Skip to main content

New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory

Part of the Topics in Current Chemistry book series (TOPCURRCHEM,volume 339)

Abstract

In this chapter we discuss some of the recent work directed at further understanding the chemistry of our atmosphere in regions of low NO x , such as forests, where there are considerable emissions of biogenic volatile organic compounds, for example reactive hydrocarbons such as isoprene. Recent field measurements have revealed some surprising results, for example that OH concentrations are measured to be considerably higher than can be understood using current chemical mechanisms. It has also not proven possible to reconcile field measurements of other species, such as oxygenated VOCs, or emission fluxes of isoprene, using current mechanisms. Several complementary approaches have been brought to bear on formulating a solution to this problem, namely field studies using state-of-the-art instrumentation, chamber studies to isolate sub-sections of the chemistry, laboratory studies to measure rate coefficients, product branching ratios and photochemical yields, the development of ever more detailed chemical mechanisms, and high quality ab initio quantum theory to calculate the energy landscape for relevant reactions and to enable the rates of formation of products and intermediates for previously unknown and unstudied reactions to be predicted. The last few years have seen significant activity in this area, with several contrasting postulates put forward to explain the experimental findings, and here we attempt to synthesise the evidence and ideas.

Keywords

  • Hydroxyl radical
  • Isoprene oxidation
  • Field measurements
  • Box model
  • Biogenic emissions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/128_2012_359
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-41215-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461–1738

    CAS  Google Scholar 

  2. Sander, S. P., J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G.K. Moortgat, V. L. Orkin and P. H. Wine “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17,” JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, 2011 http://jpldataeval.jpl.nasa.gov.

  3. Paulot F, Crounse JD, Kjaerdaard HG, Kroll JH, Seinfeld JH, Wennberg PO (2009) Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmos Chem Phys 9:1479–1501

    CAS  Google Scholar 

  4. Butler TM, Taraborrelli D, Brühl C, Fischer H, Harder H, Martinez M, Williams J, Lawrence MG, Lelieveld J (2008) Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign. Atmos Chem Phys 8:4529–4546

    CAS  Google Scholar 

  5. Carslaw N, Creasey DJ, Harrison D, Heard DE, Hunter MC, Jacobs PJ, Jenkin ME, Lee JD, Lewis AC, Pilling MJ, Saunders SM, Seakins PW (2001) OH and HO2 radical chemistry in a forested region of north-western Greece. Atmos Environ 35:4725–4737

    CAS  Google Scholar 

  6. Hofzumahaus A, Rohrer F, Lu K, Bohn B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S, Shao M, Zeng L, Wahner A, Zhang Y (2009) Amplified trace gas removal in the troposphere. Science 324:1702–1704

    CAS  Google Scholar 

  7. Kubistin D, Harder H, Martinez M, Rudolf M, Sander R, Bozem H, Eerdekens G, Fischer H, Gurk C, Klupfel T, Konigstedt R, Parchatka U, Schiller CL, Stickler A, Taraborrelli D, Williams J, Lelieveld J (2010) Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA. Atmos Chem Phys 10:9705–9728. doi:10.5194/acp-10-9705-2010

    CAS  Google Scholar 

  8. Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:737–740

    CAS  Google Scholar 

  9. Martinez M, Harder H, Kubistin D, Rudolf M, Bozem H, Eerdekens G, Fischer H, Klupfel T, Gurk C, Konigstedt R, Parchatka U, Schiller CL, Stickler A, Williams J, Lelieveld J (2010) Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements. Atmos Chem Phys 10:3759–3773. doi:10.5194/acp-10-3759

    CAS  Google Scholar 

  10. Ren X, Olson JR, Crawford J, Brune WH, Mao J, Long RB, Chen Z, Chen G, Avery MA, Sachse GW, Barrick JD, Diskin GS, Huey G, Fried A, Cohen RC, Heikes B, Wennberg PO, Singh HB, Blake D, Shetter R (2008) HOx chemistry during INTEX-A 2004: observations, model calculation and comparison with previous studies. J Geophys Res Atmos 113:D05310

    Google Scholar 

  11. Stone D, Evans MJ, Edwards PM, Commane R, Ingham T, Rickard AR, Brookes DM, Hopkins J, Leigh RJ, Lewis AC, Monks PS, Oram D, Reeves CE, Stewart D, Heard DE (2011) Isoprene oxidation mechanisms: measurements and modelling of OH and HO(2) over a South-East Asian tropical rainforest during the OP3 field campaign. Atmos Chem Phys 11:6749–6771

    CAS  Google Scholar 

  12. Tan D, Faloona I, Simpas JB, Brune W, Shepson PB, Couch TL, Sumner AL, Carroll MA, Thornberry T, Apel E, Riemer D, Stockwell W (2001) HOx budgets in a deciduous forest: results from the PROPHET summer 1998 campaign. J Geophys Res Atmos 106:24407–24427

