Skip to main content

Stochastic Mirror Symmetry Breaking: Theoretical Models and Simulation of Experiments

  • Chapter
  • First Online:
Biochirality

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 333))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guijarro A, Yus M (2009) The origin of chirality in the molecules of life. RSC, Cambridge

    Google Scholar 

  2. Kondepudi D, Prigogine I, Nelson G (1985) Phys Lett A 111:29

    Article  Google Scholar 

  3. Avetisov V, Kuz’min V, Anikin S (1987) J Chem Phys 112:179

    CAS  Google Scholar 

  4. Weissbuch I, Leiserowitz L, Lahav M (2005) Top Curr Chem 259:123

    Article  CAS  Google Scholar 

  5. Weissbuch I, Addadi L, Berkovitch-Yellin Z, Gati E, Lahav M, Leiserowitz L (1984) Nature 310:161

    Article  CAS  Google Scholar 

  6. Weissbuch I, Addadi L, Leiserowitz L, Lahav M (1988) J Am Chem Soc 110:561

    Article  CAS  Google Scholar 

  7. Weissbuch I, Lahav M (2011) Chem Rev 111(5):3236

    Article  CAS  Google Scholar 

  8. Soai K, Shibata KT, Morioka H, Choji K (1995) Nature 378:767

    Article  CAS  Google Scholar 

  9. Blanco C, Stich M, Hochberg D (2011) Chem Phys Lett 505:140

    Article  CAS  Google Scholar 

  10. Frank FC (1953) Biochim Biophys Acta 11:459

    Article  CAS  Google Scholar 

  11. Mason S (1985) Nature 314:400

    Article  Google Scholar 

  12. Seelig FF (1971) J Theor Biol 31:355

    Article  CAS  Google Scholar 

  13. Decker P (1974) J Mol Evol 4:49

    Article  CAS  Google Scholar 

  14. Hochstim AR (1975) Orig Life 6:317

    Article  CAS  Google Scholar 

  15. Fajszi F, Czëgë J (1981) Orig Life 11:143

    Article  CAS  Google Scholar 

  16. Tennakone K (1984) Chem Phys Lett 105:444

    Article  CAS  Google Scholar 

  17. Gutman I, Babović V, Jokić S (1988) Chem Phys Lett 144:187

    Article  CAS  Google Scholar 

  18. Gutman I, Todorović D (1992) Chem Phys Lett 195:62

    Article  CAS  Google Scholar 

  19. Gutman I, Todorović D, Vučković M (1993) Chem Phys Lett 216:447

    Article  CAS  Google Scholar 

  20. Todorović D, Gutman I, Radulović M (2003) Chem Phys Lett 372:464

    Article  Google Scholar 

  21. Mason SF (1991) Chemical evolution. Oxford University Press, Oxford

    Google Scholar 

  22. Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K (2007) Chirality 19:589

