Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- ALTADENA:
-
Adiabatic longitudinal transport after dissociation engenders nuclear alignment
- BMPY:
-
N-butyl-4-methylpyridinium
- COD:
-
1,4-Cyclooctadiene
- DPPB:
-
1,4-Bis(diphenylphosphino)butane
- HET-PHIP:
-
Parahydrogen-induced polarization in heterogeneous processes
- ID:
-
Inside diameter
- IL:
-
Ionic liquid
- MOF:
-
Metal-organic framework
- MRI:
-
Magnetic resonance imaging
- NMR:
-
Nuclear magnetic resonance
- PASADENA:
-
Parahydrogen and synthesis allow dramatically enhanced nuclear alignment
- PCy3 :
-
Tricyclohexylphosphine
- PHIP:
-
Parahydrogen-induced polarization
- Py:
-
Pyridine
- RD:
-
Remote detection
- RF:
-
Radiofrequency
- RT:
-
Room temperature
- SABRE:
-
Signal amplification by reversible exchange
- SILP:
-
Supported ionic liquid phase
- SNR:
-
Signal-to-noise ratio
- Tf2N:
-
Bis(trifluoromethylsulfonyl)amide
- TOF:
-
Turnover frequency
- XPS:
-
X-ray photoelectron spectroscopy
References
Seidler PF, Bryndza HE, Frommer JE, Stuhl LS, Bergman RG (1983) Synthesis of trinuclear alkylidyne complexes from dinuclear alkyne complexes and metal hydrides. CIDNP evidence for vinyl radical intermediates in the hydrogenolysis of these clusters. Organometallics 2:1701–1705
Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648
Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542
Duckett SB, Wood NJ (2008) Parahydrogen-based NMR methods as a mechanistic probe in inorganic chemistry. Coord Chem Rev 252:2278–2291
Blazina D, Duckett SB, Dunne JP, Godard C (2004) Applications of the parahydrogen phenomenon in inorganic chemistry. Dalton Trans 2601–2609
Duckett SB, Sleigh CJ (1999) Applications of the para hydrogen phenomenon: a chemical perspective. Prog Nucl Magn Reson Spectrosc 34:71–92
Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315
Eisenberg R (1991) Parahydrogen-induced polarization: a new spin on reactions with H2. Acc Chem Res 24:110–116
Canet D, Aroulanda C, Mutzenhardt P, Aime S, Gobetto R, Reineri F (2006) Para-hydrogen enrichment and hyperpolarization. Concepts Magn Reson 28A:321–330
Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC, Green GGR (2012) The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Prog Nucl Magn Reson Spectrosc. http://dx.doi.org/10.1016/j.pnmrs.2012.03.001
Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond 13C angiography. Magn Reson Med 46:1–5
Bhattacharya P, Chekmenev EY, Perman WH, Harris KC, Lin AP, Norton VA, Tan CT, Ross BD, Weitekamp DP (2007) Towards hyperpolarized 13C-succinate imaging of brain cancer. J Magn Reson 186:150–155
Bhattacharya P, Harris K, Lin AP, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross BD (2005) Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo. MAGMA 18:245–256
Mansson S, Johansson E, Magnusson P, Chai C-M, Hansson G, Petersson JS, Stahlberg F, Golman K (2006) 13C imaging – a new diagnostic platform. Eur Radiol 16:57–67
Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J, Williamson DC (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–1711
Dumesic JA, Huber GW, Boudart M (2008) Principles of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Permin AB, Eisenberg R (2002) One-hydrogen polarization in hydroformylation promoted by platinum-tin and iridium carbonyl complexes: a new type of parahydrogen-induced effect. J Am Chem Soc 124:12406–12407
Fox DJ, Duckett SB, Flaschenriem C, Brennessel WW, Schneider J, Gunay A, Eisenberg R (2006) A model iridium hydroformylation system with the large bite angle ligand xantphos: reactivity with parahydrogen and implications for hydroformylation catalysis. Inorg Chem 45:7197–7209