    CAS  Google Scholar 

  13. Thornton JA, Wooldridge PJ, Cohen RC, Martinez M, Harder H, Brune WH, Williams EJ, Roberts JM, Fehsenfeld FC, Hall SR, Shetter RE, Wert BP, Fried A (2002) Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. J Geophys Res Atmos 107:4146

    Google Scholar 

  14. Whalley LK, Edwards PM, Furneaux KL, Goddard A, Ingham T, Evans MJ, Stone D, Hopkins JR, Jones CE, Karunaharan A, Lee JD, Lewis AC, Monks PS, Moller S, Heard DE (2011) Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest. Atmos Chem Phys 11:7223–7233

    CAS  Google Scholar 

  15. Heard DE, Pilling MJ (2003) Measurement of OH and HO2 in the troposphere. Chem Rev 103:5163–5198

    CAS  Google Scholar 

  16. Fuchs H, Bohn B, Hofzumahaus A, Holland F, Lu KD, Nehr S, Rohrer F, Wahner A (2010) Detection of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals. Atmos Meas Tech 4:1209–1225

    Google Scholar 

  17. Mao J, Ren X, Brune W, Van Duin DM, Cohen RC, Park JH, Goldstein A, Paulot F, Beaver MR, Crounse JD, Wennberg PO, DiGangi JP, Henry SB, Keutsch FN, Park C, Schade GW, Wolfe GM, Thornton JA (2012) Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmos Chem Phys Discuss 12:6715–6744

    Google Scholar 

  18. Creasey DJ, Heard DE, Lee JD (2001) OH and HO2 measurements in a forested region of north-western Greece. Atmos Environ 35:4713–4724

    CAS  Google Scholar 

  19. Lelieveld J, Peters W, Dentener F, Krol MC (2002) Stability of tropospheric hydroxyl chemistry. J Geophys Res Atmos 107:4715

    Google Scholar 

  20. Lelieveld J, Dentener F, Peters W, Krol MC (2004) On the role of hydroxyl radicals in the self cleansing capacity of the troposphere. Atmos Chem Phys 4:2337–2344

    CAS  Google Scholar 

  21. Wang YH, Jacob DJ, Logan JA (1998) Global simulation of tropospheric O-3-NOx-hydrocarbon chemistry. 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. J Geophys Res Atmos 103:10757–10767

    CAS  Google Scholar 

  22. Karl T, Guenther A, Turnipseed A, Tyndall G, Artaxo P, Martin S (2009) Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmos Chem Phys 9:7753–7767

    CAS  Google Scholar 

  23. Dillon TJ, Crowley JN (2008) Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmos Chem Phys 8:4877–4889

    CAS  Google Scholar 

  24. Hasson AS, Tyndall GS, Orlando JJ (2004) A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals. J Phys Chem A 108:5979–5989

    CAS  Google Scholar 

  25. Jenkin ME, Hurley MD, Wallington TJ (2007) Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Phys Chem Chem Phys 9:3149–3162

    CAS  Google Scholar 

  26. Jenkin ME, Hurley MD, Wallington TJ (2008) Investigation of the radical product channel of the CH3C(O) CH2O2 + HO2 reaction in the gas phase. Phys Chem Chem Phys 10:4274–4280

    CAS  Google Scholar 

  27. Jenkin ME, Hurley MA, Wallington TJ (2010) Investigation of the radical product channel of the CH3OCH2O2 + HO2 reaction in the gas phase. J Phys Chem A 114:408–416

    CAS  Google Scholar 

  28. Le Crane JP, Rayez MT, Rayez JC, Villenave E (2006) A reinvestigation of the kinetics and the mechanism of the CH3C(O)O-2 + HO2 reaction using both experimental and theoretical approaches. Phys Chem Chem Phys 8:2163–2171

    Google Scholar 

  29. Pugh T, MacKenzie AR, Hewitt CN, Langford B, Edwards PM, Furneaux KL, Heard DE, Hopkins J, Jones CE, Karunaharan A, Lee JD, Mills G, Misztal P, Moller S, Monks PS, Whalley LK (2010) Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. Atmos Chem Phys 10:279–298

    CAS  Google Scholar 

  30. Pugh TAM, MacKenzie AR, Langford B, Nemitz E, Misztal PK, Hewitt CN (2011) The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest. Atmos Chem Phys 11:4121–4134

    CAS  Google Scholar 

  31. Hewitt CN, Lee JD, MacKenzie AR, Barkley MP, Carslaw N, Carver GD, Chappell NA, Coe H, Collier C, Commane R, Davies F, Davison B, Di Carlo P, Di Marco CF, Dorsey JR, Edwards PM, Evans MJ, Fowler D, Furneaux KL, Gallagher M, Guenther A, Heard DE, Helfter C, Hopkins J, Ingham T, Irwin M, Jones C, Karunaharan A, Langford B, Lewis AC, Lim SF, MacDonald SM, Mahajan AS, Malpass S, McFiggans G, Mills G, Misztal P, Moller S, Monks PS, Nemitz E, Nicolas-Perea V, Oetjen H, Oram DE, Palmer PI, Phillips GJ, Pike R, Plane JMC, Pugh T, Pyle JA, Reeves CE, Robinson NH, Stewart D, Stone D, Whalley LK, Yin X (2010) Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmos Chem Phys 10:169–199