    Article  CAS  Google Scholar 

  23. Crusats J, Hochberg D, Moyano A, Ribó JM (2009) Chemphyschem 10:2123

    Article  CAS  Google Scholar 

  24. Blanco C, Hochberg D (2011) Phys Chem Chem Phys 13:12920

    Article  CAS  Google Scholar 

  25. Weissbuch I, Illos RA, Bolbach G, Lahav M (2009) Acc Chem Res 42:1128

    Article  CAS  Google Scholar 

  26. Hitz T, Luisi PL (2003) Helv Chim Acta 86:1423

    Article  CAS  Google Scholar 

  27. Ribó JM, Hochberg D (2008) Phys Lett A 373:111

    Article  Google Scholar 

  28. Morozov LL, Kuzmin VV, Goldanskii VI (1983) Orig Life 13:119

    Article  CAS  Google Scholar 

  29. Kondepudi DK, Nelson GW (1984) Physica A 125:465

    Article  Google Scholar 

  30. Scott SK (1994) Oscillations, waves, and chaos in chemical kinetics. Oxford University Press, Oxford

    Google Scholar 

  31. Landau E, Wolf SG, Levanon M, Leiserowitz L, Lahav M, Sagiv J (1989) J Am Chem Soc 111:1436

    Article  CAS  Google Scholar 

  32. Weissbuch I, Lahav M, Leiserowitz L (2003) Cryst Growth Des 3:125

    Article  CAS  Google Scholar 

  33. Ruiz-Bermejo M, Rivas L, Palancin A, Menor-Salvan C, Osuna-Esteban S (2011) Orig Life Evol Biosph 41(4):331

    Article  CAS  Google Scholar 

  34. Kondepudi D, Kaufman R, Singh N (1990) Science 250:975

    Article  CAS  Google Scholar 

  35. Viedma C (2005) Phys Rev Lett 94:065504

    Article  Google Scholar 

  36. Weissbuch I, Torbeev VY, Leiserowitz L, Lahav M (2005) Angew Chem Int Ed 44:3226

    Article  CAS  Google Scholar 

  37. Joyce G, Visser G, van Boeckel C, van Boom J, Orgel L, van Westrenen J (1984) Nature 310:602

    Article  CAS  Google Scholar 

  38. Avetisov V, Goldanskii V (1996) Proc Natl Acad Sci USA 93:11435

    Article  CAS  Google Scholar 

  39. Kondepudi D, Asakura K (2001) Acc Chem Res 34:946

    Article  CAS  Google Scholar 

  40. Cintas P (2002) Angew Chem Int Ed 41:1139

    Article  CAS  Google Scholar 

  41. Huber C, Eisenreich W, Hecht S, Wachtershauser G (2003) Science 301:938

    Article  CAS  Google Scholar 

  42. Leman L, Orgel L, Ghadiri M (2004) Science 306:283

    Article  CAS  Google Scholar 

  43. Huber C, Wachtershauser G (1997) Science 276:245

    Article  CAS  Google Scholar 

  44. Pascal R, Boiteau L, Commeyras A (2005) Top Curr Chem 259:69

    Article  CAS  Google Scholar 

  45. Lundberg R, Doty P (1957) J Am Chem Soc 79:3961

    Article  CAS  Google Scholar 

  46. Idelson M, Blout E (1957) J Am Chem Soc 79:3948

    Article  CAS  Google Scholar 

  47. Akaike T, Inoue S (1976) Biopolymers 15:1863

    Article  CAS  Google Scholar 

  48. Blair N, Bonner W (1980) Orig Life Evol Biosph 10:255

    Article  CAS  Google Scholar 

  49. Blair N, Bonner W (1981) Orig Life Evol Biosph 11:331

    Article  CAS  Google Scholar 

  50. Kricheldorf K (2006) Angew Chem Int Ed 45:5752

    Article  CAS  Google Scholar 

  51. Ehler K, Orgel L (1976) Biochim Biophys Acta 434:233

    Article  CAS  Google Scholar 

  52. Hill A, Bohler C, Orgel L (1998) Orig Life Evol Biosph 28:235

    Article  CAS  Google Scholar 

  53. Brack A (1987) Orig Life Evol Biosph 17:367

    Article  CAS  Google Scholar 

  54. Kanazawa H (1992) Polymer 33:2557

    Article  CAS  Google Scholar 

  55. Kanazawa H, Ohashi Y (1996) Mol Cryst Liq Cryst 277:45

    Article  Google Scholar 

  56. Hitz T, Blocher M, Walde P, Luisi P (2001) Macromolecules 34:2443

    Article  CAS  Google Scholar 

  57. Hitz T, Luisi P (2002) Helv Chim Acta 85:3975

    Article  CAS  Google Scholar 

  58. Blocher M, Hitz T, Luisi P (2001) Helv Chim Acta 84:842

    Article  CAS  Google Scholar 

  59. Zepik H, Shavit E, Tang M, Jensen T, Kjaer K, Bolbach G, Leiserowitz L, Weissbuch I, Lahav M (2002) Science 295:1266

    Article  CAS  Google Scholar 

  60. Weissbuch I, Zepik H, Bolbach G, Shavit E, Tang M, Jensen T, Kjaer K, Leiserowitz L, Lahav M (2003) Chem Eur J 9:1782

