Skip to main content

Carbon Nanotubes: Synthesis, Structure, Functionalization, and Characterization

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 350))

Abstract

Carbon nanotubes have generated great expectations in the scientific arena, mainly due to their spectacular properties, which include a high aspect ratio, high strain resistance, and high strength, along with high conductivities. Nowadays, carbon nanotubes are produced by a variety of methods, each of them with advantages and disadvantages. Once produced, carbon nanotubes can be chemically modified, using a wide range of chemical reactions. Functionalization makes these long wires much easier to manipulate and dispersible in several solvents. In addition, the properties of carbon nanotubes can be combined with those of organic appendages. Finally, carbon nanotubes need to be carefully characterized, either as pristine or modified materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AmB:

Amphotericin B

13C-NMR:

Carbon nuclear magnetic resonance

CNTs:

Carbon nanotubes

CVD:

Chemical vapor deposition

DBU:

1,8-Diazabicyclo[5,4,0]undec-7-ene

DENs:

Dendrimer encapsulated nanoparticles

DMAD:

Dimethyl acetylenedicarboxylate

DMAP:

4-Dimethylaminopyridine

DMF:

N,N-Dimethylformamide

DOS:

Density of states

EDC:

1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride

EGF:

Epidermal growth factor

EtOH:

Ethanol

FAD:

Flavin adenine dinucleotide

FIR:

Far infrared

HiPco:

High-pressure carbon monoxide

1H-NMR:

Proton nuclear magnetic resonance

HOBt:

Hydroxybenzotriazole

HR-SEM:

High-resolution scanning electron microscopy

HR-TEM:

High-resolution tunneling electron microscopy

i-PrOH:

Iso-propanol

MRI:

Magnetic resonance imaging

MWCNTs:

Multiwalled carbon nanotubes

NIR:

Near infrared

PABS:

Poly(aminobenzene sulfonic acid)

PEG:

Polyethylene glycol

PL-PEG:

PEGylated phospholipids

PmPV:

Poly(m-phenylvinylene)

PSS:

Polystyrenesulfonate

PVD:

Polyvinylpyrrolidone

RBM:

Radial breathing modes

SDBS:

Sodium dodecylbenzene sulfonate

SDS:

Sodium dodecylsulfate

SEM:

Scanning electron microscopy

STM:

Scanning tunneling microscopy

SWCNTs:

Single walled carbon nanotubes

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

References

  1. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    CAS  Google Scholar 

  2. Radushkevich LV, Lukyanovich VM (1952) Zurn Fisic Chim 111:24

    Google Scholar 

  3. Iijima S (1991) Nature 354:56–58

    CAS  Google Scholar 

  4. Iijima S, Ichihashi T (1993) Nature 363:603–605

    CAS  Google Scholar 

  5. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605–607

    CAS  Google Scholar 

  6. Hamada N, Sawada S, Oshiyama A (1992) Phys Rev Lett 68:1579–1582

    CAS  Google Scholar 

  7. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 46:1804–1811

    CAS  Google Scholar 

  8. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204–2206

    CAS  Google Scholar 

  9. Jorio A, Dresselhaus MS, Dresselhaus G (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  10. Cao Q, Rogers JA (2009) Adv Mater 21:29–53

    CAS  Google Scholar 

  11. Endo M, Strano MS, Ajayan PM (2008) Top Appl Phys 111:13–61

    CAS  Google Scholar 

  12. Kostarelos K, Bianco A, Prato M (2009) Nat Nanotech 4:627–633

    CAS  Google Scholar 

  13. Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M (2012) Chem Commun 48:3911–3926

    CAS  Google Scholar 

  14. Hirsch A (2002) Angew Chem Int Ed 41:1853–1859

    CAS  Google Scholar 

  15. Ebbesen TW, Ajayan PM (1992) Nature 358:220–222

    CAS  Google Scholar 

  16. Szabò A, Perri C, Csatò A, Giordano G, Vuono D, Nagy JB (2010) Materials 3:3468–3517

    Google Scholar 

  17. Farhat S, de La Chapelle ML, Loiseau A, Scott CD, Lefrant S, Journet C, Bernier P (2001) J Chem Phys 115:6752–6759

    CAS  Google Scholar 

  18. Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Nature 388:756–758

    CAS  Google Scholar 

  19. Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) J Phys Chem 99:10694–10697

