1029/2001JD001482

    Google Scholar 

  271. Nenes A, Charlson RJ, Facchini MC, Kulmala M, Laaksonen A, Seinfeld JH (2002) Can chemical effects on cloud droplet number rival the first indirect effect? Geophys Res Lett 29:1848. doi:10.1029/2002GL015295

    Google Scholar 

  272. Rissman TA, Nenes A, Seinfeld JH (2004) Chemical amplification (or dampening) of the Twomey effect: conditions derived from droplet activation theory. J Atmos Sci 61:919–930

    Google Scholar 

  273. Ervens B, Feingold G, Kreidenweis SM (2005) Influence of water-soluble organic carbon on cloud drop number concentration. J Geophys Res Atmos 110:D18211. doi:10.1029/2004JD005634

    Google Scholar 

  274. Feingold G, Chuang PY (2002) Analysis of the influence of film-forming compounds on droplet growth: implications for cloud microphysical processes and climate. J Atmos Sci 59:2006–2018

    Google Scholar 

  275. Lance S, Nenes A, Rissman TA (2004) Chemical and dynamical effects on cloud droplet number: implications for estimates of the aerosol indirect effect. J Geophys Res Atmos 109:D22208. doi:10.1029/2004JD004596

    Google Scholar 

  276. Khvorostyanov VI, Curry JA (2008) Kinetics of cloud drop formation and its parameterization for cloud and climate models. J Atmos Sci 65:2784–2802

    Google Scholar 

  277. Asa-Awuku A, Engelhart GJ, Lee BH, Pandis SN, Nenes A (2009) Relating CCN activity, volatility, and droplet growth kinetics of beta-caryophyllene secondary organic aerosol. Atmos Chem Phys 9:795–812

    CAS  Google Scholar 

  278. Engelhart GJ, Asa-Awuku A, Nenes A, Pandis SN (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmos Chem Phys 8:3937–3949

    CAS  Google Scholar 

  279. Shantz NC, Leaitch WR, Caffrey PF (2003) Effect of organics of low solubility on the growth rate of cloud droplets. J Geophys Res Atmos 108. doi:10.1029/2002JD002540

  280. Hegg DA, Gao S, Hoppel W, Frick G, Caffrey P, Leaitch WR, Shantz N, Ambrusko J, Albrechcinski T (2001) Laboratory studies of the efficiency of selected organic aerosols as CCN. Atmos Res 58:155–166

    CAS  Google Scholar 

  281. Bilde M, Svenningsson B (2004) CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase. Tellus B 56:128–134

    Google Scholar 

  282. Garland RM, Wise ME, Beaver MR, Dewitt HL, Aiken AC, Jimenez JL, Tolbert MA (2005) Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles. Atmos Chem Phys 5:1951–1961

    CAS  Google Scholar 

  283. Andrews E, Larson SM (1993) Effect of surfactant layers on the size changes of aerosol-particles as a function of relative-humidity. Environ Sci Technol 27:857–865

    CAS  Google Scholar 

  284. Chang RYW, Liu PSK, Leaitch WR, Abbatt JPD (2007) Comparison between measured and predicted CCN concentrations at Egbert, Ontario: focus on the organic aerosol fraction at a semi-rural site. Atmos Environ 41:8172–8182

    CAS  Google Scholar 

  285. Shantz NC, Chang RYW, Slowik JG, Vlasenko A, Abbatt JPD, Leaitch WR (2010) Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site. Atmos Chem Phys 10:299–312

    CAS  Google Scholar 

  286. Ruehl CR, Chuang PY, Nenes A (2008) How quickly do cloud droplets form on atmospheric particles? Atmos Chem Phys 8:1043–1055

    CAS  Google Scholar 

  287. Ruehl CR, Chuang PY, Nenes A (2009) Distinct CCN activation kinetics above the marine boundary layer along the California coast. Geophys Res Lett 36. doi:10.1029/2009GL038839

  288. Murphy SM, Agrawal H, Sorooshian A, Padró LT, Gates H, Hersey S, Welch WA, Jung H, Miller JW, Cocker DR, Nenes A, Jonsson HH, Flagan RC, Seinfeld JH (2009) Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ Sci Technol 43:4626–4640

    CAS  Google Scholar 

  289. Padró LT, Tkacik D, Lathem T, Hennigan CJ, Sullivan AP, Weber RJ, Huey LG, Nenes A (2010) Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City. J Geophys Res 115:D09204. doi:10.1029/2009JD013195

    Google Scholar 

  290. Fridlind AM, Jacobson MZ (2000) A study of gas-aerosol equilibrium and aerosol pH in the remote marine boundary layer during the first aerosol characterization experiment (ACE 1). J Geophys Res Atmos 105:17325–17340

    CAS  Google Scholar 

  291. Keene WC, Savoie DL (1998) The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys Res Lett 25:2181–2184

    CAS  Google Scholar 

  292. Pszenny AAP, Moldanov J, Keene WC, Sander R, Maben JR, Martinez M, Crutzen PJ, Perner D, Prinn RG (2004) Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos Chem Phys 4:147–168

    CAS  Google Scholar 

  293. Takahama S, Davidson CI, Pandis SN (2006) Semicontinuous measurements of organic carbon and acidity during the Pittsburgh air quality study: implications for acid-catalyzed organic aerosol formation. Environ Sci Technol 40:2191–2199

    CAS  Google Scholar 

  294. Tang IN, Munkelwitz HR (1994) Water activities, densities, and refractive-indexes of aqueous sulfates and sodium-nitrate droplets of atmospheric importance. J Geophys Res Atmos 99:18801–18808

    Google Scholar 

  295. Tang IN, Tridico AC, Fung KH (1997) Thermodynamic and optical properties of sea salt aerosols. J Geophys Res Atmos 102:23269–23275

    CAS  Google Scholar 

  296. Kroll JH, Donahue NM, Jimenez JL, Kessler SH, Canagaratna MR, Wilson KR, Altieri KE, Mazzoleni LR, Wozniak AS, Bluhm H, Mysak ER, Smith JD, Kolb CE, Worsnop DR (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139

    CAS  Google Scholar 

  297. Yatavelli RLN, Thornton JA (2010) Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS). Aerosol Sci Technol 44:67–74

    Google Scholar 

  298. Russell LM, Bahadur R, Ziemann PJ (2011) Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. Proc Natl Acad Sci USA 108:3516–3521

    CAS  Google Scholar 

  299. McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini MC, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohmann U, Mentel TF, Murphy DM, O'Dowd CD, Snider JR, Weingartner E (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics 6: 2593–2649.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the NASA Tropospheric Chemistry program (grant NNX09AF26G) for funding.

Neha Sareen and Allison N. Schwier have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Faye McNeill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McNeill, V.F., Sareen, N., Schwier, A.N. (2013). Surface-Active Organics in Atmospheric Aerosols. In: McNeill, V., Ariya, P. (eds) Atmospheric and Aerosol Chemistry. Topics in Current Chemistry, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_404

Download citation

Publish with us

Policies and ethics