    CAS  Google Scholar 

  32. de Arellano JV-G, Patton EG, Karl T, van den Dries K, Barth MC, Orlando JJ (2011) The role of boundary layer dynamics on the diurnal evolution of isoprene and the hydroxyl radical over tropical forests. J Geophys Res Atmos 116:D07304

    Google Scholar 

  33. Dlugi R, Berger M, Zelger M, Hofzumahaus A, Siese M, Holland F, Wisthaler A, Grabmer W, Hansel A, Koppmann R, Kramm G, Mollmann-Coers M, Knaps A (2010) Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest. Atmos Chem Phys 10:6215–6235

    CAS  Google Scholar 

  34. Ouwersloot HG, de Arellano JV-G, van Heerwaarden CC, Ganzeveld LN, Krol MC, Lelieveld J (2011) On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmos Chem Phys 11:10681–10704

    CAS  Google Scholar 

  35. Paulot F, Crounse JD, Kjaergaard HG, Kurten A, St Clair JM, Seinfeld JH, Wennberg PO (2009) Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325:730–733

    CAS  Google Scholar 

  36. Carter WPL (1996) Condensed atmospheric photooxidation mechanisms for isoprene. Atmos Environ 30:4275–4290

    CAS  Google Scholar 

  37. Karl M, Dorn H-P, Holland F, Koppmann R, Poppe D, Rupp L, Schaub A, Wahner A (2006) Product study of the reaction of OH radicals with isoprene in the atmosphere simulation chamber SAPHIR. J Atmos Chem 55:167–187

    CAS  Google Scholar 

  38. Navarro MA, Dusanter S, Hites RA, Stevens PS (2011) Radical dependence of the yields of methacrolein and methyl vinyl ketone from the OH-initiated oxidation of Isoprene under NOx-free conditions. Environ Sci Technol 45:923–929

    CAS  Google Scholar 

  39. Saunders S, Jenkin M, Derwent R, Pilling M (2003) Protocol for the development of the Master Chemical Mechanism, MCM v3 (part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos Chem Phys 3:161–180

    CAS  Google Scholar 

  40. Da Silva G, Graham C, Wang Z-F (2010) Unimolecular beta-hydroxyperoxy radical decomposition with OH recycling in the photochemical oxidation of isoprene. Environ Sci Technol 44:250–256

    Google Scholar 

  41. Nguyen TL, Vereecken L, Peeters J (2010) HO(x) regeneration in the oxidation of isoprene III: theoretical study of the key isomerisation of the Z-delta-hydroxy-peroxy isoprene radicals. Chemphyschem 11:3996–4001

    CAS  Google Scholar 

  42. Peeters J, Nguyen TL, Vereecken L (2009) HOx radical regeneration in the oxidation of isoprene. Phys Chem Chem Phys 11:5935–5939

    CAS  Google Scholar 

  43. Peeters J, Müller J-F (2010) HO(x) radical regeneration in isoprene oxidation via peroxy radical isomerisations. II. Experimental evidence and global impact. Phys Chem Chem Phys 12:14227–14235

    CAS  Google Scholar 

  44. Crounse JD, Knap HC, Ørnsø KB, Jørgensen S, Paulot F, Kjaerdaard HG, Wennberg PO (2012) Atmospheric fate of methacrolein 1 peroxy radical isomerization following addition of OH and O2. J Phys Chem A 116(24):5756–5762

    CAS  Google Scholar 

  45. Taraborrelli D, Lawrence MG, Crowley JN, Dillon TJ, Gromov S, Groß CBM, Vereecken L, Lelieveld J (2012) Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nat Geosci 5:190–193

    CAS  Google Scholar 

  46. Crounse JD, Paulot F, Kjaergaard HG, Wennberg PO (2011) Peroxy radical isomerization in the oxidation of isoprene. Phys Chem Chem Phys 13:13607–13613

    CAS  Google Scholar 

  47. Wolfe GM, Thornton JA, Bouvier-Brown NC, Goldstein AH, Park JH, McKay M, Matross DM, Mao J, Brune WH, LaFranchi BW, Browne EC, Min KE, Wooldridge PJ, Cohen RC, Crounse JD, Faloona IC, Gilman JB, Kuster WC, de Gouw JA, Huisman A, Keutsch FN (2011) The Chemistry of Atmosphere-Forest Exchange (CAFE) model – part 2: application to BEARPEX-2007 observations. Atmos Chem Phys 11:1269–1294

