Hsp90: Structure and Function

  • Sophie E. JacksonEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 328)


Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell’s response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.


Acetylation ATPase Cochaperone Conformational dynamics Geldanamycin Grp94 Hsp90 HtpG Phosphorylation Radicicol TRAP-1 



I would like to thank my research group and collaborators (both past and present) for many interesting and informative discussions over the years. In addition, I’d like to thank everyone in the Hsp90 community, particularly Prof. Johannes Buchner and Prof. Didier Picard for providing us with many fantastic meetings in beautiful locations. Finally, I would like to dedicate this review to my father, who sadly passed away whilst I was writing it. Without his love and support over many years I am sure I would not have got this far.


  1. 1.
    Burrows F, Zhang H et al (2004) Hsp90 activation and cell cycle regulation. Cell Cycle 3(12):1530–1536CrossRefGoogle Scholar
  2. 2.
    Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10(1):46–51CrossRefGoogle Scholar
  3. 3.
    Echeverria PC, Picard D (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta 1803(6):641–649CrossRefGoogle Scholar
  4. 4.
    Echeverria PC, Figueras MJ et al (2010) The Hsp90 co-chaperone p23 of toxoplasma gondii: identification, functional analysis and dynamic interactome determination. Mol Biochem Parasitol 172(2):129–140CrossRefGoogle Scholar
  5. 5.
    Seo NS, Lee SK et al (2008) The HSP90-SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51(1):1–10CrossRefGoogle Scholar
  6. 6.
    Taipale M, Jarosz DF et al (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528CrossRefGoogle Scholar
  7. 7.
    Balch WE, Morimoto RI et al (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919CrossRefGoogle Scholar
  8. 8.
    Gidalevitz T, Prahlad V et al (2011) The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol 3(6)Google Scholar
  9. 9.
    Powers ET, Morimoto RI et al (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991CrossRefGoogle Scholar
  10. 10.
    Voisine C, Pedersen JS et al (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40(1):12–20CrossRefGoogle Scholar
  11. 11.
    Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1):64–76CrossRefGoogle Scholar
  12. 12.
    Miyata Y, Koren J et al (2011) Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Med Chem 3(12):1523–1537CrossRefGoogle Scholar
  13. 13.
    Kalia SK, Kalia LV et al (2010) Molecular chaperones as rational drug targets for Parkinson’s disease therapeutics. CNS Neurol Disord Drug Targets 9(6):741–753CrossRefGoogle Scholar
  14. 14.
    Geller R, Taguwa S et al (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biophys Biochim Acta 1823:698–706Google Scholar
  15. 15.
    Shonhai A, Maier AG et al (2011) Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis. Protein Pept Lett 18(2):143–157CrossRefGoogle Scholar
  16. 16.
    Hartson SD, Matts RL (2012) Approaches for defining the Hsp90-dependent proteome. Biophys Biochim Acta 1823:656–667Google Scholar
  17. 17.
    Zhao RM, Davey M et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120(5):715–727CrossRefGoogle Scholar
  18. 18.
    McClellan AJ, Xia Y et al (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135CrossRefGoogle Scholar
  19. 19.
    Sanchez ER, Toft DO et al (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat-shock protein. J Biol Chem 260(23):2398–2401Google Scholar
  20. 20.
    Catelli MG, Binart N et al (1985) The common 90-kD protein-component of non-transformed 8S steroid-receptors is a heat-shock protein. EMBO J 4(12):3131–3135Google Scholar
  21. 21.
    Picard D (2006) Chaperoning steroid hormone action. Trends Endocrinol Metab 17(6):229–235CrossRefGoogle Scholar
  22. 22.
    Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360CrossRefGoogle Scholar
  23. 23.
    Schuh S, Yonemoto W et al (1985) A 90,000-dalton binding-protein common to both steroid-receptors and the Rous-sarcoma virus transforming protein, PP60V-SRC. J Biol Chem 260(26):4292–4296Google Scholar
  24. 24.
    Sumanasekera WK, Tien ES et al (2003) Heat shock protein-90 (Hsp90) acts as a repressor of peroxisome proliferator-activated receptor-alpha (PPAR alpha) and PPAR beta activity. Biochemistry 42(36):10726–10735CrossRefGoogle Scholar
  25. 25.
    Chen HS, Singh SS et al (1997) The Ah receptor is a sensitive target of geldanamycin-induced protein turnover. Arch Biochem Biophys 348(1):190–198CrossRefGoogle Scholar
  26. 26.
    Yoshinari K, Kobayashi K et al (2003) Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Lett 548(1–3):17–20CrossRefGoogle Scholar
  27. 27.
    Squires EJ, Sueyoshi T et al (2004) Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J Biol Chem 279(47):49307–49314CrossRefGoogle Scholar
  28. 28.
    Angelo G, Lamon-Fava S et al (2008) Heat shock protein 90 beta: a novel mediator of vitamin D action. Biochem Biophys Res Commun 367(3):578–583CrossRefGoogle Scholar
  29. 29.
    Smith DF, Toft DO (2008) The intersection of steroid receptors with molecular chaperones: observations and questions. Mol Endocrinol 22(10):2229–2240CrossRefGoogle Scholar
  30. 30.
    Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93(3):211–217CrossRefGoogle Scholar
  31. 31.
    Sanchez ER (2012) Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones. Biophys Biochim Acta 1823:722–729Google Scholar
  32. 32.
    Pratt WB, Galigniana MD et al (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40:41–58Google Scholar
  33. 33.
    Tillotson B, Slocum K et al (2010) Hsp90 (Heat Shock Protein 90) inhibitor occupancy is a direct determinant of client protein degradation and tumor growth arrest in vivo. J Biol Chem 285(51):39835–39843CrossRefGoogle Scholar
  34. 34.
    Kundrat L, Regan L (2010) Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry 49(35):7428–7438CrossRefGoogle Scholar
  35. 35.
    Kundrat L, Regan L (2010) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. J Mol Biol 395(3):587–594CrossRefGoogle Scholar
  36. 36.
    Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biophys Biochim Acta 1823:674–682Google Scholar
  37. 37.
    Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biophys Biochim Acta 1823:607–613Google Scholar
  38. 38.
    Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14(1):83–94CrossRefGoogle Scholar
  39. 39.
    Stechmann A, Cavalier-Smith T (2004) Evolutionary origins of Hsp90 chaperones and a deep paralogy in their bacterial ancestors. J Eukaryot Microbiol 51(3):364–373CrossRefGoogle Scholar
  40. 40.
    Lund PA (2001) Microbial molecular chaperones. Adv Microb Physiol 44(44):93–140CrossRefGoogle Scholar
  41. 41.
    Nathan DF, Vos MH et al (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA 94(24):12949–12956CrossRefGoogle Scholar
  42. 42.
    Picard D, Khursheed B et al (1990) Reduced levels of HSP90 compromise steroid-receptor action in vivo. Nature 348(6297):166–168CrossRefGoogle Scholar
  43. 43.
    Grad I, Cederroth CR et al (2010) The molecular chaperone Hsp90 alpha is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 5(12)Google Scholar
  44. 44.
    Maynard JC, Pham T et al (2010) Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. Dev Biol 339(2):295–306CrossRefGoogle Scholar
  45. 45.
    Cao DS, Froehlich JE et al (2003) The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J 33(1):107–118CrossRefGoogle Scholar
  46. 46.