Koptyug IV, Kovtunov KV, Burt SR, Anwar MS, Hilty C, Han S, Pines A, Sagdeev RZ (2007) para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions. J Am Chem Soc 129:5580–5586
Kovtunov KV, Beck IE, Bukhtiyarov VI, Koptyug IV (2008) Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. Angew Chem Int Ed 47:1492–1495
Kovtunov KV, Koptyug IV (2008) Parahydrogen-induced polarization in heterogeneous catalytic hydrogenations. In: Codd S, Seymour JD (eds) Magnetic resonance microscopy. Spatially resolved NMR techniques and applications. Wiley-VCH, Weinheim
Kovtunov KV, Zhivonitko VV, Corma A, Koptyug IV (2010) Parahydrogen-induced polarization in heterogeneous hydrogenations catalyzed by an immobilized Au(III) complex. J Phys Chem Lett 1:1705–1708
Kovtunov KV, Zhivonitko VV, Kiwi-Minsker L, Koptyug IV (2010) Parahydrogen-induced polarization in alkyne hydrogenation catalyzed by Pd nanoparticles embedded in a supported ionic liquid phase. Chem Commun 46:5764–5766
Eichhorn A, Koch A, Bargon J (2001) In situ PHIP NMR – a new tool to investigate hydrogenation mediated by colloidal catalysts. J Mol Catal A Chem 174:293–295
Crabtree RH (2012) Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. Chem Rev 112:1536
Barbaro P, Bianchini C (2002) Recent aspects of asymmetric catalysis by immobilized transition metal complexes. Top Catal 19:17–32
Cole-Hamilton DJ, Tooze RP (eds) (2006) Catalyst separation, recovery and recycling: chemistry and process design, vol 30, Catalysis by metal complexes. Springer, Dordrecht
End N, Schoning K-U (2004) Immobilized catalysts in industrial research and application. Top Curr Chem 242:241–271
Merckle C, Blumel J (2005) Improved rhodium hydrogenation catalysts immobilized on silica. Top Catal 34:5–15
Wegener SL, Marks TJ, Stair PC (2012) Design strategies for the molecular level synthesis of supported catalysts. Acc Chem Res 45:206–214
Skovpin IV, Zhivonitko VV, Koptyug IV (2011) Parahydrogen-induced polarization in heterogeneous hydrogenations over silica-immobilized Rh complexes. Appl Magn Reson 41:393–410
Gutmann T, Ratajczyk T, Xu Y, Breitzke H, Grunberg A, Dillenberger S, Bommerich U, Trantzschel T, Bernarding J, Buntkowsky G (2010) Understanding the leaching properties of heterogenized catalysts: a combined solid-state and PHIP NMR study. Solid State Nucl Magn Reson Spectrosc 38:90–96
Gordon B, Butler JS, Harrison IR (1987) Rhodium(I) catalyst supported on polymer crystal surfaces: further hydrogenation studies. J Polym Sci Part A: Polym Chem 25:2139–2142
Kuhn LT, Bommerich U, Bargon J (2006) Transfer of parahydrogen-induced hyperpolarization to 19F. J Phys Chem A 110:3521–3526
Kirss RU, Eisenberg R (1989) Di(phosphine)-bridged complexes of palladium. Parahydrogen-induced polarization in hydrogenation reactions and structure determination of tris(μ-bis(diphenylphosphino)methane)dipalladium, Pd2(dppm)3. Inorg Chem 28:3372
Schleyer D, Niessen HG, Bargon J (2001) In situ 1H-PHIP-NMR studies of the stereoselective hydrogenation of alkynes to (E)-alkenes catalyzed by a homogeneous [Cp*Ru]+ catalyst. New J Chem 25:423–426
Lopez-Serrano J, Duckett SB, Aiken S, Lenro KQA, Drent E, Dunne JP, Konya D, Whitwood NC (2007) A para-hydrogen investigation of palladium-catalyzed alkyne hydrogenation. J Am Chem Soc 129:6513–6527
Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J Chem Soc A 12:1711–1732