    CAS  Google Scholar 

  48. Archibald AT, Cooke MC, Utembe SR, Shallcross DE, Derwent RG, Jenkin ME (2010) Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmos Chem Phys 10:8097–8118

    CAS  Google Scholar 

  49. Stavrakou T, Peeters J, Müller JF (2010) Improved global modelling of HO(x) recycling in isoprene oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurements. Atmos Chem Phys 10:9863–9878

    CAS  Google Scholar 

  50. Taraborrelli D, Lawrence MG, Butler TM, Sander R, Lelieveld J (2009) Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling. Atmos Chem Phys 9:2751–2777

    CAS  Google Scholar 

  51. Watson LA, Shallcross DE, Utembe SR, Jenkin ME (2008) A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: gas phase mechanism reduction. Atmos Environ 42:7196–7204

    CAS  Google Scholar 

  52. Edwards PM, Evans MJ, Stone D, Whalley LK, Furneaux KL, Hopkins J, Jones CE, Lewis AC, Heard DE (2011) Understanding missing OH sinks in a South East Asian tropical rainforest, Eos Transactions AGU, Fall Meeting Supplement 2011, Abstract B53A-06.

    Google Scholar 

  53. Emmerson KM, Evans MJ (2009) Comparison of tropospheric gas-phase chemistry schemes for use within global models. Atmos Chem Phys 9:1831–1845

    CAS  Google Scholar 

  54. Ingham T, Goddard A, Whalley LK, Furneaux KL, Edwards PM, Seal CP, Self DE, Johnson GP, Read KA, Lee JD, Heard DE (2009) A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere. Atmos Meas Tech 2:465–477

    CAS  Google Scholar 

  55. Elshorbany YF, Kleffmann J, Hofzumahaus A, Kurtenbach R, Wiesen P, Brauers T, Bohn B, Dorn HP, Fuchs H, Holland F, Rohrer F, Tillmann R, Wegener R, Wahner A, Kanaya Y, Yoshino A, Nishida S, Kajii Y, Martinez M, Kubistin D, Harder H, Lelieveld J, Elste T, Plass-Duelmer C, Stange G, Berresheim H, Schurath U (2012) HOx budgets during HOxComp: a case study of HOx chemistry under NOx-limited conditions. J Geophys Res Atmos 117:D03307

    Google Scholar 

  56. Kanaya Y, Hofzumahaus A, Dorn HP, Brauers T, Fuchs H, Holland F, Rohrer F, Bohn B, Tillmann R, Wegener R, Wahner A, Kajii Y, Miyamoto K, Nishida S, Watanabe K, Yoshino A, Kubistin D, Martinez M, Rudolf M, Harder H, Berresheim H, Elste T, Plass-Duelmer C, Stange G, Kleffmann J, Elshorbany Y, Schurath U (2012) Comparisons of observed and modeled OH and HO2 concentrations during the ambient measurement period of the HO(x)Comp field campaign. Atmos Chem Phys 12:2567–2585

    CAS  Google Scholar 

  57. Lu K, Rohrer F, Holland F, Fuchs H, Bohn B, Brauers T, Chang CC, Haeseler R, Hu M, Kita K, Kondo Y, Li X, Lou S, Nehr S, Shao M, Zeng L, Wahner A, Zhang Y, Hofzumahaus A (2012) Observations and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmos Chem Phys 12:1541–1569

    CAS  Google Scholar 

  58. Lu K, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Häseler R, Kita K, Kondo Y, Li X, Lou S, Oebel A, Shao M, Zeng L, Wahner A, Zhu T, Zhang Y, Rohrer F (2012) Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006. Atmos Chem Phys Discuss 12:10879–10936

    Google Scholar 

  59. Archibald AT, Levine JG, Abraham NL, Cooke MC, Edwards PM, Heard DE, Jenkin ME, Karunaharan A, Pike RC, Monks PS, Shallcross DE, Telford PJ, Whalley LK, Pyle JA (2011) Impacts of HOx regeneration and recycling in the oxidation of isoprene: consequences for the composition of past, present and future atmospheres. Geophys Res Lett 38:L05804

    Google Scholar 

  60. Lamb B, Guenther A, Gay D, Westberg H (1987) A national inventory of biogenic hydrocarbon emissions. Atmos Environ 21:1695–1705

    CAS  Google Scholar 

  61. Müller JF (1992) Geographical-distribution and seasonal-variation of surface emissions and deposition velocities of atmospheric trace gases. J Geophys Res Atmos 97:3787–3804

    Google Scholar 

  62. Zimmerman P (1979) Testing of hydrocarbon emissions from vegetation, leaf litter and aquatic surfaces and development of a method for compiling biogenic emissions inventories. Environmental Protection Agency, EPA-450-4-70-004

    Google Scholar 

  63. Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    CAS  Google Scholar 

  64. Pierce TE, Waldruff PS (1991) Pc-Beis – a personal-computer version of the biogenic emissions inventory system. J Air Waste Manage Assoc 41:937–941