    Saito M, Watanabe S et al (2008) Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 72(5):1394–1397CrossRefGoogle Scholar
  47. 47.
    Sato T, Minagawa S et al (2010) HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol 76(3):576–589CrossRefGoogle Scholar
  48. 48.
    Thomas JG, Baneyx F (2000) ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol Microbiol 36(6):1360–1370CrossRefGoogle Scholar
  49. 49.
    Haslbeck V, Kaiser CJO et al (2011) Hsp90 in non-mammalian metazoan model systems. Biophys Biochim ActaGoogle Scholar
  50. 50.
    Tsutsumi S, Mollapour M et al (2012) Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proc Natl Acad Sci USA 109:2937–2942CrossRefGoogle Scholar
  51. 51.
    Obermann WMJ, Sondermann H et al (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143(4):901–910CrossRefGoogle Scholar
  52. 52.
    Prodromou C, Roe SM et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. CeN 90(1):65–75Google Scholar
  53. 53.
    Prodromou C, Roe SM et al (1997) A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nat Struct Biol 4(6):477–482CrossRefGoogle Scholar
  54. 54.
    Roe SM, Prodromou C et al (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42(2):260–266CrossRefGoogle Scholar
  55. 55.
    Stebbins CE, Russo AA et al (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. CeN 89(2):239–250Google Scholar
  56. 56.
    Jez JM, Chen JCH et al (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10(4):361–368CrossRefGoogle Scholar
  57. 57.
    Soldano KL, Jivan A et al (2003) Structure of the N-terminal domain of GRP94 – basis for ligand specificity and regulation. J Biol Chem 278(48):48330–48338CrossRefGoogle Scholar
  58. 58.
    Meyer P, Prodromou C et al (2003) Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658CrossRefGoogle Scholar
  59. 59.
    Harris SF, Shiau AK et al (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12(6):1087–1097CrossRefGoogle Scholar
  60. 60.
    Wright L, Barril X et al (2004) Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem Biol 11(6):775–785CrossRefGoogle Scholar
  61. 61.
    Immormino RM, Dollins DE et al (2004) Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J Biol Chem 279(44):46162–46171CrossRefGoogle Scholar
  62. 62.
    Kreusch A, Han SL et al (2005) Crystal structures of human HSP90 alpha-complexed with dihydroxyphenylpyrazoles. Bioorg Med Chem Lett 15(5):1475–1478CrossRefGoogle Scholar
  63. 63.
    Huai Q, Wang HC et al (2005) Structures of the N-terminal and middle domains of E-coli Hsp90 and conformation changes upon ADP binding. Structure 13(4):579–590CrossRefGoogle Scholar
  64. 64.
    Dollins DE, Immormino RM et al (2005) Structure of unliganded GRP94, the endoplasmic reticulum Hsp90 – basis for nucleotide-induced conformational change. J Biol Chem 280(34):30438–30447CrossRefGoogle Scholar
  65. 65.
    Dymock BW, Barril X et al (2005) Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J Med Chem 48(13):4212–4215CrossRefGoogle Scholar
  66. 66.
    Cheung KMJ, Matthews TP et al (2005) The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett 15(14):3338–3343CrossRefGoogle Scholar
  67. 67.
    Brough PA, Barril X et al (2005) 3-(5-Chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone. Bioorg Med Chem Lett 15(23):5197–5201CrossRefGoogle Scholar
  68. 68.
    Barril X, Brough P et al (2005) Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg Med Chem Lett 15(23):5187–5191CrossRefGoogle Scholar
  69. 69.
    Barril X, Beswick MC et al (2006) 4-Amino derivatives of the Hsp90 inhibitor CCT018159. Bioorg Med Chem Lett 16(9):2543–2548CrossRefGoogle Scholar
  70. 70.
    Richter K, Moser S et al (2006) Intrinsic inhibition of the Hsp90 ATPase activity. J Biol Chem 281(16):11301–11311CrossRefGoogle Scholar
  71. 71.
    Ali MMU, Roe SM et al (2006) Crystal structure of an Hsp90-nucleotide-p23 Sba1 closed chaperone complex. Nature 440(7087):1013–1017CrossRefGoogle Scholar
  72. 72.
    Immormino RM, Kang YL et al (2006) Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J Med Chem 49(16):4953–4960CrossRefGoogle Scholar
  73. 73.
    Shiau AK, Harris SF et al (2006) Structural analysis of E-coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127(2):329–340CrossRefGoogle Scholar
  74. 74.
    Proisy N, Sharp SY et al (2006) Inhibition of Hsp90 with synthesis macrolactones: synthesis and structural and biological evaluation of ring and conformational analogs of radicicol. Chem Biol 13(11):1203–1215CrossRefGoogle Scholar
  75. 75.
    Dollins DE, Warren JJ et al (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Mol Cell 28(1):41–56CrossRefGoogle Scholar
  76. 76.
    Brough PA, Aherne W et al (2008) 4,5-Diarylisoxazole HSP90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51(2):196–218CrossRefGoogle Scholar
  77. 77.
    Barta TE, Veal JM et al (2008) Discovery of benzamide tetrahydro-4H-carbazol-4-ones as novel small molecule inhibitors of Hsp90. Bioorg Med Chem Lett 18(12):3517–3521CrossRefGoogle Scholar
  78. 78.
    Martin CJ, Gaisser S et al (2008) Molecular characterization of macbecin as an Hsp90 inhibitor. J Med Chem 51(9):2853–2857CrossRefGoogle Scholar
  79. 79.
    Huth JR, Park C et al (2007) Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 70(1):1–12CrossRefGoogle Scholar
  80. 80.
    Gopalsamy A, Shi MX et al (2008) Discovery of benzisoxazoles as potent inhibitors of chaperone heat shock protein 90. J Med Chem 51(3):373–375CrossRefGoogle Scholar
  81. 81.
    Zhang MH, Boter M et al (2008) Structural and functional coupling of Hsp90-and Sgt1-centred multi-protein complexes. EMBO J 27(20):2789–2798CrossRefGoogle Scholar
  82. 82.
    Zhang MQ, Gaisser S et al (2008) Optimizing natural products by biosynthetic engineering: discovery of nonquinone Hsp90 inhibitors. J Med Chem 51(18):5494–5497CrossRefGoogle Scholar
  83. 83.
    Kung PP, Funk L et al (2008) Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone. Bioorg Med Chem Lett 18(23):6273–6278CrossRefGoogle Scholar
  84. 84.
    Prodromou C (2009) Strategies for stalling malignancy: targeting cancer’s addiction to Hsp90. Curr Top Med Chem 9(15):1352–1368CrossRefGoogle Scholar
  85. 85.
    Barker JJ, Barker O et al (2009) Fragment-based identification of Hsp90 inhibitors. ChemMedChem 4(6):963–966CrossRefGoogle Scholar
  86. 86.
    Feldman RI, Mintzer B et al (2009) Potent triazolothione inhibitor of heat-shock protein-90. Chem Biol Drug Des 74(1):43–50CrossRefGoogle Scholar
  87. 87.
    Brough PA, Barril X et al (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno 2,3-d pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52(15):4794–4809CrossRefGoogle Scholar
  88. 88.
    Cho-Schultz S, Patten MJ et al (2009) Solution-phase parallel synthesis of Hsp90 inhibitors. J Comb Chem 11(5):860–874CrossRefGoogle Scholar
  89. 89.