Goodson BM (2002) Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J Magn Reson 155:157–216
Brunner E, Haake M, Kaiser L, Pines A, Reimer JA (1999) Gas flow MRI using circulating laser-polarized 129Xe. J Magn Reson 138:155–159
Ruppert K, Mata JF, Brookeman JR, Hagspiel KD, Mugler JP (2004) Exploring lung function with hyperpolarized 129Xe nuclear magnetic resonance. Magn Reson Med 51:676–687
Mair RW, Hrovat MI, Patz S, Rosen MS, Ruset IC, Topulos GP, Tsai LL, Butler JP, Hersman FW, Walsworth RL (2005) 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 53:745–749
Pavlovskaya GE, Cleveland ZI, Stupic KF, Basaraba RJ, Meersmann T (2005) Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc Nat Acad Sci USA 102:18275–18279
Bouchard L-S, Kovtunov KV, Burt SR, Anwar MS, Koptyug IV, Sagdeev RZ, Pines A (2007) Parahydrogen-enhanced hyperpolarized gas-phase magnetic resonance imaging. Angew Chem Int Ed 46:4064–4068
Bouchard L-S, Burt SR, Anwar MS, Kovtunov KV, Koptyug IV, Pines A (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science 319:442–445
Telkki V-V, Zhivonitko VV, Ahola S, Kovtunov KV, Jokisaari J, Koptyug IV (2010) Microfluidic gas-flow imaging utilizing parahydrogen-induced polarization and remote-detection NMR. Angew Chem Int Ed 49:8363–8366
Harthun A, Giernoth R, Elsevier CJ, Bargon J (1996) Rhodium- and palladium-catalysed proton exchange in styrene detected in situ by para-hydrogen induced polarization. Chem Commun 2483–2484
Niessen HG, Schleyer D, Wiemann S, Bargon J, Steiner S, Driessen-Holscher B (2000) In situ PHIP-NMR studies during the stereoselective hydrogenation of sorbic acid with a [Cp*Ru]+ catalyst. Magn Reson Chem 38:747–750
Gutmann T, Sellin M, Breitzke H, Stark A, Buntkowsky G (2009) Para-hydrogen induced polarization in homogeneous phase – an example of how ionic liquids affect homogenization and thus activation of catalysts. Phys Chem Chem Phys 11:9170–9175
Mehnert CP, Mozeleski EJ, Cook RA (2002) Supported ionic liquid catalysis investigated for hydrogenation reactions. Chem Commun 3010–3011
Virtanen P, Salmi T, Mikkola J-P (2009) Kinetics of cinnamaldehyde hydrogenation by supported ionic liquid catalysts (SILCA). Ind Eng Chem Res 48:10335–10342
Gong Q, Klankermayer J, Blumich B (2011) Organometallic complexes in supported ionic-liquid phase (SILP) catalysts: a PHIP NMR spectroscopy study. Chem Eur J 17:13795–13799
Zhang X, Llabres i Xamena FX, Corma A (2009) Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J Catal 265:155–160
Cremer PS, Su X, Shen YR, Somorjai GA (1996) Hydrogenation and dehydrogenation of propylene on Pt(111) studied by sum frequency generation from UHV to atmospheric pressure. J Phys Chem 100:16302–16309
Wasylenko W, Frei H (2007) Dynamics of propane in silica mesopores formed upon propylene hydrogenation over Pt nanoparticles by time-resolved FT-IR spectroscopy. J Phys Chem C 111:9884–9890
Wasylenko W, Frei H (2005) Direct observation of surface ethyl to ethane interconversion upon C2H4 hydrogenation over Pt/Al2O3 catalyst by time-resolved FT-IR spectroscopy. J Phys Chem B 109:16873–16878
Cremer PS, Su X, Shen YR, Somorjai GA (1996) Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation. J Am Chem Soc 118:2942–2949
Haug KL, Burgi T, Trautman TR, Ceyer ST (1998) Distinctive reactivities of surface-bound H and bulk H for the catalytic hydrogenation of acetylene. J Am Chem Soc 120:8885–8886
Teschner D, Vass E, Havecker M, Zafeiratos S, Schnorch P, Sauer H, Knop-Gericke A, Schlogl R, Chamam M, Wootsch A, Canning AS, Gamman JJ, Jackson SD, McGregor J, Gladden LF (2006) Alkyne hydrogenation over Pd catalysts: a new paradigm. J Catal 242:26–37