    CAS  Google Scholar 

  65. Pierce T, Geron C, Bender L, Dennis R, Tonnesen G, Guenther A (1998) Influence of increased isoprene emissions on regional ozone modeling. J Geophys Res Atmos 103:25611–25629

    CAS  Google Scholar 

  66. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    CAS  Google Scholar 

  67. Guenther A, Baugh B, Brasseur G, Greenberg J, Harley P, Klinger L, Serca D, Vierling L (1999) Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J Geophys Res Atmos 104:30625–30639

    CAS  Google Scholar 

  68. Harley P, Vasconcellos P, Vierling L, Pinheiro CCD, Greenberg J, Guenther A, Klinger L, De Almeida SS, Neill D, Baker T, Phillips O, Malhi Y (2004) Variation in potential for isoprene emissions among neotropical forest sites. Glob Change Biol 10:630–650

    Google Scholar 

  69. Keller M, Lerdau M (1999) Isoprene emission from tropical forest canopy leaves. Global Biogeochem Cycles 13:19–29

    CAS  Google Scholar 

  70. Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Greenberg J, De Castro Vasconcellos P, de Telles Oliva T, Tavares T, Artaxo P (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072

    CAS  Google Scholar 

  71. Klinger LF, Li QJ, Guenther AB, Greenberg JP, Baker B, Bai JH (2002) Assessment of volatile organic compound emissions from ecosystems of China. J Geophys Res Atmos 107:4603

    Google Scholar 

  72. Kuhn U, Rottenberger S, Biesenthal T, Ammann C, Wolf A, Schebeske G, Oliva ST, Tavares TM, Kesselmeier J (2002) Exchange of short-chain monocarboxylic acids by vegetation at a remote tropical forest site in Amazonia. J Geophys Res 107:8069. doi:10.1029/2000jd000303

    Google Scholar 

  73. Karl T, Guenther A, Spirig C, Hansel A, Fall R (2004) Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan. Geophys Res Lett 30:2186

    Google Scholar 

  74. Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation. J Geophys Res Atmos 109:D18306

    Google Scholar 

  75. Houweling S, Dentener F, Lelieveld J (1998) The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J Geophys Res Atmos 103:10673–10696

    CAS  Google Scholar 

  76. Poisson N, Kanakidou M, Crutzen PJ (2000) Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230

    CAS  Google Scholar 

  77. Bey I, Aumont B, Toupance G (2001) A modeling study of the nighttime radical chemistry in the lower continental troposphere 2. Origin and evolution of HOx. J Geophys Res 106:9991–10001

    CAS  Google Scholar 

  78. Ehhalt D, Prather M (2001) Atmospheric chemistry and greenhouse gases. In: Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Xiaosu D (eds) Climate change 2001. Cambridge University Press, Cambridge

    Google Scholar 

  79. Spirig C, Neftel A, Ammann C, Dommen J, Grabmer W, Thielmann A, Schaub A, Beauchamp J, Wisthaler A, Hansel A (2005) Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry. Atmos Chem Phys 5:465–481

    CAS  Google Scholar 

  80. Kuhn U, Andreae MO, Ammann C, Araujo AC, Brancaleoni E, Ciccioli P, Dindorf T, Frattoni M, Gatti LV, Ganzeveld L, Kruijt B, Lelieveld J, Lloyd J, Meixner FX, Nobre AD, Poschl U, Spirig C, Stefani P, Thielmann A, Valentini R, Kesselmeier J (2007) Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmos Chem Phys 7:2855–2879

    CAS  Google Scholar 

  81. Karl T, Guenther A, Yokelson RJ, Greenberg J, Potosnak M, Blake DR, Artaxo P (2007) The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J Geophys Res Atmos 112:D18302

    Google Scholar 

  82. Langford B, Misztal PK, Nemitz E, Davison B, Helfter C, Pugh TAM, MacKenzie AR, Lim SF, Hewitt CN (2010) Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmos Chem Phys 10:8391–8412

    CAS  Google Scholar 

  83. Hewitt CN, Ashworth K, Boynard A, Guenther A, Langford B, MacKenzie AR, Misztal P, Nemitz E, Owen SM, Possell M, Pugh TAM, Ryan AC, Wild O (2011) Ground-level ozone influenced by circadian control of isoprene emissions. Nature Geoscience, ngeo 4:671–674

    Google Scholar 

  84. Fu TM, Jacob DJ, Palmer PI, Chance K, Wang YXX, Barletta B, Blake DR, Stanton JC, Pilling MJ (2007) Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. J Geophys Res Atmos 112:D06312

    Google Scholar 

  85. Millet DB, Jacob DJ, Boersma KF, Fu TM, Kurosu TP, Chance K, Heald CL, Guenther A (2008) Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. J Geophys Res Atmos 113:D02307