    Kung PP, Huang BW et al (2010) Dihydroxyphenylisoindoline amides as orally bioavailable inhibitors of the heat shock protein 90 (Hsp90) molecular chaperone. J Med Chem 53(1):499–503CrossRefGoogle Scholar
  90. 90.
    Fadden P, Huang KH et al (2010) Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting Hsp90. Chem Biol 17(7):686–694CrossRefGoogle Scholar
  91. 91.
    Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20(4):497–507CrossRefGoogle Scholar
  92. 92.
    Murray CW, Carr MG et al (2010) Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 53(16):5942–5955CrossRefGoogle Scholar
  93. 93.
    Woodhead AJ, Angove H et al (2010) Discovery of (2,4-dihydroxy-5-isopropylphenyl)- 5-(4-methylpiperazin-1-ylmethyl)-1,3- dihydroisoindol-2-yl methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem 53(16):5956–5969CrossRefGoogle Scholar
  94. 94.
    Day JEH, Sharp SY et al (2010) Inhibition of Hsp90 with resorcylic acid macrolactones: synthesis and binding studies. Chemistry-A Eur J 16(34):10366–10372CrossRefGoogle Scholar
  95. 95.
    Corbett KD, Berger JM (2010) Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Proteins Struct Funct Bioinformatics 78(13):2738–2744CrossRefGoogle Scholar
  96. 96.
    Barluenga S, Fontaine JG et al (2009) Inhibition of HSP90 with pochoximes: SAR and structure-based insights. Chembiochem 10(17):2753–2759CrossRefGoogle Scholar
  97. 97.
    Nathan DF, Lindquist S (1995) Mutational analysis of HSP90 function – interactions with a steroid-receptor and a protein-kinase. Mol Cell Biol 15(7):3917–3925Google Scholar
  98. 98.
    Mickler M, Hessling M et al (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16:281–286CrossRefGoogle Scholar
  99. 99.
    Meyer P, Prodromou C et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(6):1402–1410, 511CrossRefGoogle Scholar
  100. 100.
    Meyer P, Prodromou C et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(3):511–519CrossRefGoogle Scholar
  101. 101.
    Panaretou B, Siligardi G et al (2002) Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Mol Cell 10(6):1307–1318CrossRefGoogle Scholar
  102. 102.
    Roe SM, Ali MMU et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116(1):87–98CrossRefGoogle Scholar
  103. 103.
    Sreeramulu S, Jonker HRA et al (2009) The human Cdc37 center dot Hsp90 complex studied by heteronuclear NMR spectroscopy. J Biol Chem 284(6):3885–3896CrossRefGoogle Scholar
  104. 104.
    Zhang MH, Kadota Y et al (2010) Structural basis for assembly of Hsp90-Sgt1-CH0RD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39(2):269–281CrossRefGoogle Scholar
  105. 105.
    Scheufler C, Brinker A et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101(2):199–210CrossRefGoogle Scholar
  106. 106.
    Lee YT, Jacob J et al (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279(16):16511–16517CrossRefGoogle Scholar
  107. 107.
    Wu BL, Li PY et al (2004) 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Proc Natl Acad Sci USA 101(22):8348–8353CrossRefGoogle Scholar
  108. 108.
    Zhang MH, Windheim M et al (2005) Chaperoned ubiquitylation – crystal structures of the CHIPU box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 20(4):525–538CrossRefGoogle Scholar
  109. 109.
    Alag R, Bharatham N et al (2009) Crystallographic structure of the tetratricopeptide repeat domain of Plasmodium falciparum FKBP35 and its molecular interaction with Hsp90 C-terminal pentapeptide. Protein Sci 18(10):2115–2124CrossRefGoogle Scholar
  110. 110.
    Cliff MJ, Harris R et al (2006) Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Structure 14(3):415–426CrossRefGoogle Scholar
  111. 111.
    Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci 8(6):252–258CrossRefGoogle Scholar
  112. 112.
    Didenko T, Boelens R et al (2011) 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Eng Des Sel 24(1–2):99–103CrossRefGoogle Scholar
  113. 113.
    Didenko T, Duarte AMS et al (2012) Hsp90 structure and function studied by NMR spectroscopy. Biophys Biochim Acta 1823:636–647Google Scholar
  114. 114.
    Dehner A, Furrer J et al (2003) NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADR AMP-PNP, geldanamycin, and radicicol. Chembiochem 4(9):870–877CrossRefGoogle Scholar
  115. 115.
    Jacobs DM, Langer T et al (2006) NMR backbone assignment of the N-terminal domain of human HSP90. J Biomol NMR 36:52CrossRefGoogle Scholar
  116. 116.
    Salek RM, Williams MA et al (2002) Letter to the editor: backbone resonance assignments of the 25kD N-terminal ATPase domain from the Hsp90 chaperone. J Biomol NMR 23(4):327–328CrossRefGoogle Scholar
  117. 117.
    Martinez-Yamout MA, Venkitakrishnan RP et al (2006) Localization of sites of interaction between p23 and Hsp90 in solution. J Biol Chem 281(20):14457–14464CrossRefGoogle Scholar
  118. 118.
    Hagn F, Lagleder S et al (2011) Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat Struct Mol Biol 18:1086–1093Google Scholar
  119. 119.
    Karagoz GE, Duarte AMS et al (2011) N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci USA 108(2):580–585CrossRefGoogle Scholar
  120. 120.
    Park MS, Chu FX et al (2011) Identification of cyclophilin-40-interacting proteins reveals potential cellular function of cyclophilin-40. Anal Biochem 410(2):257–265CrossRefGoogle Scholar
  121. 121.
    Park SJ, Borin BN et al (2011) The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nat Struct Mol Biol 18(5):537–541CrossRefGoogle Scholar
  122. 122.
    Park SJ, Kostic M et al (2011) Dynamic interaction of Hsp90 with its client protein p53. J Mol Biol 411(1):158–173CrossRefGoogle Scholar
  123. 123.
    Dyson HJ, Kostic M et al (2008) Hydrogen-deuterium exchange strategy for delineation of contact sites in protein complexes. FEBS Lett 582(10):1495–1500CrossRefGoogle Scholar
  124. 124.
    Retzlaff M, Hagn F et al (2010) Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1. Mol Cell 37(3):344–354CrossRefGoogle Scholar
  125. 125.
    Vaughan CK, Gohlke U et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23(5):697–707CrossRefGoogle Scholar
  126. 126.
    Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32(5):631–640CrossRefGoogle Scholar
  127. 127.
    Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. Mol Cell 42(6):771–781CrossRefGoogle Scholar
  128. 128.
    Krukenberg KA, Forster F et al (2008) Multiple conformations of E-coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16(5):755–765CrossRefGoogle Scholar
  129. 129.
    Street TO, Lavery LA et al (2011) Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol Cell 42:96–105CrossRefGoogle Scholar
  130. 130.
    Street TO, Lavery LA et al (2012) Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity. J Mol Biol 415:3–15Google Scholar
  131. 131.
    Zhang W, Hirshberg M et al (2004) Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 340(4):891–907CrossRefGoogle Scholar
  132. 132.
    Krukenberg KA, Street TO et al (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44(2):229–255CrossRefGoogle Scholar
  133. 133.
    Bron P, Giudice E et al (2008) Apo-Hsp90 coexists in two open conformational states in solution. Biol Cell 100(7):413–425CrossRefGoogle Scholar
  134. 134.