    CAS  Google Scholar 

  20. Yacamàn MJ, Yoshida MM, Rendon L, Santiesteban JG (1993) Appl Phys Lett 62:202–204

    Google Scholar 

  21. Stadermann M, Sherlock SP, In J-B, Fornasiero F, Gyu Park H, Artyukhin AB, Wang Y, De Yoreo JJ, Grigoropoulos CP, Bakajin O, Chernov AA, Noy A (2009) Nano Lett 9: 738–744

    CAS  Google Scholar 

  22. Choi HC, Kim W, Wang DW, Dai HJ (2002) J Phys Chem B 106:12361–12365

    CAS  Google Scholar 

  23. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Chem Phys Lett 313:91–97

    CAS  Google Scholar 

  24. Isaacs JA, Tanwani A, Healy ML, Dahlben LJ (2010) J Nanopart Res 12:551–562

    Google Scholar 

  25. Laplaze D, Bernier P, Maser WK, Flamant G, Guillard T, Loiseau A (1998) Carbon 36: 685–688

    CAS  Google Scholar 

  26. Luxembourg D, Flamant G, Laplaze D (2005) Carbon 43:2302–2310

    CAS  Google Scholar 

  27. Hsu WK, Hare JP, Terrones M, Kroto HW, Walton DRM, Harris PJH (1995) Nature 377:687

    CAS  Google Scholar 

  28. Bai JB, Hamon AL, Marraud A, Jouffrey B, Zymla V (2002) Chem Phys Lett 365:184–188

    CAS  Google Scholar 

  29. Dresselhaus MS, Dresselhaus G, Avouris P (2011) Top Appl Phys 80:273–286

    Google Scholar 

  30. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Nature 391:59–62

    CAS  Google Scholar 

  31. Dresselhaus MS, Dresselhaus G, Charlier JC, Hernández E (2004) Phil Trans R Soc Lond A 362:2065–2098

    CAS  Google Scholar 

  32. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997) Science 275:187–191

    CAS  Google Scholar 

  33. Wang N, Tang ZK, Li GD, Chen JS (2000) Nature 408:50–51

    CAS  Google Scholar 

  34. Odom TW, Huang JL, Kim P, Lieber CM (1998) Nature 391:62–64

    CAS  Google Scholar 

  35. Yao Z, Postma HWC, Balents L, Dekker C (1999) Nature 402:273–276

    CAS  Google Scholar 

  36. Zhang M, Li J (2009) Mater Today 12:12–18

    CAS  Google Scholar 

  37. Terrones M (2003) Annu Rev Mater Res 33:419–501

    CAS  Google Scholar 

  38. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678–680

    CAS  Google Scholar 

  39. Krishnan E, Dujardin TW, Ebbesen PN, Yianilos, Treacy MMJ (1998) Phys Rev B 58:14013–14019

    CAS  Google Scholar 

  40. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971–1975

    CAS  Google Scholar 

  41. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Phys Rev Lett 82:944–947

    CAS  Google Scholar 

  42. Iijima S, Brabec C, Maiti A, Bernholc J (1996) J Chem Phys 104:2089–2092

    CAS  Google Scholar 

  43. Ajayan PM, Tour JM (2007) Nature 447:1066–1068

    CAS  Google Scholar 

  44. Charlier J-C (2002) Acc Chem Res 35:1063–1069

    CAS  Google Scholar 

  45. Ajayan PM, Ravikumar V, Charlier J-C (1998) Phys Rev Lett 81:1437–1440

    CAS  Google Scholar 

  46. Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Phys Rev Lett 89:75505–75509

    CAS  Google Scholar 

  47. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Acc Chem Res 12:1105–1113

    Google Scholar 

  48. Lu X, Chen Z, Schleyer PR (2005) J Am Chem Soc 127:4313–4315

    Google Scholar 

  49. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    CAS  Google Scholar 

  50. Karousis N, Tagmatarchis N, Tasis D (2010) Chem Rev 110:5366–5397

    CAS  Google Scholar 

  51. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Chem Soc Rev 38: 2214–2230