    Article  CAS  Google Scholar 

  61. Blanco C, Hochberg D (2012) Phys Chem Chem Phys 14:2301

    Article  CAS  Google Scholar 

  62. Wattis JAD, Coveney PV (2007) J Phys Chem B 111:9546

    Article  CAS  Google Scholar 

  63. Mauksch M, Tsogoeva SB, Wei S-W, Martinova IM (2007) Chirality 19:816

    Article  CAS  Google Scholar 

  64. Mauksch M, Tsogoeva SB (2008) Chemphyschem 9:2359

    Article  CAS  Google Scholar 

  65. Muñoz Caro G, Meierheinrich U, Schutte W, Barbier B, Arcones Segovia A, Rosenbauer H, Thiemann WHP, Brack A, Greenberg J (2002) Nature 416:403

    Article  Google Scholar 

  66. Deamer DW (1997) Microb Mol Biol Rev 61:239

    CAS  Google Scholar 

  67. Segre D, Ben-Eli D, Deamer DW, Lancet D (2001) Orig Life Evol Biosph 31:119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Josep M. Ribó (University of Barcelona) and to Professor Meir Lahav (Weizmann Institute of Science) for collaboration and for many useful discussions over the past few years which have helped to shape and temper our own perspectives on the subject of chiral symmetry breaking and chiral amplification at the molecular level. DH acknowledges the Grant AYA2009-13920-C02-01 from the Ministerio de Ciencia e Innovación (Spain) and forms part of the COST Action CM07030: Systems Chemistry. CB acknowledges a Calvo-Rodés graduate student contract from the Instituto Nacional de Técnica Aeroespacial (INTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hochberg .

Editor information

Editors and Affiliations

Appendix

Appendix

The differential rate equations for the chiral copolymerization scheme [61] are collected here. We begin with the rate equations for the two enantiomers:

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{1,0}}^{\rm{A}}}}{{{\text{d}}t}} = - {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}\left( {2c_{{1,0}}^{\rm{A}} + \sum\limits_{{n = 2}}^{{N - 1}} {c_{{n,0}}^{\rm{A}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{1,n}}^{\rm{A}} + \sum\limits_{{r = 2}}^{{N - 2}} {\sum\limits_{{s = 1}}^{{N - 1 - r}} {c_{{r,s}}^{\rm{A}}} } } } } \right) \cr - {{k}_{{ba}}}c_{{1,0}}^{\rm{A}}\left( {\sum\limits_{{n = 2}}^{{N - 1}} {c_{{0,n}}^{\rm{B}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{n,1}}^{\rm{B}} + \sum\limits_{{s = 2}}^{{N - 2}} {\sum\limits_{{r = 1}}^{{N - 1 - s}} {c_{{r,s}}^{\rm{B}}} } } } } \right) \cr - {{k}_h}c_{{1,0}}^{\rm{A}}c_{{0,1}}^{\rm{B}} - {{k}_{{ha}}}c_{{1,0}}^{\rm{A}}{{c}_{{1,1}}} + k_{{aa}}^{*}\left( {2c_{{2,0}}^{\rm{A}} + \sum\limits_{{n = 3}}^N {c_{{n,0}}^{\rm{A}}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{2,n}}^{\rm{A}} + \sum\limits_{{r = 3}}^{{N - 1}} {\sum\limits_{{s = 1}}^{{N - r}} {c_{{r,s}}^{\rm{A}}} } } } \right) \cr + k_{{ba}}^{*}\left( {\sum\limits_{{n = 2}}^{{N - 1}} {c_{{1,n}}^{\rm{A}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{2,n}}^{\rm{A}} + \sum\limits_{{r = 3}}^{{N - 1}} {\sum\limits_{{s = 1}}^{{N - r}} {c_{{r,s}}^{\rm{A}}} } } } } \right) + k_h^{*}{{c}_{{1,1}}} + k_{{ha}}^{*}c_{{2,1}}^{\rm{A}},\end{array} $$
$$ \begin{array}{lll} \frac{{{\text{d}}c_{{0,1}}^{\rm{B}}}}{{{\text{d}}t}} = - {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}\left( {2c_{{0,1}}^{\rm{B}} + \sum\limits_{{n = 2}}^{{N - 1}} {c_{{0,n}}^{\rm{B}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{n,1}}^{\rm{B}} + \sum\limits_{{s = 2}}^{{N - 2}} {\sum\limits_{{r = 1}}^{{N - 1 - s}} {c_{{r,s}}^{\rm{B}}} } } } } \right) \cr - {{k}_{{ab}}}c_{{0,1}}^{\rm{B}}\left( {\sum\limits_{{n = 2}}^{{N - 1}} {c_{{n,0}}^{\rm{A}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{1,n}}^{\rm{A}} + \sum\limits_{{r = 2}}^{{N - 2}} {\sum\limits_{{s = 1}}^{{N - 1 - r}} {c_{{r,s}}^{\rm{A}}} } } } } \right) \cr - {{k}_h}c_{{1,0}}^{\rm{A}}c_{{0,1}}^{\rm{B}} - {{k}_{{hb}}}c_{{0,1}}^{\rm{B}}{{c}_{{1,1}}} + k_{{bb}}^{*}\left( {2c_{{0,2}}^{\rm{B}} + \sum\limits_{{n = 3}}^N {c_{{0,n}}^{\rm{B}}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{n,2}}^{\rm{B}} + \sum\limits_{{s = 3}}^{{N - 1}} {\sum\limits_{{r = 1}}^{{N - s}} {c_{{r,s}}^{\rm{B}}} } } } \right) \cr + k_{{ab}}^{*}\left( {\sum\limits_{{n = 2}}^{{N - 1}} {c_{{n,1}}^{\rm{B}} + \sum\limits_{{n = 2}}^{{N - 2}} {c_{{n,2}}^{\rm{B}} + \sum\limits_{{s = 3}}^{{N - 1}} {\sum\limits_{{r = 1}}^{{N - s}} {c_{{r,s}}^{\rm{B}}} } } } } \right) + k_h^{*}{{c}_{{1,1}}} + k_{{hb}}^{*}c_{{1,2}}^{\rm{B}}.\end{array} $$

The equations describing the concentration of the homopolymers, for 2 ≤ n ≤ N − 1:

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{n,0}}^{\rm{A}}}}{{{\text{d}}t}} = {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}\left( {c_{{n - 1,0}}^{\rm{A}} - c_{{n,0}}^{\rm{A}}} \right) - {{k}_{{ab}}}c_{{n,0}}^{\rm{A}}c_{{0,1}}^{\rm{B}} + k_{{aa}}^{*}\left( {c_{{n + 1,0}}^{\rm{A}} - c_{{n,0}}^{\rm{A}}} \right) + k_{{ab}}^{*}c_{{n,1}}^{\rm{B}}, \hfill \\\frac{{{\text{d}}c_{{0,n}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}\left( {c_{{0,n - 1}}^{\rm{B}} - c_{{0,n}}^{\rm{B}}} \right) - {{k}_{{ba}}}c_{{0,n}}^{\rm{B}}c_{{1,0}}^{\rm{A}} + k_{{bb}}^{*}\left( {c_{{0,n + 1}}^{\rm{B}} - c_{{0,n}}^{\rm{B}}} \right) + k_{{ba}}^{*}c_{{1,n}}^{\rm{A}}. \end{array} $$

It is necessary to treat the kinetic equations of the maximum length N homopolymers individually. Since these do not elongate further, they cannot directly react, and cannot be the product of an inverse reaction involving a longer chain:

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{N,0}}^{\rm{A}}}}{{{\text{d}}t}} = {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}c_{{N - 1,0}}^{\rm{A}} - k_{{aa}}^{*}c_{{N,0}}^{\rm{A}}, \hfill \\\frac{{{\text{d}}c_{{0,N}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}c_{{0,N - 1}}^{\rm{B}} - k_{{bb}}^{*}c_{{0,N}}^{\rm{B}}. \end{array} $$

The differential equations describing the concentration of each type of heteropolymer (included the heterodimer), for 2 ≤ n ≤ N − 2:

$$ \begin{array}{lll} \frac{{{\text{d}}{{c}_{{1,1}}}}}{{{\text{d}}t}} = {{k}_h}c_{{1,0}}^{\rm{A}}c_{{0,1}}^{\rm{B}} - {{k}_{{ha}}}{{c}_{{1,1}}}c_{{1,0}}^{\rm{A}} - {{k}_{{hb}}}{{c}_{{1,1}}}c_{{0,1}}^{\rm{B}} - k_h^{*}{{c}_{{1,1}}} + k_{{ha}}^{*}c_{{2,1}}^{\rm{A}} + k_{{hb}}^{*}c_{{1,2}}^{\rm{B}}, \hfill \cr \frac{{{\text{d}}c_{{1,n}}^{\rm{A}}}}{{{\text{d}}t}} = - {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}c_{{1,n}}^{\rm{A}} - {{k}_{{ab}}}c_{{0,1}}^{\rm{B}}c_{{1,n}}^{\rm{A}} + {{k}_{{ba}}}c_{{0,n}}^{\rm{B}}c_{{1,0}}^{\rm{A}} + k_{{aa}}^{*}c_{{2,n}}^{\rm{A}} + k_{{ab}}^{*}c_{{1,n + 1}}^{\rm{B}} - k_{{ba}}^{*}c_{{1,n}}^{\rm{A}}, \hfill \cr \frac{{{\text{d}}c_{{n,1}}^{\rm{B}}}}{{{\text{d}}t}} = - {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}c_{{n,1}}^{\rm{B}} - {{k}_{{ba}}}c_{{1,0}}^{\rm{A}}c_{{n,1}}^{\rm{B}} + {{k}_{{ab}}}c_{{n,0}}^{\rm{A}}c_{{0,1}}^{\rm{B}} + k_{{bb}}^{*}c_{{n,2}}^{\rm{B}} + k_{{ba}}^{*}c_{{n + 1,1}}^{\rm{A}} - k_{{ab}}^{*}c_{{n,1}}^{\rm{B}}. \end{array} $$

It is useful to treat individually the maximum length polymers N:

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{1,N - 1}}^{\rm{A}}}}{{dt}} = {{k}_{{ba}}}c_{{0,N - 1}}^{\rm{B}}c_{{1,0}}^{\rm{A}} - k_{{ba}}^{*}c_{{1,N - 1}}^{\rm{A}}, \hfill \\\frac{{{\text{d}}c_{{N - 1,1}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{ab}}}c_{{N - 1,0}}^{\rm{A}}c_{{0,1}}^{\rm{B}} - k_{{ab}}^{*}c_{{N - 1,1}}^{\rm{B}}. \end{array} $$

Each kind of trimer \( c_{{2,1}}^{\rm{A}} \) and \( c_{{1,2}}^{\rm{B}} \) must have its own differential equation in terms of k ha , k hb :

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{2,1}}^{\rm{A}}}}{{{\text{d}}t}} = - {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}c_{{2,1}}^{\rm{A}} - {{k}_{{ab}}}c_{{0,1}}^{\rm{B}}c_{{2,1}}^{\rm{A}} + {{k}_{{ha}}}{{c}_{{1,1}}}c_{{1,0}}^{\rm{A}} + k_{{aa}}^{*}c_{{3,1}}^{\rm{A}} + k_{{ab}}^{*}c_{{2,2}}^{\rm{B}} - k_{{ha}}^{*}c_{{2,1}}^{\rm{A}}, \hfill \\\frac{{{\text{d}}c_{{1,2}}^{\rm{B}}}}{{{\text{d}}t}} = - {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}c_{{1,2}}^{\rm{B}} - {{k}_{{ba}}}c_{{1,0}}^{\rm{A}}c_{{1,2}}^{\rm{B}} + {{k}_{{hb}}}{{c}_{{1,1}}}c_{{0,1}}^{\rm{B}} + k_{{bb}}^{*}c_{{1,3}}^{\rm{B}} + k_{{ba}}^{*}c_{{2,2}}^{\rm{A}} - k_{{hb}}^{*}c_{{1,2}}^{\rm{B}}. \end{array} $$