    Krukenberg KA, Bottcher UMK et al (2009) Grp94, the endoplasmic reticulum Hsp90, has a similar solution conformation to cytosolic Hsp90 in the absence of nucleotide. Protein Sci 18(9):1815–1827CrossRefGoogle Scholar
  135. 135.
    Krukenberg KA, Southworth DR et al (2009) pH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation. J Mol Biol 390(2):278–291CrossRefGoogle Scholar
  136. 136.
    Street TO, Krukenberg KA et al (2010) Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci 19(1):57–65Google Scholar
  137. 137.
    Jakob U, Scheibel T et al (1996) Assessment of the ATP binding properties of Hsp90. J Biol Chem 271(17):10035–10041CrossRefGoogle Scholar
  138. 138.
    Scheibel T, Neuhofen S et al (1997) ATP-binding properties of human Hsp90. J Biol Chem 272(30):18608–18613CrossRefGoogle Scholar
  139. 139.
    Panaretou B, Prodromou C et al (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17(16):4829–4836CrossRefGoogle Scholar
  140. 140.
    Nadeau K, Das A et al (1993) HSP90 chaperonins possess atpase activity and bind heat-shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268(2):1479–1487Google Scholar
  141. 141.
    Nardai G, Schnaider T et al (1996) Characterization of the 90 kDa heat shock protein (HSP90)-associated ATP/GTPase. J Biosci 21(2):179–190CrossRefGoogle Scholar
  142. 142.
    Sullivan W, Stensgard B et al (1997) Nucleotides and two functional states of hsp90. J Biol Chem 272(12):8007–8012CrossRefGoogle Scholar
  143. 143.
    Grenert JP, Sullivan WP et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272(38):23843–23850CrossRefGoogle Scholar
  144. 144.
    Soti C, Csermely P (1998) Characterization of the nucleotide binding properties of the 90 kDa heat shock protein (Hsp90). J Biosci 23(4):347–352CrossRefGoogle Scholar
  145. 145.
    Scheibel T, Weikl T et al (1998) Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc Natl Acad Sci USA 95(4):1495–1499CrossRefGoogle Scholar
  146. 146.
    McLaughlin SH, Jackson SE (2002) Folding and stability of the ligand-binding domain of the glucocorticoid receptor. Protein Sci 11(8):1926–1936CrossRefGoogle Scholar
  147. 147.
    McLaughlin SH, Smith HW et al (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol 315(4):787–798CrossRefGoogle Scholar
  148. 148.
    Rowlands M, McAndrew C et al (2010) Detection of the ATPase activity of the molecular chaperones Hsp90 and Hsp72 using the transcreener (TM) AdP assay kit. J Biomol Screen 15(3):279–286CrossRefGoogle Scholar
  149. 149.
    Rowlands MG, Newbatt YM et al (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 327(2):176–183CrossRefGoogle Scholar
  150. 150.
    Prodromou C, Panaretou B et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19(16):4383–4392CrossRefGoogle Scholar
  151. 151.
    Weikl T, Muschler P et al (2000) C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol 303(4):583–592CrossRefGoogle Scholar
  152. 152.
    Richter K, Muschler P et al (2001) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276(36):33689–33696CrossRefGoogle Scholar
  153. 153.
    McLaughlin SH, Ventouras LA et al (2004) Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J Mol Biol 344(3):813–826CrossRefGoogle Scholar
  154. 154.
    Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 3(5):301–323CrossRefGoogle Scholar
  155. 155.
    Vaughan CK, Piper PW et al (2009) A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s. FEBS J 276(1):199–209CrossRefGoogle Scholar
  156. 156.
    Prodromou C, Siligardi G et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18(3):754–762CrossRefGoogle Scholar
  157. 157.
    Onuoha SC, Couistock ET et al (2008) Structural studies on the co-chaperone hop and its complexes with Hsp90. J Mol Biol 379(4):732–744CrossRefGoogle Scholar
  158. 158.
    Yi F, Doudevski I et al (2010) HOP is a monomer: investigation of the oligomeric state of the co-chaperone HOP. Protein Sci 19(1):19–25Google Scholar
  159. 159.
    Ebong II, Morgner NM et al (2011) Heterogeneity and dynamics in the assembly of the Hsp90 chaperone complexes. Proc Natl Acad Sci USA 108:17939–17944Google Scholar
  160. 160.
    Li J, Richter K et al (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18(1):61–66Google Scholar
  161. 161.
    Li L, Lou Z et al (2011) The role of FKBP5 in cancer aetiology and chemoresistance. Br J Cancer 104(1):19–23CrossRefGoogle Scholar
  162. 162.
    Li W, Sahu D et al (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biophys Biochim Acta 1823:730–741Google Scholar
  163. 163.
    Siligardi G, Hu B et al (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279(50):51989–51998CrossRefGoogle Scholar
  164. 164.
    Richter K, Walter S et al (2004) The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342(5):1403–1413CrossRefGoogle Scholar
  165. 165.
    McLaughlin SH, Sobott F et al (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356(3):746–758CrossRefGoogle Scholar
  166. 166.
    Siligardi G, Panaretou B et al (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50(cdc97). J Biol Chem 277(23):20151–20159CrossRefGoogle Scholar
  167. 167.
    Lotz GP, Lin HY et al (2003) Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 278(19):17228–17235CrossRefGoogle Scholar
  168. 168.
    Harst A, Lin HY et al (2005) Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem J 387:789–796CrossRefGoogle Scholar
  169. 169.
    Wang XD, Venable J et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. CeN 127(4):803–815Google Scholar
  170. 170.
    Koulov AV, LaPointe P et al (2010) Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 21(6):871–884CrossRefGoogle Scholar
  171. 171.
    Rudiger S, Freund SMV et al (2002) CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90. Proc Natl Acad Sci USA 99(17):11085–11090CrossRefGoogle Scholar
  172. 172.
    Scroggins BT, Neckers L (2007) Post-translational modification of heat-shock protein 90: impact on chaperone function. Expert Opin Drug Discov 2(10):1403–1414CrossRefGoogle Scholar
  173. 173.
    Scroggins BT, Robzyk K et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25(1):151–159CrossRefGoogle Scholar
  174. 174.
    Jacobs AT, Marnett LJ (2010) Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc Chem Res 43(5):673–683CrossRefGoogle Scholar
  175. 175.
    Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15(11):565–567CrossRefGoogle Scholar
  176. 176.
    Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefGoogle Scholar
  177. 177.
    Kovacs JJ, Murphy PJM et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18(5):601–607CrossRefGoogle Scholar
  178. 178.
    Murphy PJM, Morishima Y et al (2005) Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J Biol Chem 280(40):33792–33799CrossRefGoogle Scholar
  179. 179.
    Meng Q, Chen X et al (2011) Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetylation of Hsp90. Mol Cell Biochem 348(1–2):165–171CrossRefGoogle Scholar
  180. 180.
    Ai J, Wang Y et al (2009) HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol 23(12):1963–1972CrossRefGoogle Scholar
  181. 181.
    Pallavi R, Roy N et al (2010) Heat shock protein 90 as a drug target against protozoan infections biochemical characterization of hsp90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 285(49):37964–37975CrossRefGoogle Scholar
  182. 182.