Rayhel LH, Corey RL, Shane DT, Cowgill DF, Conradi MS (2011) Hydrogen NMR of palladium hydride: measuring the hydride-gas exchange rate. J Phys Chem C 115:4966–4970
Renouprez A, Fouilloux P, Stockmeyer R, Conrad HM, Goeltz G (1977) Diffusion of chemisorbed hydrogen on a nickel catalyst. Ber Bunsenges Phys Chem 81:429–432
Farkas A, Farkas L (1938) The catalytic interaction of ethylene and heavy hydrogen on platinum. J Am Chem Soc 60:22–28
Farkas A, Farkas L (1942) The mechanism of the catalytic conversion of para-hydrogen on nickel, platinum and palladium. J Am Chem Soc 64:1594–1599
Scholten JJF, Konvalinka JA (1966) Hydrogen-deuterium equilibration and parahydrogen and orthodeuterium conversion over palladium: kinetics and mechanism. J Catal 5:1–17
Somorjai GA, Zaera F (1982) Heterogeneous catalysis on the molecular scale. J Phys Chem 86:3070–3078
Bond GC (1997) The role of carbon deposits in metal-catalysed reactions of hydrocarbons. Appl Catal A 149:3–25
Zhivonitko VV, Kovtunov KV, Beck IE, Ayupov AB, Bukhtiyarov VI, Koptyug IV (2011) Role of different active sites in heterogeneous alkene hydrogenation on platinum catalysts revealed by means of parahydrogen-induced polarization. J Phys Chem C 115:13386–13391
Farin D, Avnir D (1988) The reaction dimension in catalysis on dispersed metals. J Am Chem Soc 110:2039–2045
McLeod AS (2004) The influence of catalyst geometry and topology on the kinetics of hydrocarbon reactions. Chem Eng Res Des 82:945–951
Borodzinski A (2001) The effect of palladium particle size on the kinetics of hydrogenation of acetylene-ethylene mixtures over Pd/SiO2 catalysts. Catal Lett 71:169–175
Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported monodisperse Pt particles. Catal Lett 126:10–19
Norskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171
Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175
Arnold H, Döbert F, Gaube J (2008) Selective hydrogenation of hydrocarbons. In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim
Bond GC (2005) Metal-catalysed reactions of hydrocarbons (fundamental and applied catalysis). Springer, New York
Olah GA, Molnar A (2003) Hydrocarbon chemistry. Wiley, New York
Rideal EK (1939) A note on a simple molecular mechanism for heterogeneous catalytic reactions. Proc Cambridge Philos Soc 35:130–132
Eley DD, Rideal EK (1940) Parahydrogen conversion on tungsten. Nature 146:401–402
Maetz P, Touroude R (1994) Mechanism of but-1-yne hydrogenation on platinum catalysts: deuterium tracer study. J Mol Catal 91:259–275
Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethane. Chem Eng Process 32:1–7
Jackson SD, Casey NJ (1995) Hydrogenation of propyne over palladium catalysts. J Chem Soc Faraday Trans 91:3269–3274
Kennedy DR, Webb G, Jackson SD, Lennon D (2004) Propyne hydrogenation over alumina-supported palladium and platinum catalysts. Appl Catal A 259:109–120
Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229
Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J Phys Chem C 112:17814–17819
Koptyug IV, Zhivonitko VV, Kovtunov KV (2010) New perspectives for parahydrogen-induced polarization in liquid phase heterogeneous hydrogenation: an aqueous phase and ALTADENA study. Chemphyschem 11:3086–3088
Balu AM, Duckett SB, Luque R (2009) Para-hydrogen induced polarisation effects in liquid phase hydrogenations catalysed by supported metal nanoparticles. Dalton Trans 5074–5076