For 2 ≤ n ≤ N − 3:

$$ \frac{{{\text{d}}c_{{2,n}}^{\rm{A}}}}{{{\text{d}}t}} = {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}\left( {c_{{1,n}}^{\rm{A}} - c_{{2,n}}^{\rm{A}}} \right) - {{k}_{{ab}}}c_{{0,1}}^{\rm{B}}c_{{2,n}}^{\rm{A}} + {{k}_{{ba}}}c_{{1,n}}^{\rm{B}}c_{{1,0}}^{\rm{A}} + k_{{aa}}^{*}\left( {c_{{3,n}}^{\rm{A}} - c_{{2,n}}^{\rm{A}}} \right) + k_{{ab}}^{*}c_{{2,n + 1}}^{\rm{B}} - k_{{ba}}^{*}c_{{2,n}}^{\rm{A}}, $$
$$ \frac{{{\text{d}}c_{{n,2}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}\left( {c_{{n,1}}^{\rm{B}} - c_{{n,2}}^{\rm{B}}} \right) - {{k}_{{ba}}}c_{{1,0}}^{\rm{A}}c_{{n,2}}^{\rm{B}} + {{k}_{{ab}}}c_{{n,1}}^{\rm{A}}c_{{0,1}}^{\rm{B}} + k_{{bb}}^{*}\left( {c_{{n,3}}^{\rm{B}} - c_{{n,2}}^{\rm{B}}} \right) + k_{{ba}}^{*}c_{{n + 1,2}}^{\rm{A}} - k_{{ab}}^{*}c_{{n,2}}^{\rm{B}}. $$

As before, the equations corresponding to the maximum length N homopolymers are

$$ \begin{array}{lll} \hfill \frac{{{\text{d}}c_{{2,N - 2}}^{\rm{A}}}}{{{\text{d}}t}} = {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}c_{{1,N - 2}}^{\rm{A}} + {{k}_{{ba}}}c_{{1,N - 2}}^{\rm{B}}c_{{1,0}}^{\rm{A}} - k_{{aa}}^{*}c_{{2,N - 2}}^{\rm{A}} - k_{{ba}}^{*}c_{{2,N - 2}}^{\rm{A}}, \\\hfill \frac{{{\text{d}}c_{{N - 2,2}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}c_{{N - 2,1}}^{\rm{B}} + {{k}_{{ab}}}c_{{N - 2,1}}^{\rm{A}}c_{{0,1}}^{\rm{B}} - k_{{bb}}^{*}c_{{N - 2,2}}^{\rm{B}} - k_{{ab}}^{*}c_{{N - 2,2}}^{\rm{B}}.\end{array} $$

For 3 ≤ r ≤ N − 2 and 1 ≤ s ≤ N − 1 − r:

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{r,s}}^{\rm{A}}}}{{{\text{d}}t}} = {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}\left( {c_{{r - 1,s}}^{\rm{A}} - c_{{r,s}}^{\rm{A}}} \right) - {{k}_{{ab}}}c_{{0,1}}^{\rm{B}}c_{{r,s}}^{\rm{A}} + {{k}_{{ba}}}c_{{r - 1,s}}^{\rm{B}}c_{{1,0}}^{\rm{A}}, \\\quad +\; k_{{aa}}^{*}\left( {c_{{r + 1,s}}^{\rm{A}} - c_{{r,s}}^{\rm{A}}} \right) + k_{{ab}}^{*}c_{{r,s + 1}}^{\rm{B}} - k_{{ba}}^{*}c_{{r,s}}^{\rm{A}}.\end{array} $$