    Adinolfi E, Kim M et al (2003) Tyrosine phosphorylation of HSP90 within the P2X(7) receptor complex negatively regulates P2X(7) receptors. J Biol Chem 278(39):37344–37351CrossRefGoogle Scholar
  183. 183.
    Duval M, Le Boeuf F et al (2007) Src-mediated phosphorylation of hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18(11):4659–4668CrossRefGoogle Scholar
  184. 184.
    Mollapour M, Tsutsumi S et al (2010) Swe1(Wee1)-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell 37(3):333–343CrossRefGoogle Scholar
  185. 185.
    Mollapour M, Tsutsumi S et al (2010) Hsp90 phosphorylation, Wee1, and the cell cycle. Cell Cycle 9(12):2310–2316CrossRefGoogle Scholar
  186. 186.
    Mollapour M, Neckers L (2011) Detecting HSP90 phosphorylation. Methods Mol Biol 787:67–74 (Clifton, NJ)CrossRefGoogle Scholar
  187. 187.
    Schmid S, Hugel T (2011) Regulatory post-translational modifications in Hsp90 can be compensated by cochaperone Aha1. Mol Cell 41:619–620CrossRefGoogle Scholar
  188. 188.
    Mollapour M, Tsutsumi S et al (2011) Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2(5):407–417Google Scholar
  189. 189.
    Mollapour M, Tsutsumi S et al (2011) Threonine22 phosphorylation attenuates Hsp90 interaction with cochaerones and affects its chaperone activity. Mol Cell 41:672–681CrossRefGoogle Scholar
  190. 190.
    Iki T, Yoshikawa M et al (2011) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31(2):267–278CrossRefGoogle Scholar
  191. 191.
    Shao JY, Prince T et al (2003) Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem 278(40):38117–38120CrossRefGoogle Scholar
  192. 192.
    Marzec M, Eletto D et al (2012) Grp94: an Hsp90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823:774–787Google Scholar
  193. 193.
    Frey S, Leskovar A et al (2007) The ATPase cycle of the endoplasmic chaperone Grp94. J Biol Chem 282:35612–35620CrossRefGoogle Scholar
  194. 194.
    Ostrovsky O, Makarewich CA et al (2009) An essential role for ATP binding and hydrolysis in the chaperone activity of GRP94 in cells. Proc Natl Acad Sci USA 106:11600–11605CrossRefGoogle Scholar
  195. 195.
    Immormino RM, Metzger LE et al (2009) Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J Mol Biol 388:1033–1042CrossRefGoogle Scholar
  196. 196.
    Van PN, Peter F et al (1989) Four intracisternal calcium-binding glycoproteins from rat-liver microsomes with high-affinity for calcium – no indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat-liver vesicles. J Biol Chem 264(29):17494–17501Google Scholar
  197. 197.
    Lee AS (1981) The accumulation of 3 specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant-cell line K12. J Cell Physiol 106(1):119–125CrossRefGoogle Scholar
  198. 198.
    Shiu RPC, Pouyssegur J et al (1977) Glucose depletion accounts for induction of 2 transformation-sensitive membrane proteins in rous-sarcoma virus-transformed chick-embryo fibroblasts – (glucose starvation membrane proteins). Proc Natl Acad Sci USA 74(9):3840–3844CrossRefGoogle Scholar
  199. 199.
    Subjeck JR, Shyy TT (1986) Stress protein systems of mammalian-cells. Am J Physiol 250(1):C1–C17Google Scholar
  200. 200.
    Qu DF, Mazzarella RA et al (1994) Analysis of the structure and synthesis of GRP94, an abundant stress protein of the endoplasmic-reticulum. DNA Cell Biol 13(2):117–124CrossRefGoogle Scholar
  201. 201.
    Riera M, Roher N et al (1999) Association of protein kinase CK2 with eukaryotic translation initiation factor eIF-2 and with grp94/endoplasmin. Mol Cell Biochem 191(1–2):97–104CrossRefGoogle Scholar
  202. 202.
    Trujillo R, Miro F et al (1997) Substrates for protein kinase CK2 in insulin receptor preparations from rat liver membranes: identification of a 210-kDa protein substrate as the dimeric form of endoplasmin. Arch Biochem Biophys 344(1):18–28CrossRefGoogle Scholar
  203. 203.
    Frasson M, Vitadello M et al (2009) Grp94 is Tyr-phosphorylated by Fyn in the lumen of the endoplasmic reticulum and translocates to golgi in differentiating myoblasts. Biochim Biophys Acta 1793(2):239–252CrossRefGoogle Scholar
  204. 204.
    Ko MH, Puglielli L (2009) Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J Biol Chem 284(4):2482–2492CrossRefGoogle Scholar
  205. 205.
    Biswas C, Ostrovsky O et al (2007) The peptide-binding activity of GRP94 is regulated by calcium. Biochem J 405:233–241CrossRefGoogle Scholar
  206. 206.
    Ma YJ, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4(12):966–977CrossRefGoogle Scholar
  207. 207.
    Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581(19):3641–3651CrossRefGoogle Scholar
  208. 208.
    Melnick J, Argon Y (1995) Molecular chaperones and the biosynthesis of antigen receptors. Immunol Today 16(5):243–250CrossRefGoogle Scholar
  209. 209.
    Melnick J, Dul JL et al (1994) Sequential interaction of the chaperones BIP and GRP94 with immunoglobulin-chains in the endoplasmic-reticulum. Nature 370(6488):373–375CrossRefGoogle Scholar
  210. 210.
    Liu B, Yang Y et al (2010) Folding of toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79Google Scholar
  211. 211.
    Liu F, Gao YG et al (2010) A survey of lambda repressor fragments from two-state to downhill folding. J Mol Biol 397(3):789–798CrossRefGoogle Scholar
  212. 212.
    Wakabayashi Y, Kobayashi M et al (2006) A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol 177(3):1772–1779Google Scholar
  213. 213.
    Kao G, Nordenson C et al (2007) ASNA-1 positively regulates insulin secretion in C-elegans and mammalian cells. Cell 128(3):577–587CrossRefGoogle Scholar
  214. 214.
    Stefanovic S, Hegde RS (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128(6):1147–1159CrossRefGoogle Scholar
  215. 215.
    Bhamidipati A, Denic V et al (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19(6):741–751CrossRefGoogle Scholar
  216. 216.
    Christianson JC, Shaler TA et al (2008) OS-9 and GRP94 deliver mutant alpha 1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10(3):272–282CrossRefGoogle Scholar
  217. 217.
    Cechetto JD, Gupta RS (2000) Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp Cell Res 260(1):30–39CrossRefGoogle Scholar
  218. 218.
    Felts SJ, Owen BAL et al (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275(5):3305–3312CrossRefGoogle Scholar
  219. 219.
    Altieri DC, Stein GS et al (2012) TRAP-1, the mitochondrial Hsp90. Biochimica et Biophysica Acta 1823:767–773Google Scholar
  220. 220.
    Song HY, Dunbar JD et al (1995) Identification of a protein with homology to HSP90 that binds the type-1 tumor-necrosis-factor receptor. J Biol Chem 270(8):3574–3581CrossRefGoogle Scholar
  221. 221.
    Leskovar A, Wegele H et al (2008) The ATPase cycle of the mitochondrial Hsp90 analog trap1. J Biol Chem 283(17):11677–11688CrossRefGoogle Scholar
  222. 222.