    CAS  Google Scholar 

  52. Joselevich E (2004) Chem Phys Chem 5:619–624

    CAS  Google Scholar 

  53. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Colbert DT, Smalley RE (1998) Science 280:1253–1256

    CAS  Google Scholar 

  54. Rubio N, Fabbro C, Herrero MA, de la Hoz A, Meneghetti M, Fierro JLG (2011) Small 7: 665–674

    CAS  Google Scholar 

  55. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Adv Mater 11:834–840

    CAS  Google Scholar 

  56. Zhao B, Hu H, Yu A, Perea D, Haddon RC (2005) J Am Chem Soc 127:8197–8203

    CAS  Google Scholar 

  57. Delgado JL, de la Cruz P, Urbina A, López Navarrete JT, Casado J, Langa F (2007) Carbon 45:2250–2252

    CAS  Google Scholar 

  58. Giordani S, Colomer JF, Cattaruzza F, Alfonsi J, Meneghetti M, Prato M, Bonifazi D (2009) Carbon 47:578–588

    CAS  Google Scholar 

  59. Baker S, Cai W, Lasseter T, Hammers RJ (2002) Nano Lett 2:1413–1417

    CAS  Google Scholar 

  60. Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) J Mater Chem 14: 37–39

    CAS  Google Scholar 

  61. Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong L (2003) Adv Mater 15:1184–1187

    CAS  Google Scholar 

  62. Patolsky F, Weizmann Y, Willner I (2004) Angew Chem Int Ed 43:2113–2117

    CAS  Google Scholar 

  63. Sardesai N, Pan S, Rusling J (2009) Chem Comm 33:4968–4970

    Google Scholar 

  64. Sun Y-P, Zhou B, Henbest K, Fu K, Huang W, Lin Y, Taylor S, Carroll DL (2002) Chem Phys Lett 351:349–353

    CAS  Google Scholar 

  65. Shi X, Wang SH, Shen M, Antwerp ME, Chen X, Li C, Petersen EJ, Huang Q, Weber WJ, Baker JR (2009) Biomacromolecules 10:1744–1750

    CAS  Google Scholar 

  66. Umeyama T, Fujita M, Tezuka N, Kadota N, Matano Y, Yoshida K, Isoda S, Imahori H (2007) J Phys Chem C 111:11484–11493

    CAS  Google Scholar 

  67. Zhu WH, Minami N, Kazaoui S, Kim Y (2004) J Mater Chem 14:1924–1926

    CAS  Google Scholar 

  68. Kahn MGC, Banerjee S, Wong SS (2002) Nano Lett 2:1215–1218

    CAS  Google Scholar 

  69. Zhang D, Wang T, Li J, Guo Z-X, Dai L, Zhang D, Zhu D (2003) Chem Phys Lett 367: 747–752

    Google Scholar 

  70. Baskaran D, Mays JW, Zhang XP, Bratcher MS (2005) J Am Chem Soc 127:6916–6917

    CAS  Google Scholar 

  71. Zheng X, Jiang DD, Wang D, Wilkie CA (2007) Chem Commun 46:4949–4951

    Google Scholar 

  72. Sun Y-P, Huang W, Lin WY, Fu K, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL (2001) Chem Mater 13:2864–2869

    CAS  Google Scholar 

  73. Fernandez d’Arlas B, Goyanes S, Rubiolo GH, Mondragon I, Corcuera MA, Eceiza A (2009) J Nanosci Nanotechnol 9:6064–6071

    Google Scholar 

  74. Eder D (2010) Chem Rev 110:1348–1385

    CAS  Google Scholar 

  75. Wang P, Moorefield CN, Li S, Hwang SH, Shreiner CD, Newkome GR (2006) Chem Commun 10:1091–1093

    Google Scholar 

  76. Herrero MA, Guerra J, Myers VS, Gómez MV, Crooks RM, Prato M (2010) ACS Nano 4:905–912

    CAS  Google Scholar 

  77. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Chem Phys Lett 296:188–194

    CAS  Google Scholar 

  78. Khabashesku VN, Billups EW, Margrave JL (2002) Acc Chem Res 35:1087–1095

    CAS  Google Scholar 

  79. Saini RK, Chiang IW, Peng H, Smalley RE, Billups WE, Hauge RH, Margrave JT (2003) J Am Chem Soc 125:3617–3621

    CAS  Google Scholar 

  80. Mickelson ET, Chiang IW, Zimmerman JL, Boul P, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL (1999) J Phys Chem B 103:4318–4322