For 3 ≤ s ≤ N − 2 and 1 ≤ r ≤ N − 1 − s:

$$ \begin{array}{lll} \frac{{{\text{d}}c_{{r,s}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}\left( {c_{{r,s - 1}}^{\rm{B}} - c_{{r,s}}^{\rm{B}}} \right) - {{k}_{{ba}}}c_{{1,0}}^{\rm{A}}c_{{r,s}}^{\rm{B}} + {{k}_{{ab}}}c_{{r,s - 1}}^{\rm{A}}c_{{0,1}}^{\rm{B}} \\\quad +\; k_{{bb}}^{*}\left( {c_{{r,s + 1}}^{\rm{B}} - c_{{r,s}}^{\rm{B}}} \right) + k_{{ba}}^{*}c_{{r + 1,s}}^{\rm{A}} - k_{{ab}}^{*}c_{{r,s}}^{\rm{B}}.\end{array} $$

For 3 ≤ n ≤ N − 1:

$$ \begin{array}{lll} \hfill \frac{{{\text{d}}c_{{n,N - n}}^{\rm{A}}}}{{{\text{d}}t}} = {{k}_{{aa}}}c_{{1,0}}^{\rm{A}}c_{{n - 1,N - n}}^{\rm{A}} + {{k}_{{ba}}}c_{{n - 1,N - n}}^{\rm{B}}c_{{1,0}}^{\rm{A}} - k_{{aa}}^{*}c_{{n,N - n}}^{\rm{A}} - k_{{ba}}^{*}c_{{n,N - n,}}^{\rm{A}} \\\hfill \frac{{{\text{d}}c_{{N - n,n}}^{\rm{B}}}}{{{\text{d}}t}} = {{k}_{{bb}}}c_{{0,1}}^{\rm{B}}c_{{N - n,n - 1}}^{\rm{B}} + {{k}_{{ab}}}c_{{N - n,n - 1}}^{\rm{A}}c_{{0,1}}^{\rm{B}} - k_{{bb}}^{*}c_{{N - n,n}}^{\rm{B}} - k_{{ab}}^{*}c_{{N - n,n}}^{\rm{B}}.\end{array} $$

The complete reaction scheme must satisfy mass conservation in a closed system, implying that the mass variation rate must be strictly zero:

$$ \begin{array}{lll} 0 = 2{{{\dot{c}}}_{{1,1}}} + 3\left( {\dot{c}_{{2,1}}^{\rm{A}} + \dot{c}_{{1,2}}^{\rm{B}}} \right) + \sum\limits_{{n = 1}}^N {n\left( {\dot{c}_{{n,0}}^{\rm{A}} + \dot{c}_{{0,n}}^{\rm{B}}} \right) + } \sum\limits_{{n = 2}}^{{N - 1}} {(n + 1)} \left( {\dot{c}_{{1,n}}^{\rm{A}} + \dot{c}_{{n,1}}^{\rm{B}}} \right) \cr + \sum\limits_{{n = 2}}^{{N - 2}} {(n + 2)} \left( {\dot{c}_{{2,n}}^{\rm{A}} + \dot{c}_{{n,2}}^{\rm{B}}} \right) + \sum\limits_{{r = 3}}^{{N - 1}} {\sum\limits_{{s = 1}}^{{N - 1}} {(r + s)} \left( {\dot{c}_{{r,s}}^{\rm{A}} + \dot{c}_{{r,s}}^{\rm{B}}} \right)},\end{array} $$

where the overdot stands for the time-derivative.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanco, C., Hochberg, D. (2012). Stochastic Mirror Symmetry Breaking: Theoretical Models and Simulation of Experiments. In: Cintas, P. (eds) Biochirality. Topics in Current Chemistry, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_362

Download citation

Publish with us

Policies and ethics