    Kang BH, Plescia J et al (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131(2):257–270CrossRefGoogle Scholar
  223. 223.
    Kang BH, Plescia J et al (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119(3):454–464CrossRefGoogle Scholar
  224. 224.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629CrossRefGoogle Scholar
  225. 225.
    Hua GQ, Zhang QX et al (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem 282(28):20553–20560CrossRefGoogle Scholar
  226. 226.
    Masuda Y, Shima G et al (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279(41):42503–42515CrossRefGoogle Scholar
  227. 227.
    Pridgeon JW, Olzmann JA et al (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5(7):1494–1503CrossRefGoogle Scholar
  228. 228.
    Plescia J, Salz W et al (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7(5):457–468CrossRefGoogle Scholar
  229. 229.
    Kang BH, Altieri DC (2009) Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones. Oncogene 28(42):3681–3688CrossRefGoogle Scholar
  230. 230.
    Kang BH, Siegelin MD et al (2010) Preclinical characterization of mitochondria-targeted small molecule Hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res 16(19):4779–4788CrossRefGoogle Scholar
  231. 231.
    Kang BH, Tavecchio M et al (2011) Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br J Cancer 104(4):629–634CrossRefGoogle Scholar
  232. 232.
    Eustace BK, Sakurai T et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6(6):507–514CrossRefGoogle Scholar
  233. 233.
    Tsutsumi S, Scroggins B et al (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27(17):2478–2487CrossRefGoogle Scholar
  234. 234.
    Cheng CF, Fan JH et al (2008) Transforming growth factor alpha (TGF alpha)-stimulated secretion of HSP90 alpha: using the receptor LRF-1/CD91 to promote human skin cell migration against a TGF beta-rich environment during wound healing. Mol Cell Biol 28(10):3344–3358CrossRefGoogle Scholar
  235. 235.
    Cheng CF, Sahu D et al (2011) A fragment of secreted Hsp90 alpha carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121(11):4348–4361CrossRefGoogle Scholar
  236. 236.
    Kadota Y, Shirasu K (2012) The HSP90 complex of plants. Biophys Biochim Acta 1823:689–697Google Scholar
  237. 237.
    Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8(1):86–92CrossRefGoogle Scholar
  238. 238.
    Sangster TA, Salathia N et al (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci USA 105(8):2969–2974CrossRefGoogle Scholar
  239. 239.
    Sangster TA, Salathia N et al (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci USA 105(8):2963–2968CrossRefGoogle Scholar
  240. 240.
    Jarosz DF, Lindquist S (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330(6012):1820–1824CrossRefGoogle Scholar
  241. 241.
    Gangaraju VK, Yin H et al (2011) Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 43(2):153–158CrossRefGoogle Scholar
  242. 242.
    Cowen LE, Lindquist S (2005) Hsp90 potentiates the rapid evotution of new traits: drug resistance in diverse fungi. Science 309(5744):2185–2189CrossRefGoogle Scholar
  243. 243.
    Queitsch C, Sangster TA et al (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417(6889):618–624CrossRefGoogle Scholar
  244. 244.
    Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709):336–342CrossRefGoogle Scholar
  245. 245.
    Sangster TA, Bahrami A et al (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One 2(7)Google Scholar
  246. 246.
    Sangster TA, Lindquist S et al (2004) Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26(4):348–362CrossRefGoogle Scholar
  247. 247.
    Maekawa T, Kufer TA et al (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12(9):818–826CrossRefGoogle Scholar
  248. 248.
    Kadota Y, Shirasu K et al (2010) NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem Sci 35(4):199–207CrossRefGoogle Scholar
  249. 249.
    Cox MB, Johnson JL (2011) The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function. Methods Mol Biol 787:45–66 (Clifton, NJ)CrossRefGoogle Scholar
  250. 250.
    Smith DF, Faber LE et al (1990) Purification of unactivated progesterone-receptor and identification of novel receptor-associated proteins. J Biol Chem 265(7):3996–4003Google Scholar
  251. 251.
    Bresnick EH, Dalman FC et al (1990) Direct stoichiometric evidence that the untransformed MR 300 000, 9S, glucocorticoid receptor is a core unit derived from a larger heteromeric complex. Biochemistry 29(2):520–527CrossRefGoogle Scholar
  252. 252.
    Weaver AJ, Sullivan WP et al (2000) Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J Biol Chem 275(30):23045–23052CrossRefGoogle Scholar
  253. 253.
    Tanioka T, Nakatani Y et al (2000) Molecular identification of cytosolic prostaglandin E-2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E-2 biosynthesis. J Biol Chem 275(42):32775–32782CrossRefGoogle Scholar
  254. 254.
    Toogun OA, Zeiger W et al (2007) The p23 molecular chaperone promotes functional telomerase complexes through DNA dissociation. Proc Natl Acad Sci USA 104(14):5765–5770CrossRefGoogle Scholar
  255. 255.
    DeZwaan DC, Freeman BC (2010) HSP90 manages the ends. Trends Biochem Sci 35(7):384–391CrossRefGoogle Scholar
  256. 256.
    Ratajczak T, Ward BK et al (2009) Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors. Int J Biochem Cell Biol 41(8–9):1652–1655CrossRefGoogle Scholar
  257. 257.
    Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16(4):353–367CrossRefGoogle Scholar
  258. 258.
    Cheung-Flynn J, Prapapanich V et al (2005) Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19(6):1654–1666CrossRefGoogle Scholar
  259. 259.
    Riggs DL, Roberts PJ et al (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22(5):1158–1167CrossRefGoogle Scholar
  260. 260.
    Wochnik GM, Ruegg J et al (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280(6):4609–4616CrossRefGoogle Scholar
  261. 261.
    Davies TH, Ning YM et al (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038CrossRefGoogle Scholar
  262. 262.
    Yang ZC, Wolf IM et al (2006) FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol 20(11):2682–2710CrossRefGoogle Scholar
  263. 263.
    Stechschulte LA, Sanchez ER (2011) FKBP51-a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 11(4):332–337CrossRefGoogle Scholar
  264. 264.
    Periyasamy S, Hinds T et al (2010) FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene 29(11):1691–1701CrossRefGoogle Scholar
  265. 265.
    Ni L, Yang CS et al (2010) FKBP51 Promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30(5):1243–1253CrossRefGoogle Scholar
  266. 266.
    Hartmann J, Wagner KV et al (2012) The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 62(1):332–339CrossRefGoogle Scholar
  267. 267.
    Touma C, Gassen NC et al (2011) FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 70(10):928–936CrossRefGoogle Scholar
  268. 268.
    Koren J, Jinwal UK et al (2011) Bending tau into shape: the emerging role of peptidyl-prolyl isomerases in tauopathies. Mol Neurobiol 44(1):65–70CrossRefGoogle Scholar
  269. 269.
    Taylor P, Dornan J et al (2001) Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure 9(5):431–438CrossRefGoogle Scholar
  270. 270.
    Das AK, Cohen PTW et al (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17(5):1192–1199CrossRefGoogle Scholar
  271. 271.
    Chen MS, Silverstein AM et al (1996) The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem 271(50):32315–32320CrossRefGoogle Scholar
  272. 272.
    Silverstein AM, Galigniana MD et al (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272(26):16224–16230CrossRefGoogle Scholar
  273. 273.
    Salminen A, Ojala J et al (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog Neurobiol 93:99–110CrossRefGoogle Scholar
  274. 274.