    Google Scholar 

  86. Shim C, Wang YH, Choi Y, Palmer PI, Abbot DS, Chance K (2005) Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements. J Geophys Res Atmos 110:D24301

    Google Scholar 

  87. Barkley MP, Palmer PI, Kuhn U, Kesselmeier J, Chance K, Kurosu TP, Martin RV, Helmig D, Guenther A (2008) Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. J Geophys Res Atmos 113:D20304

    Google Scholar 

  88. Dibble TS (2004) Prompt chemistry of alkenoxy radical products of the double H-atom transfer of alkoxy radicals from isoprene. J Phys Chem A 108:2208–2215

    CAS  Google Scholar 

  89. Solomon SD, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  90. Di Carlo P, Brune WH, Martinez M, Harder H, Lesher R, Ren X, Thornberry T, Carroll M, Young V, Shepson P, Riemer D, Apel E, Campbell C (2004) Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Sci Mag 304:722–725

    Google Scholar 

  91. Kovacs TA, Brune WH, Harder H, Martinez M, Simpas JB, Frost GJ, Williams E, Jobson T, Stroud C, Young V, Fried A, Wert B (2003) Direct measurements of urban OH reactivity during Nashville SOS in summer 1999. J Environ Monit 5:68–74

    CAS  Google Scholar 

  92. Lee JD, McFiggans G, Allan JD, Baker AR, Ball SM, Benton AK, Carpenter LJ, Commane R, Finley BD, Evans MJ, Feuntes E, Furneaux KL, Goddard A, Good N, Hamilton JF, Heard DE, Herrmann H, Hollingsworth A, Hopkins JR, Ingham T, Irwin M, Jones CE, Jones RL, Keene WC, Lawler MJ, Lehmann S, Lewis AC, Long MS, Mahajan AS, Methven J, Moller SJ, Müller K, Müller T, Niedermeier N, O’Doherty S, Oetjen H, Plane JMC, Pszenny A, Read KA, Saiz-Lopez A, Saltzmann ES, Sander R, von Glasow R, Whalley LK, Wiedensohler A, Young D (2009) Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmos Chem Phys Discuss 9:21717–21783

    Google Scholar 

  93. Lou S, Holland F, Rohrer F, Lu K, Bohn B, Brauers T, Chang CC, Fuchs H, Haeseler R, Kita K, Kondo Y, Li X, Shao M, Zeng L, Wahner A, Zhang Y, Wang W, Hofzumahaus A (2010) Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results. Atmos Chem Phys 10:11243–11260

    CAS  Google Scholar 

  94. Mao J, Ren X, Brune WH, Olson JR, Crawford JH, Fried A, Huey LG, Cohen RC, Heikes B, Singh HB, Blake DR, Sachse GW, Diskin GS, Hall SR, Shetter RE (2009) Airborne measurement of OH reactivity during INTEX-B. Atmos Chem Phys 9:163–173

    CAS  Google Scholar 

  95. Mogensen D, Smolander S, Sogachev A, Zhou L, Sinha V, Guenther A, Williams J, Nieminen T, Kajos MK, Rinne J, Kulmala M, Boy M (2011) Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmos Chem Phys 11:9709–9719

    CAS  Google Scholar 

  96. Ren X, Harder H, Martinez M, Lesher R, Oliger A, Shirley T, Adams J, Simpas JB, Brune WH (2003) HOx and OH reactivity observations in New York City during PMTACS-NY2001. Atmos Environ 37:3627–3637

    CAS  Google Scholar 

  97. Ren XR, Brune WH, Oliger A, Metcalf AR, Simpas JB, Shirley T, Schwab JJ, Bai CH, Roychowdhury U, Li YQ, Cai CX, Demerjian KL, He Y, Zhou XL, Gao HL, Hou J (2006) OH, HO2, and OH reactivity during the PMTACS-NY Whiteface mountain 2002 campaign: observations and model comparison. J Geophys Res Atmos 111:D10S03

    Google Scholar 

  98. Sadanaga Y, Yoshino A, Kato S, Kajii Y (2005) Measurements of OH reactivity and photochemical ozone production in the urban atmosphere. Environ Sci Technol 39:8847–8852

    CAS  Google Scholar 

  99. Shirley TR, Brune WH, Ren X, Mao J, Lesher R, Cardenas B, Volkamer R, Molina LT, Molina MJ, Lamb B, Velasco E, Jobson T, Alexander M (2006) Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmos Chem Phys 6:2753–2765

    CAS  Google Scholar 

  100. Sinha V, Williams J, Crowley JN, Lelieveld J (2008) The comparative reactivity method – a new tool to measure total OH reactivity in ambient air. Atmos Chem Phys 8:2213–2227

    CAS  Google Scholar 

  101. Sinha V, Williams J, Lelieveld J, Ruuskanen TM, Kajos MK, Patokoski J, Hellen H, Hakola H, Mogensen D, Boy M, Rinne J, Kulmala M (2010) OH reactivity measurements within a boreal forest: evidence for unknown reactive emissions. Environ Sci Technol 44:6614–6620