    CAS  Google Scholar 

  81. Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC (2003) J Am Chem Soc 125: 14893–14900

    CAS  Google Scholar 

  82. Bingel C (1993) Chem Ber 126:1957–1959

    CAS  Google Scholar 

  83. Camps X, Hirsch A (1997) J Chem Soc 1:1595–1596

    Google Scholar 

  84. Coleman KS, Bailey SR, Fogden S, Green MLH (2003) J Am Chem Soc 125:8722–8723

    CAS  Google Scholar 

  85. Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Angew Chem Int Ed 113:4132–4136

    Google Scholar 

  86. Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) J Am Chem Soc 127:9875–9880

    CAS  Google Scholar 

  87. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) J Am Chem Soc 124:760–761

    CAS  Google Scholar 

  88. Guldi DM, Marcaccio M, Paolucci D, Paolucci F, Tagmatarchis N, Tasis D, Vazquez E, Prato M (2003) Angew Chem Int Ed 42:4206–4209

    CAS  Google Scholar 

  89. Georgakilas V, Bourlinos A, Gournis D, Tsoufis T, Trapalis C, Mateo-Alonso A, Prato M (2008) J Am Chem Soc 130:8733–8740

    CAS  Google Scholar 

  90. Campidelli S, Sooambar C, Lozano Diz E, Ehli C, Guldi DM, Prato M (2006) J Am Chem Soc 128:12544–12552

    CAS  Google Scholar 

  91. Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Da Ros T, Bano F, Casalis L, Scoles G, Prato M (2009) J Am Chem Soc 131:9843–9848

    CAS  Google Scholar 

  92. Prato M, Kostarelos K, Bianco A (2008) Acc Chem Res 41:60–68

    CAS  Google Scholar 

  93. Venturelli E, Fabbro C, Chaloin O, Ménard-Moyon C, Smulski CR, Ros TD, Kostarelos K, Prato M, Bianco A (2011) Small 7:2179–2187

    CAS  Google Scholar 

  94. Georgakilas V, Voulgaris D, Vazquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) J Am Chem Soc 124:14318–14319

    CAS  Google Scholar 

  95. Vazquez E, Prato M (2009) ACS Nano 3:3819–3824

    CAS  Google Scholar 

  96. Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Troiani V, Garcia H, Langa F, Palkar A, Echegoyen L (2006) J Am Chem Soc 128:6626–6635

    CAS  Google Scholar 

  97. Brunetti FG, Herrero MA, Muñoz JM, Giordani S, Díaz-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato M, Vázquez E (2007) J Am Chem Soc 129:14580–14581

    CAS  Google Scholar 

  98. Delgado JL, de la Cruz P, Langa F, Urbina A, Casado J, Lopez Navarrete JT (2004) Chem Commun 1734–1735

    Google Scholar 

  99. Zhang W, Swager TM (2007) J Am Chem Soc 129:7714–7715

    CAS  Google Scholar 

  100. Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) J Am Chem Soc 125:8566–8580

    CAS  Google Scholar 

  101. Peng H, Alemany LB, Margrave JL, Khabashesku VN (2003) J Am Chem Soc 125: 15174–15182

    CAS  Google Scholar 

  102. Wei L, Zhang Y (2007) Nanotechnology 18:495701–495703

    Google Scholar 

  103. Dyke CA, Tour JM (2004) J Phys Chem A 108:11151–11159

    CAS  Google Scholar 

  104. Price BK, Tour JM (2006) J Am Chem Soc 128:12899–12904

    CAS  Google Scholar 

  105. Campidelli S, Ballesteros B, Filoramo A, Díaz D, de la Torre G, Torres T, Aminurrahman GM, Ehli C, Kiessling D, Werner F, Sgobba V, Guldi DM, Cioffi C, Prato M, Bourgoin JP (2008) J Am Chem Soc 130:11503–11509