    Jones C, Anderson S et al (2008) Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei. Parasitol Res 102(5):835–844CrossRefGoogle Scholar
  275. 275.
    Hinds TD, Sanchez ER (2008) Protein phosphatase 5. Int J Biochem Cell Biol 40(11):2358–2362CrossRefGoogle Scholar
  276. 276.
    Golden T, Swingle M et al (2008) The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 27(2):169–178CrossRefGoogle Scholar
  277. 277.
    Chinkers M (2001) Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab 12(1):28–32CrossRefGoogle Scholar
  278. 278.
    Pearl LH (2005) Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61CrossRefGoogle Scholar
  279. 279.
    Caplan AJ, Mandal AK et al (2007) Molecular chaperones and protein kinase quality control. Trends Cell Biol 17(2):87–92CrossRefGoogle Scholar
  280. 280.
    Mandal AK, Theodoraki MA et al (2011) Role of molecular chaperones in biogenesis of the protein kinome. Methods Mol Biol 787:75–81 (Clifton, NJ)CrossRefGoogle Scholar
  281. 281.
    MacLean M, Picard D (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8(2):114–119CrossRefGoogle Scholar
  282. 282.
    Karnitz LM, Felts SJ (2007) Cdc37 regulation of the kinome: when to hold ‘em and when to fold’ em. Sci Signal Transduct Knowl Environ 385:pe22Google Scholar
  283. 283.
    Odunuga OO, Longshaw VM et al (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 26:1058–1068Google Scholar
  284. 284.
    Wegele H, Wandinger SK et al (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356(3):802–811CrossRefGoogle Scholar
  285. 285.
    Schmid AB, Lagleder S et al (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31:1506–1517CrossRefGoogle Scholar
  286. 286.
    Nathan DF, Vos MH et al (1999) Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation. Proc Natl Acad Sci USA 96(4):1409–1414CrossRefGoogle Scholar
  287. 287.
    Muskett P, Parker J (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect 5(11):969–976CrossRefGoogle Scholar
  288. 288.
    Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164CrossRefGoogle Scholar
  289. 289.
    Ye ZM, Ting JPY (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20(1):3–9CrossRefGoogle Scholar
  290. 290.
    Murata S, Chiba T et al (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 35(5):572–578CrossRefGoogle Scholar
  291. 291.
    McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308CrossRefGoogle Scholar
  292. 292.
    Pratt WB, Morishima Y et al (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med 235(3):278–289CrossRefGoogle Scholar
  293. 293.
    Hildenbrand ZL, Molugu SK et al (2011) Hsp90 can accommodate the simultaneous binding of the FKBP52 and Hop proteins. Oncotarget 2:43–58Google Scholar
  294. 294.
    OwensGrillo JK, Czar MJ et al (1996) A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J Biol Chem 271(23):13468–13475CrossRefGoogle Scholar
  295. 295.
    Jhaveri K, Taldone T et al (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755Google Scholar
  296. 296.
    Whitesell L, Shifrin SD et al (1992) Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to SRC kinase inhibition. Cancer Res 52(7):1721–1728Google Scholar
  297. 297.
    Schulte TW, Neckers L (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42(4):273–279CrossRefGoogle Scholar
  298. 298.
    Kim DJ, Kim HS et al (2009) Crystal structure of thermotoga maritima SPOUT superfamily RNA methyltransferase Tm1570 in complex with S-adenosyl-L-methionine. Proteins Struct Funct Bioinformatics 74(1):245–249CrossRefGoogle Scholar
  299. 299.
    Kim YS, Alarcon SV et al (2009) Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9(15):1479–1492CrossRefGoogle Scholar
  300. 300.
    Johnson VA, Singh EK et al (2010) Macrocyclic inhibitors of Hsp90. Curr Top Med Chem 10(14):1380–1402CrossRefGoogle Scholar
  301. 301.
    Taldone T, Gozman A et al (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8(4):370–374CrossRefGoogle Scholar
  302. 302.
    Talele TT, Khedkar SA et al (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10(1):127–141CrossRefGoogle Scholar
  303. 303.
    Taldone T, Chiosis G (2009) Purine-scaffold Hsp90 inhibitors. Curr Top Med Chem 9(15):1436–1446CrossRefGoogle Scholar
  304. 304.
    Taldone T, Chiosis G (2009) Purine-scaffold Hsp90 inhibitors. Curr TopicsGoogle Scholar
  305. 305.
    Porter JR, Fritz CC et al (2010) Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol 14(3):412–420CrossRefGoogle Scholar
  306. 306.
    Taldone T, Zatorska D et al (2011) Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorg Med Chem 19(8):2603–2614CrossRefGoogle Scholar
  307. 307.
    Pearl LH, Prodromou C et al (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453CrossRefGoogle Scholar
  308. 308.
    Neckers L (2006) Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 172:259–277CrossRefGoogle Scholar
  309. 309.
    Fortugno P, Beltrami E et al (2003) Regulation of survivin function by Hsp90. Proc Natl Acad Sci USA 100(24):13791–13796CrossRefGoogle Scholar
  310. 310.
    Kamal A, Thao L et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410CrossRefGoogle Scholar
  311. 311.
    Moulick K, Ahn JH et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7(11):818–826CrossRefGoogle Scholar
  312. 312.
    Vilenchik M, Solit D et al (2004) Targeting wide-range oncogenic transformation via PU24FCI, a specific inhibitor of tumor Hsp90. Chem Biol 11(6):787–797CrossRefGoogle Scholar
  313. 313.
    Brandt GEL, Blagg BSJ (2009) Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases. Curr Top Med Chem 9(15):1447–1461CrossRefGoogle Scholar
  314. 314.
    Donnelly A, Blagg BSJ (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15(26):2702–2717CrossRefGoogle Scholar
  315. 315.
    Palermo CM, Westlake CA et al (2005) Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44(13):5041–5052CrossRefGoogle Scholar
  316. 316.
    Pimienta G, Herbert KM et al (2011) A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 8(6):2252–2261CrossRefGoogle Scholar
  317. 317.
    Vasko RC, Rodriguez RA et al (2010) Mechanistic studies of sansalvamide a-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1(1):4–8CrossRefGoogle Scholar
  318. 318.
    Heide L (2009) The aminocoumarins: biosynthesis and biology. Nat Prod Rep 26(10):1241–1250CrossRefGoogle Scholar
  319. 319.
    Marcu MG, Schulte TW et al (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92(3):242–248CrossRefGoogle Scholar
  320. 320.
    Burlison JA, Blagg BSJ (2006) Synthesis and evaluation of coumermycin A1 analogues that inhibit the Hsp90 protein folding machinery. Org Lett 8(21):4855–4858CrossRefGoogle Scholar
  321. 321.
    Yu XM, Shen G et al (2005) Hsp90 inhibitors identified from a library of novobiocin analogues. J Am Chem Soc 127(37):12778–12779CrossRefGoogle Scholar
  322. 322.
    Burlison JA, Avila C et al (2008) Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. J Org Chem 73(6):2130–2137CrossRefGoogle Scholar
  323. 323.
    Burlison JA, Neckers L et al (2006) Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of Hsp90. J Am Chem Soc 128(48):15529–15536CrossRefGoogle Scholar
  324. 324.
    Huang Y-T, Blagg BSJ (2007) A library of noviosylated coumarin analogues. J Org Chem 72(10):3609–3613CrossRefGoogle Scholar
  325. 325.