Hovener J-B, Chekmenev EY, Harris KC, Perman WH, Robertson LW, Ross BD, Bhattacharya P (2009) PASADENA hyperpolarization of 13C biomolecules: equipment design and installation. MAGMA 22:111–121
Waddell KW, Coffey AM, Chekmenev EY (2011) In situ detection of PHIP at 48 mT: demonstration using a centrally controlled polarizer. J Am Chem Soc 133:97–101
Roth M, Kindervater P, Raich H-P, Bargon J, Spiess HW, Munnemann K (2010) Continuous 1H and 13C signal enhancement in NMR and MRI using parahydrogen and hollow-fiber membranes. Angew Chem Int Ed 49:8358–8362
Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon, Oxford
Moule AJ, Spence MM, Han S, Seeley JA, Pierce KL, Saxena S, Pines A (2003) Amplification of xenon NMR and MRI by remote detection. Proc Natl Acad Sci USA 100:9122–9127
Seeley JA, Han S, Pines A (2004) Remotely detected high-field MRI of porous samples. J Magn Reson 167:282–290
Granwehr J, Harel E, Han S, Garcia S, Pines A (2005) Time-of-flight flow imaging using NMR remote detection. Phys Rev Lett 95:075503
Hilty C, McDonnell EE, Granwehr J, Pierce KL, Han S, Pines A (2005) Microfluidic gas-flow profiling using remote-detection NMR. Proc Natl Acad Sci USA 102:14960–14963
McDonnell EE, Han S-I, Hilty C, Pierce KL, Pines A (2005) NMR analysis on microfluidic devices by remote detection. Anal Chem 77:8109–8114
Telkki V-V, Zhivonitko VV (2011) Analysis of remote detection travel time curves measured from microfluidic channels. J Magn Reson 210:238–245
Zhivonitko V, Telkki V-V, Koptyug IV (2012) Characterization of microfluidic gas reactors using remote-detection MRI and parahydrogen-induced polarization. Angew Chem Int Ed 51:8054–8058
Carravetta M, Johannessen OG, Levitt MH (2004) Beyond the T1 limit: singlet nuclear spin states in low magnetic field. Phys Rev Lett 92:153003
Carravetta M, Levitt MH (2004) Long-lived nuclear spin states in high-field solution NMR. J Am Chem Soc 126:6228–6229
Sharma R, Bouchard LS (2012) Strongly hyperpolarized gas from parahydrogen by rational design of ligand-capped nanoparticles. Sci Rep 2:277
Reineri F, Viale A, Dastru W, Gobetto R, Aime S (2011) How to design 13C para-hydrogen-induced polarization experiments for MRI applications. Contrast Media Mol Imaging 6:77–84
Carson PJ, Bowers CR, Weitekamp DP (2001) The PASADENA effect at a solid surface: high-sensitivity nuclear magnetic resonance of hydrogen chemisorption. J Am Chem Soc 123:11821–11822
Tayler MCD, Levitt MH (2011) Singlet nuclear magnetic resonance of nearly-equivalent spins. Phys Chem Chem Phys 13:5556–5560
Tayler MCD, Levitt MH (2011) Paramagnetic relaxation of nuclear singlet states. Phys Chem Chem Phys 13:9128–9130
Warren WS, Jenista E, Branca RT, Chen X (2009) Increasing hyperpolarized spin lifetimes through true singlet eigenstates. Science 323:1711–1714
Gloggler S, Muller R, Colell J, Emondts M, Dabrowski M, Blumich B, Appelt S (2011) Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas. Phys Chem Chem Phys 13:13759–13764
Reineri F, Santelia D, Viale A, Cerutti E, Poggi L, Tichy T, Premkumar SSD, Gobetto R, Aime S (2010) Para-hydrogenated glucose derivatives as potential 13C-hyperpolarized probes for magnetic resonance imaging. J Am Chem Soc 132:7186–7193
Chekmenev EY, Hovener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, Ross BD, Weitekamp DP (2008) PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy. J Am Chem Soc 130:4212–4213
Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY (2012) PASADENA hyperpolarized 13C phospholactate. J Am Chem Soc 134:3957–3960