    CAS  Google Scholar 

  102. Lewis AC, Carslaw N, Marriott PJ, Kinghorn RM, Morrision P, Lee A, Bartle KD, Pilling MJ (2000) A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature 405:778–781

    CAS  Google Scholar 

  103. Chung MY, Maris C, Krischke U, Meller R, Paulson SE (2003) An investigation of the relationship between total non-methane organic carbon and the sum of speciated hydrocarbons and carbonyls measured by standard GC/FID: measurements in the Los Angeles air basin. Atmos Environ 37:S159–S170

    CAS  Google Scholar 

  104. Warneke C, Gouw JAD (2001) Organic trace gas composition of the marine boundary layer over the northwest Indian Ocean in April 2000. Atmos Environ 35:5923–5933

    CAS  Google Scholar 

  105. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the Earth’s atmosphere. Environ Sci Technol 41:1514–1521

    CAS  Google Scholar 

  106. Heald CL, Jacob DJ, Park RJ, Russell LM, Huebert BJ, Seinfeld JH, Liao H, Weber RJ (2005) A large organic aerosol source in the free troposphere missing from current models. Geophys Res Lett 32:L18809

    Google Scholar 

  107. Johnson D, Utembe SR, Jenkin ME, Derwent RG, Hayman GD, Alfarra MR, Coe H, McFiggans G (2006) Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK. Atmos Chem Phys 6:403–418

    CAS  Google Scholar 

  108. Morris RE, McNally DE, Tesche TW, Tonnesen G, Boylan JW, Brewer P (2005) Preliminary evaluation of the community multiscale air, quality model for 2002 over the southeastern United States. J Air Waste Manage Assoc 55:1694–1708

    CAS  Google Scholar 

  109. Morris RE, Koo B, Guenther A, Yarwood G, McNally D, Tesche TW, Tonnesen G, Boylan J, Brewer P (2006) Model sensitivity evaluation for organic carbon using two multi-pollutant air quality models that simulate regional haze in the southeastern United States. Atmos Environ 40:4960–4972

    CAS  Google Scholar 

  110. Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys Res Lett 33:L17811

    Google Scholar 

  111. Yu SC, Mathur R, Schere K, Kang DW, Pleim J, Young J, Tong D, Pouliot G, McKeen SA, Rao ST (2008) Evaluation of real-time PM(2.5) forecasts and process analysis for PM(2.5) formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study. J Geophys Res Atmos 113:D06204

    Google Scholar 

  112. Pandis SN, Paulson SE, Seinfeld JH, Flagan RC (1991) Aerosol formation in the photooxidation of isoprene and beta-pinene. Atmos Environ A Gen Top 25:997–1008

    Google Scholar 

  113. Kamens RM, Gery MW, Jeffries HE, Jackson M, Cole EI (1982) Ozone-isoprene reactions – product formation and aerosol potential. Int J Chem Kinet 14:955–975

    CAS  Google Scholar 

  114. Miyoshi A, Hatakeyama S, Washida N (1994) Om radical-initiated photooxidation of isoprene – an estimate of global co production. J Geophys Res Atmos 99:18779–18787

    Google Scholar 

  115. Pankow JF (1994) An absorption-model of gas-particle partitioning of organic-compounds in the atmosphere. Atmos Environ 28:185–188

    CAS  Google Scholar 

  116. Kiendler-Scharr A, Wildt J, Dal Maso M, Hohaus T, Kleist E, Mentel TF, Tillmann R, Uerlings R, Schurr U, Wahner A (2009) New particle formation in forests inhibited by isoprene emissions. Nature 461:381–384

    CAS  Google Scholar 

  117. Chan M, Surratt JD, Claeys M, Edgerton ES, Tanner RL, Shaw SL, Zheng M, Knipping EM, Eddingsaas NC, Wennberg PO, Seinfeld JH (2010) Characterisation and quantification of isoprene-derived epoxydiolsin ambient aerosol in the southeastern United States. Environ Sci Technol 44:4590–4596

    CAS  Google Scholar 

  118. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176

    CAS  Google Scholar 

  119. Claeys M, Wang W, Ion AC, Kourtchev I, Gelencser A, Maenhaut W (2004) Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos Environ 38:4093–4098

    CAS  Google Scholar 

  120. Ion AC, Vermeylen R, Kourtchev I, Cafmeyer J, Chi X, Gelencser A, Maenhaut W, Claeys M (2005) Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: sources and diurnal variations. Atmos Chem Phys 5:1805–1814

    CAS  Google Scholar 

  121. Kourtchev I, Ruuskanen T, Maenhaut W, Kulmala M, Claeys M (2005) Observations of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiala, Finland. Atmos Chem Phys 5:2761–2770