    CAS  Google Scholar 

  106. Yoo BK, Myung S, Lee M, Hong S, Chun K, Paik HJ, Kim J, Lim JK, Joo SW (2006) Mater Lett 60:3224–3226

    CAS  Google Scholar 

  107. Gómez-Escalonilla MJ, Atienzar P, Fierro JLG, García H, Langa F (2008) J Mater Chem 18: 1592–1600

    Google Scholar 

  108. Liu J, Rodriguez M, Zubiri I, Dossot M, Vigolo B, Hauge RH, Fort Y, Ehrhardt J-J, McRae E (2006) Chem Phys Lett 430:93–96

    CAS  Google Scholar 

  109. Liu J, Zubiri MR, Vigolo B, Dossot M, Fort Y, Ehrhardt JJ, McRae E (2007) Carbon 45: 885–891

    CAS  Google Scholar 

  110. Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu Z, Hauge RH, Billups WE (2004) Nano Lett 4:1257–1260

    CAS  Google Scholar 

  111. Chattopadhyay J, Sadana AK, Liang F, Beach JM, Xiao Y, Hauge RH, Billups WE (2005) Org Lett 7:4067–4069

    CAS  Google Scholar 

  112. Wunderlich D, Hauke F, Hirsch A (2008) J Mater Chem 18:1493–1497

    CAS  Google Scholar 

  113. Graupner R, Abraham J, Wunderlich D, Vencelova A, Lauffer P, Ræhrl J, Hundhausen M, Ley L, Hirsch A (2006) J Am Chem Soc 128:6683–6689

    CAS  Google Scholar 

  114. Wunderlich D, Hauke F, Hirsch A (2008) Chem Eur J 14:1607–1614

    CAS  Google Scholar 

  115. Syrgiannis Z, Hauke F, Röhrl J, Hundhausen M, Graupner R, Elemes Y, Hirsch A (2008) Eur J Org Chem 2008:2544–2550

    Google Scholar 

  116. Xu Y, Wang X, Tian R, Li S, Wan L, Li M, You H, Li Q, Wang S (2008) Appl Surf Sci 254: 2431–2435

    CAS  Google Scholar 

  117. Tagmatarchis N, Georgakilas V, Prato M, Shinohara H (2002) Chem Commun 2010: 2010–2011

    Google Scholar 

  118. Priya BR, Byrne HJ (2008) J Phys Chem C 112:332–337

    CAS  Google Scholar 

  119. Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Nat Nanotech 2:640–646

    CAS  Google Scholar 

  120. Ehli C, Rahman GMA, Jux N, Balbinot D, Guldi DM, Paolucci F, Marcaccio M, Paolucci D, Melle-Franco M, Zerbetto F, Campidelli S, Prato M (2006) J Am Chem Soc 128: 11222–11231

    CAS  Google Scholar 

  121. Guo Z, Sadler PJ, Tsang SC (1998) Adv Mater 10:701–703

    CAS  Google Scholar 

  122. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C (1999) Angew Chem Int Ed 38:1912–1915

    CAS  Google Scholar 

  123. Erlanger BF, Chen B-X, Zhu M, Brus L (2001) Nano Lett 1:465–467

    CAS  Google Scholar 

  124. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Chem Phys Lett 342:265–271

    Google Scholar 

  125. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) Adv Mater 10:1091–1093

    CAS  Google Scholar 

  126. Liu Z, Winters M, Holodniy M, Dai H (2007) Angew Chem Int Ed 46:2023–2027

    CAS  Google Scholar 

  127. Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tòth E, Helm L, Merbach AE, Wilson LJ (2005) Chem Commun 2005:3915–3917

    Google Scholar 

  128. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) ACS Nano 1:50–56

    Google Scholar 

  129. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Chem Commun 4:459–461

    Google Scholar 

  130. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) J Am Chem Soc 130:11467–11476

    CAS  Google Scholar 

  131. Bhirde AA, Sousa AA, Patel V, Azari AA, Gutkind JS, Leapman RD, Rusling JF (2009) ACS Nano 3:307–316

    CAS  Google Scholar 

  132. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Angew Chem Int Ed 44:6358–6362

    CAS  Google Scholar 

  133. Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) J Am Chem Soc 130:16778–16785

