Abstract
Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an effect that produces non-Boltzmann nuclear spin polarization which can be observed as modification of signal intensity in NMR spectroscopy. The effect is well known in liquid-state NMR where it is explained most generally by the classical radical pair mechanism (RPM). In the solid-state, other mechanisms are operative in the spin-dynamics of radical pairs such as three-spin mixing (TSM) and differential decay (DD). Initially the solid-state photo-CIDNP effect has been solely observed on natural photosynthetic reaction centers (RCs). Therefore the analytical capacity of the method has been explored in experiments on reaction centers (RCs) of the purple bacterium of Rhodobacter (R.) sphaeroides. Here we will provide an account on phenomenology, theory, and analytical capacity of the solid-state photo-CIDNP effect.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zysmilich MG, McDermott AE (1994) Photochemically induced dynamic nuclear polarization in the solid-state 15N spectra of reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26. J Am Chem Soc 116:8362–8363
Prakash S, Alia, Gast P, de Groot HJM, Jeschke G, Matysik J (2005) Magnetic field dependence of photo-CIDNP MAS NMR on photosynthetic reaction centers of Rhodobacter sphaeroides WT. J Am Chem Soc 127:14290–14298
Prakash S, Alia, Gast P, de Groot HJM, Matysik J, Jeschke G (2006) Photo-CIDNP MAS NMR in intact cells of Rhodobacter sphaeroides R26: molecular and atomic resolution at nanomolar concentration. J Am Chem Soc 128:12794–12799
Janssen GJ, Daviso E, van Son M, de Groot H, Alia A, Matysik J (2010) Observation of the solid-state photo-CIDNP effect in entire cells of cyanobacteria Synechocystis. Photosynth Res 104:275–282
Roy E, Alia A, Gast P, van Gorkom HJ, de Groot HJM, Jeschke G, Matysik J (2007) Photochemically induced dynamic nuclear polarisation observed in the reaction center of the green sulphur bacteria Chlorobium tepidum by 13C MAS NMR. Biochem Biophys Acta 1767:610–615
Diller A, Roy E, Gast P, van Gorkom HJ, de Groot HJM, Glaubitz C, Jeschke G, Matysik J, Alia A (2007) 15N-photo-CIDNP MAS NMR analysis of the electron donor of photosystem II. Proc Natl Acad Sci USA 104:12843–12848
Prakash S, Alia A, Gast P, de Groot HJM, Jeschke G, Matysik J (2007) 13C chemical shift map of the active cofactors in photosynthetic reaction centers of Rhodobacter sphaeroides revealed by photo-CIDNP MAS NMR. Biochemistry 46:8953–8960
Roy E, Rohmer T, Gast P, Jeschke G, Alia A, Matysik J (2008) Characterization of the primary electron pair in reaction centers of Heliobacillus mobilis by 13C photo-CIDNP MAS NMR. Biochemistry 47:4629–4635
Matysik J, Diller A, Roy E, Alia A (2009) The solid-state photo-CIDNP effect. Photosynth Res 102:427–435
Thamarath SS, Heberle J, Hore P, Kottke T, Matysik J (2010) Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by 13C magic-angle spinning NMR spectroscopy. J Am Chem Soc 132:15542–15543
Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287:2–247
Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2008) The phototropic purple bacteria. Springer, Dordrecht, The Netherlands
Thamarath SS, Bode BE, Prakash S, Sai Sankar Gupta KB, Alia A, Jeschke G, Matysik J (2012) Electron spin density distribution in the special pair triplet of Rhodobacter sphaeroides R26 revealed by magnetic field dependence of the solid-state photo-CIDNP effect. J Am Chem Soc 134:5921–5930
Wirtz AC, van Hemert MC, Lugtenburg J, Frank HA, Groenen EJJ (2007) Two stereoisomers of spheroidene in the Rhodobacter sphaeroides R26 reaction center: a DFT analysis of resonance Raman spectra. Biophys J 93:981–991