Roth M, Koch A, Kindervater P, Bargon J, Spiess HW, Munnemann K (2010) 13C hyperpolarization of a barbituric acid derivative via parahydrogen induced polarization. J Magn Reson 204:50–55
Aime S, Dastru W, Gobetto R, Viale A (2005) para-Hydrogenation of unsaturated moieties on poly(lysine) derived substrates for the development of novel hyperpolarized MRI contrast agents. Org Biomol Chem 3:3948–3954
Trantzschel T, Bernarding J, Plaumann M, Lego D, Gutmann T, Ratajczyk T, Dillenberger S, Buntkowsky G, Bargon J, Bommerich U (2012) Parahydrogen induced polarization in face of keto-enol tautomerism: proof of concept with hyperpolarized ethanol. Phys Chem Chem Phys 14:5601–5604
Kadlecek S, Emami K, Ishii M, Rizi R (2010) Optimal transfer of spin-order between a singlet nuclear pair and a heteronucleus. J Magn Reson 205:9–13
Reineri F, Bouguet-Bonnet S, Canet D (2011) Creation and evolution of net proton hyperpolarization arising from para-hydrogenation. J Magn Reson 210:107–112
Bretschneider C, Karabanov A, Nielsen NC, Kockenberger W (2012) Conversion of parahydrogen induced longitudinal two-spin order to evenly distributed single spin polarisation by optimal control pulse sequences. J Chem Phys 136:094201
Johannesson H, Axelsson O, Karlsson M (2004) Transfer of para-hydrogen spin order into polarization by diabatic field cycling. CR Phys 5:315–324
Chekmenev EY, Norton VA, Weitekamp DP, Bhattacharya P (2009) Hyperpolarized 1H NMR employing low gamma nucleus for spin polarization storage. J Am Chem Soc 131:3164–3165
Goldman M, Johannesson H (2005) Conversion of a proton pair para order into 13C polarization by RF irradiation, for use in MRI. CR Phys 6:575–581
Duckett SB, Newell CL, Eisenberg R (1993) More than INEPT: parahydrogen and INEPT+ give unprecedented resonance enhancement to 13C by direct 1H polarisation transfer. J Am Chem Soc 115:1156–1157
Haake M, Natterer J, Bargon J (1996) Efficient NMR pulse sequences to transfer the parahydrogen-induced polarization to hetero nuclei. J Am Chem Soc 118:8688–8691
Aime S, Gobetto R, Reineri F, Canet D (2003) Hyperpolarization transfer from parahydrogen to deuterium via carbon-13. J Chem Phys 119:8890–8896
Aime S, Gobetto R, Reineri F, Canet D (2006) Polarization transfer from para-hydrogen to heteronuclei: effect of H/D substitution. The case of AA′X and A2A′2X spin systems. J Magn Reson 178:184–192
Kuhn LT, Bargon J (2007) Transfer of parahydrogen-induced hyperpolarization to heteronuclei. Top Curr Chem 276:25–68
Bommerich U, Trantzschel T, Mulla-Osman S, Buntkowsky G, Bargond J, Bernarding J (2010) Hyperpolarized 19F-MRI: parahydrogen-induced polarization and field variation enable 19F-MRI at low spin density. Phys Chem Chem Phys 12:10309–10312
Acknowledgments
This work was partially supported by the grants from RFBR (## 11-03-93995-CSIC-a, RFBR 11-03-00248-a, RFBR 12-03-00403-a), RAS (# 5.1.1), SB RAS (## 60, 61, 57, 122), the program of support of leading scientific schools (# NSh-2429.2012.3), and the program of the Russian Government to support leading scientists (# 11.G34.31.0045).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kovtunov, K.V., Zhivonitko, V.V., Skovpin, I.V., Barskiy, D.A., Koptyug, I.V. (2012). Parahydrogen-Induced Polarization in Heterogeneous Catalytic Processes. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_371
Download citation
DOI: https://doi.org/10.1007/128_2012_371
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39727-1
Online ISBN: 978-3-642-39728-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)