    CAS  Google Scholar 

  134. Brunetti FG, Herrero MA, Muñoz JM, Díaz-Ortiz A, Alfonsi J, Meneghetti M, Prato M, Vázquez E (2008) J Am Chem Soc 130:8094–8100

    CAS  Google Scholar 

  135. Syrgiannis Z, Gebhardt B, Dotzer C, Hauke F, Graupner R, Hirsch A (2010) Angew Chem Int Ed 49:3322–3325

    CAS  Google Scholar 

  136. Prato M (2010) Nature 465:172–173

    CAS  Google Scholar 

  137. Graupner R (2007) J Raman Spectrosc 38:673–683

    CAS  Google Scholar 

  138. Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg B, Pimenta MA, Hafner JH, Lieber CM, Saito R (2002) Phys Rev B 65:155412/1–155412/9

    CAS  Google Scholar 

  139. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47–99

    Google Scholar 

  140. Hamon MA, Itkis ME, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon RC (2001) J Am Chem Soc 123:11292–11293

    CAS  Google Scholar 

  141. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Science 297:593–596

    Google Scholar 

  142. Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC (2004) J Am Chem Soc 127:3439–3448

    Google Scholar 

  143. Kuhlmann U, Jantoljak H, Pfander N, Bernier P, Journet C, Thomsen C (1998) Chem Phys Lett 294:237–240

    CAS  Google Scholar 

  144. Kim UJ, Liu XM, Furtado CA, Chen G, Saito R, Jiang J, Dresselhaus MS, Eklund PC (2005) Phys Rev Lett 95:157402/1–157402/4

    CAS  Google Scholar 

  145. Kamaras K, Itkis ME, Hu H, Zhao B, Haddon RC (2003) Science 301:1501

    CAS  Google Scholar 

  146. De Borde T, Joiner JC, Leyden MR, Monit ED (2008) Nano Lett 8:3568–3571

    Google Scholar 

  147. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chem Eur J 9:3732–3739

    CAS  Google Scholar 

  148. Cleuziou JP, Wernsdorfer W, Ondarcuhu T, Monthiouz M (2011) ACS Nano 5:2348–2355

    CAS  Google Scholar 

  149. Xin H, Woolley AT (2003) J Am Chem Soc 125:8710–8711

    CAS  Google Scholar 

  150. Wilson NR, Macpherson JV (2009) Nat Nanotech 4:483–491

    CAS  Google Scholar 

  151. Qin LC (2006) Rep Prog Phys 69:2761–2821

    CAS  Google Scholar 

  152. Smith BW, Monthioux M, Luzzi DE (1998) Nature 396:323–324

    CAS  Google Scholar 

  153. Koshino M, Tanaka T, Solin N, Suenaga K, Isobe H, Nakamura E (2007) Science 316: 853–853

    CAS  Google Scholar 

  154. Sadan MB, Houben L, Enyashin AN, Seifert G, Tenne R (2008) PNAS 105:15643–15648

    CAS  Google Scholar 

  155. Malik H, Stephenson KJ, Bahr DF, Field DP (2010) J Mater Sci 46:3119–3126

    Google Scholar 

  156. Elmer JW, Yaglioglu O, Schaeffer RD, Kardos G, Derkach O (2012) Carbon 50:4114–4122

    CAS  Google Scholar 

  157. Lemay SG, Janssen JW, vd Hout M, Mooij M, Bronikowski MJ, Willis PA, Smalley RE, Kouwenhoven LP, Dekker C (2001) Nature 412:617–620

    CAS  Google Scholar 

  158. Bonifazi D, Nacci C, Marega R, Campidelli S, Ceballos G, Modesti S, Meneghetti M, Prato M (2006) Nano Lett 6:1408–1414

    CAS  Google Scholar 

  159. Nemes-Incze P, Kónya Z, Kiricsi I, Pekker A, Horváth ZE, Kamarás K (2011) J Phys Chem C 115:3229–3235

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Prato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zamolo, V.A., Vazquez, E., Prato, M. (2013). Carbon Nanotubes: Synthesis, Structure, Functionalization, and Characterization. In: Siegel, J., Wu, YT. (eds) Polyarenes II. Topics in Current Chemistry, vol 350. Springer, Cham. https://doi.org/10.1007/128_2012_403

Download citation

Publish with us

Policies and ethics