Daviso E, Alia A, Prakash S, Diller A, Gast P, Lugtenburg J, Matysik J, Jeschke G (2009) Electron-nuclear spin dynamics in a bacterial photosynthetic reaction center. J Phys Chem C 113:10269–10278
Jeschke G (1997) Electron–electron-nuclear three-spin mixing in spin-correlated radical pairs. J Chem Phys 106:10072–10086
Jeschke G (1998) A new mechanism for chemically induced dynamic nuclear polarization in the solid state. J Am Chem Soc 120:4425–4429
Polenova T, McDermott AE (1999) A coherent mixing mechanism explains the photoinduced nuclear polarization in photosynthetic reaction centers. J Phys Chem B 103:535–548
Diller A, Prakash S, Alia, Gast P, Matysik J, Jeschke G (2007) Signals in solid-state photochemically induced dynamic nuclear polarization recover faster than with the longitudinal relaxation time. J Phys Chem B 111:10606–10614
Jeschke G, Matysik J (2003) A reassessment of the origin of photochemically induced dynamic nuclear polarization effects in solids. Chem Phys 294:239–255
McDermott A, Zysmilich MG, Polenova T (1998) Solid state NMR studies of photoinduced polarization in photosynthetic reaction centers: mechanism and simulations. Sol State Nuc Magn Reson 11:21–47
Closs GL (1975) On the overhauser mechanism of chemically induced nuclear polarization as suggested by Adrian. Chem Phys Lett 32:277–278
Goldstein RA, Boxer SG (1987) Effects of nuclear spin polarization on reaction dynamics in photosynthetic bacterial reaction centers. Biophys J 51:937–946
Hore PJ, Broadhurst RW (1993) Photo-CIDNP of biopolymers. Prog Nucl Magn Reson Spectrosc 25:345–402
Daviso E, Prakash S, Alia A, Gast P, Neugebauer P, Jeschke G, Matysik J (2009) The electronic structure of the primary electron donor of reaction centers of purple bacteria at the atomic resolution as observed by photo-CIDNP 13C MAS NMR. Proc Natl Acad Sci USA 106:22281–22286
Jeschke G, Anger BC, Bode BE, Matysik J (2011) Theory of solid-state photo-CIDNP in the Earth’s magnetic field. J Phys Chem A 115:9919–9928
Sai Sankar Gupta KB (2011) Spin-torch experiments on reaction centers of Rhodobacter sphaeroides. PhD Thesis, Leiden University
Schulten EAM, Matysik J, Alia, Kiihne S, Raap J, Lugtenburg J, Gast P, Hoff AJ, de Groot HJM (2002) 13C MAS NMR and photo-CIDNP reveal a pronounced asymmetry in the electronic ground state of the special pair of Rhodobacter sphaeroides reaction centres. Biochemistry 41:8708–8717
Kaptein R (1971) Simple rules for chemically induced dynamic nuclear polarization II: relation with anomalous ESR spectra. Chem Commun 732–733
Kaptein R, Dijkstra K, Nicolay K (1978) Laser photo-CIDNP as a surface probe for proteins in solution. Nature 274:293–294
Richter G, Weber S, Römisch W, Bacher A, Fischer M, Eisenreich W (2005) Photochemically induced dynamic nuclear polarization in a C450A mutant of the LOV2 domain of the Avena sativa blue-light receptor phototropin. J Am Chem Soc 127:17245–17252
Eisenreich W, Joshi M, Weber S, Bacher A, Fischer MJ (2008) Natural abundance solution 13C NMR studies of a phototropin with photoinduced polarization. J Am Chem Soc 130:13544–13545
Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410
Kottke T, Dick B, Fedorov R, Schlichting I, Deutzmann R, Hegemann P (2003) Irreversible photoreduction of flavin in a mutated phot-LOV1 domain. Biochemistry 42:9854–9862
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bode, B.E., Thamarath, S.S., Gupta, K.B.S.S., Alia, A., Jeschke, G., Matysik, J. (2012). The Solid-State Photo-CIDNP Effect and Its Analytical Application. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_357
Download citation
DOI: https://doi.org/10.1007/128_2012_357
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39727-1
Online ISBN: 978-3-642-39728-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)