    CAS  Google Scholar 

  122. Matsunaga S, Mochida M, Kawaamura K (2003) Growth of organic aerosol by biogenic semi-volatile carbonyls in the forestal atmosphere. Atmos Environ 37:2045–2050

    CAS  Google Scholar 

  123. Surratt JD, Gomez-Gonzalez Y, Chan AWH, Vermeylen R, Shahgholi M, Kleindienst TE, Edney EO, Offenberg JH, Lewandowski M, Jaoui M, Maenhaut W, Claeys M, Flagan RC, Seinfeld JH (2008) Organosulphate formation in biogenic secondary organic aerosol. J Phys Chem A 112:8345–8378

    CAS  Google Scholar 

  124. Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol 30:2580–2585

    CAS  Google Scholar 

  125. Limbeck A, Kulmala M, Puxbaum H (2003) Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys Res Lett 30:1996

    Google Scholar 

  126. Dommen J, Metzger A, Duplissy J, Kalberer M, Alfarra MR, Gascho A, Weingartner E, Prevot ASH, Verheggen B, Baltensperger U (2006) Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation. Geophys Res Lett 33:L13805

    Google Scholar 

  127. Kroll JH, Ng NL, Murphy SM, Flagan RC, Seinfeld JH (2005) Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys Res Lett 32:L18808

    Google Scholar 

  128. Kroll JH, Ng NL, Murphy SM, Flagan RC, Seinfeld JH (2006) Secondary organic aerosol formation from isoprene photooxidation. Environ Sci Technol 40:1869–1877

    CAS  Google Scholar 

  129. Ng NL, Kroll JH, Keywood MD, Bahreini R, Varutbangkul V, Flagan RC, Seinfeld JH, Lee A, Goldstein AH (2006) Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons. Environ Sci Technol 40:2283–2297

    CAS  Google Scholar 

  130. Kleindienst TE, Lewandowski M, Offenberg JH, Jaoui M, Edney EO (2009) The formation of secondary organic aerosol from isoprene + OH reaction in the absence of NOx. Atmos Chem Phys 9:6541–6558

    CAS  Google Scholar 

  131. Surratt JD, Murphy SM, Kroll JH, Ng NL, Hildebrandt L, Sorooshian A, Szmigielski R, Vermeylen R, Maenhaut W, Claeys M, Flagan RC, Seinfeld JH (2006) Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J Phys Chem A 110:9665–9690

    CAS  Google Scholar 

  132. Surratt JD, Chan AWH, Eddingsaas NC, Chan M, Loza CL, Kwan AJ, Hersey SP, Flagan RC, Wennberg PO, Seinfeld JH (2010) Atmospheric chemistry special feature: reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci USA 107(15):6640–6645

    CAS  Google Scholar 

  133. Kiendler-Scharr A, Andres S, Bachner M, Behnke K, Broch S, Hofzumahaus A, Holland F, Kleist E, Mentel TF, Rubach F, Springer M, Steitz B, Tillmann R, Wahner A, Schnitzler JP, Wildt J (2012) Isoprene in poplar emissions: effects on new particle formation and OH concentrations. Atmos Chem Phys 12:1021–1030

    CAS  Google Scholar 

  134. Robinson NH, Hamilton JF, Allan JD, Langford B, Oram DE, Chen Q, Docherty K, Farmer DK, Jimenez JL, Ward MW, Hewitt CN, Barley MH, Jenkin ME, Rickard AR, Martin ST, McFiggans G, Coe H (2011) Evidence for a significant proportion of Secondary organic aerosol from isoprene above a maritime tropical forest. Atmos Chem Phys 11:1039–1050

    CAS  Google Scholar 

  135. Froyd KD, Murphy SM, Murphy DM, de Gouw JA, Eddingsaas NC, Wennberg PO (2010) Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proc Natl Acad Sci USA 107:21360–21365

    CAS  Google Scholar 

  136. Henze DK, Seinfeld JH (2006) Global secondary organic aerosol from isoprene oxidation. Geophys Res Lett 33:L09812

    Google Scholar 

  137. Carlton AG, Wiedinmyer C, Kroll JH (2009) A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos Chem Phys 9:4987–5005

    CAS  Google Scholar 

  138. Olson JR, Crawford JH, Davis DD, Chen G, Avery MA, Barrick JDW, Sachse GW, Vay SA, Sandholm ST, Tan D, Brune WH, Faloona IC, Heikes BG, Shetter RE, Lefer BL, Singh HB, Talbot RW, Blake DR (2001) Seasonal differences in the photochemistry of the South Pacific: a comparison of observations and model results from PEM-Tropics A and B. J Geophys Res 106:32749–32766

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwayne Heard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whalley, L., Stone, D., Heard, D. (2012). New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. In: McNeill, V., Ariya, P. (eds) Atmospheric and Aerosol Chemistry. Topics in Current Chemistry, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_359

Download citation