    Huang JR, Craggs TD et al (2007) Stable intermediate states and high energy barriers in the unfolding of GFP. J Mol Biol 370(2):356–371CrossRefGoogle Scholar
  326. 326.
    Le Bras G, Radanyi C et al (2007) New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90. J Med Chem 50(24):6189–6200CrossRefGoogle Scholar
  327. 327.
    Radanyi C, Le Bras G et al (2008) Synthesis and biological activity of simplified denoviose-coumarins related to novobiocin as potent inhibitors of heat-shock protein 90 (hsp90). Bioorg Med Chem Lett 18(7):2495–2498CrossRefGoogle Scholar
  328. 328.
    Soti C, Racz A et al (2002) A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90 – N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277(9):7066–7075CrossRefGoogle Scholar
  329. 329.
    Yi F, Zhu P et al (2009) An alphascreen (TM)-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen 14(3):273–281CrossRefGoogle Scholar
  330. 330.
    Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3(10):645–654CrossRefGoogle Scholar
  331. 331.
    Cortajarena AL, Yi F et al (2008) Designed TPR modules as novel anticancer agents. ACS Chem Biol 3(3):161–166CrossRefGoogle Scholar
  332. 332.
    Patel HJ, Modi S et al (2011) Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin Drug Discov 6(5):559–587CrossRefGoogle Scholar
  333. 333.
    Trepel J, Mollapour M et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549CrossRefGoogle Scholar
  334. 334.
    Tsutsumi S, Beebe K et al (2009) Impact of heat-shock protein 90 on cancer metastasis. Future Oncol 5(5):679–688CrossRefGoogle Scholar
  335. 335.
    Tsutsumi S, Mollapour M et al (2009) Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nat Struct Mol Biol 16(11):1141–1147CrossRefGoogle Scholar
  336. 336.
    Nagy PD, Wang RY et al (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411(2):374–382CrossRefGoogle Scholar
  337. 337.
    Geller R, Vignuzzi M et al (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21(2):195–205CrossRefGoogle Scholar
  338. 338.
    Luheshi LM, Dobson CM (2009) Bridging the gap: from protein misfolding to protein misfolding diseases. FEBS Lett 583(16):2581–2586CrossRefGoogle Scholar
  339. 339.
    Ramirez-Alvarado M, Kelly JW et al (2010) Protein misfolding diseases: current and emerging principles and therapies. Wiley series in protein and peptide science. WileyGoogle Scholar
  340. 340.
    Owen JB, Di Domenico F et al (2009) Proteomics-determined differences in the concanavalin-a-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer’s disease and mild cognitive impairment: implications for progression of AD. J Proteome Res 8(2):471–482CrossRefGoogle Scholar
  341. 341.
    Kulathingal J, Ko LW et al (2009) Proteomic profiling of phosphoproteins and glycoproteins responsive to wild-type alpha-synuclein accumulation and aggregation. Biochim Biophys Acta 1794(2):211–224CrossRefGoogle Scholar
  342. 342.
    Kulathingal J, Ko L-W et al (2009) Proteomic profiling of phosphoproteins and glycoproteins responsive to wild-type alpha-synuclein accumulation and aggregation. Biochim Biophys Acta 1794(2):211–224CrossRefGoogle Scholar
  343. 343.
    Yokota T, Mishra M et al (2006) Brain site-specific gene expression analysis in Alzheimer’s disease patients. Eur J Clin Invest 36(11):820–830CrossRefGoogle Scholar
  344. 344.
    Sahara N, Maeda S et al (2007) Molecular chaperone-mediated Tau protein metabolism counteracts the formation of granular Tau oligomers in human brain. J Neurosci Res 85:3098–3108CrossRefGoogle Scholar
  345. 345.
    Dou F, Netzer WJ et al (2003) Heat shock proteins reduce aggregation and facilitate degradation of tau protein. Mol Mech Epochal Therap Ischemic Stroke Dementia 1252:383–393Google Scholar
  346. 346.
    Dou F, Netzer WJ et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 100(2):721–726CrossRefGoogle Scholar
  347. 347.
    Dickey CA, Eriksen J et al (2005) Development of a high throughput drug screening assay for the detection of changes in tau levels – proof of concept with HSP90 inhibitors. Curr Alzheimer Res 2(2):231–238CrossRefGoogle Scholar
  348. 348.
    Ansar S, Burlison JA et al (2007) A non-toxic Hsp90 inhibitor protects neurons from Abeta-induced toxicity. Bioorg Med Chem Lett 17(7):1984–1990CrossRefGoogle Scholar
  349. 349.
    Lu J, den Dulk-Ras A et al (2009) Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci USA 106(24):9643–9648CrossRefGoogle Scholar
  350. 350.
    Lu Y, Ansar S et al (2009) Neuroprotective activity and evaluation of Hsp90 inhibitors in an immortalized neuronal cell line. Bioorg Med Chem 17(4):1709–1715CrossRefGoogle Scholar
  351. 351.
    Dickey CA, Dunmore J et al (2006) HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. Faseb J 20(2):753–755Google Scholar
  352. 352.
    Luo WJ, Dou F et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 104(22):9511–9516CrossRefGoogle Scholar
  353. 353.
    Dou F, Chang XY et al (2007) Hsp90 maintains the stability and function of the tau phosphorylating kinase GSK3 beta. Int J Mol Sci 8(1):51–60CrossRefGoogle Scholar
  354. 354.
    Tortosa E, Santa-Maria I et al (2009) Binding of Hsp90 to Tau promotes a conformational change and aggregation of Tau protein. J Alzheimers Dis 17(2):319–325Google Scholar
  355. 355.
    Dickey CA, Koren J et al (2008) Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci USA 105(9):3622–3627CrossRefGoogle Scholar
  356. 356.
    Dickey CA, Kamal A et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658CrossRefGoogle Scholar
  357. 357.
    Jinwal UK, Koren J et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599CrossRefGoogle Scholar
  358. 358.
    Benussi L, Ghidoni R et al (2005) Interaction between tau and alpha-synuclein proteins is impaired in the presence of P301L tau mutation. Exp Cell Res 308(1):78–84CrossRefGoogle Scholar
  359. 359.
    Riedel M, Goldbaum O et al (2009) Alpha-synuclein promotes the recruitment of Tau to protein inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress. J Mol Neurosci 39(1–2):226–234CrossRefGoogle Scholar
  360. 360.
    Uryu K, Richter-Landsberg C et al (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol 168(3):947–961CrossRefGoogle Scholar
  361. 361.
    Liang J, Clark-Dixon C et al (2008) Novel suppressors of alpha-synuclein toxicity identified using yeast. Hum Mol Genet 17(23):3784–3795CrossRefGoogle Scholar
  362. 362.
    Koga H, Cuervo AM (2011) Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis 43(1):29–37CrossRefGoogle Scholar
  363. 363.
    Zaarur N, Meriin AB et al (2008) Triggering aggresome formation – dissecting aggresome-targeting and aggregation signals in synphilin 1. J Biol Chem 283(41):27575–27584CrossRefGoogle Scholar
  364. 364.
    Falsone SF, Kungl AJ et al (2009) The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein alpha-synuclein. J Biol Chem 284(45):31190–31199CrossRefGoogle Scholar
  365. 365.
    Liu J, Chen S et al (2009) Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. Mov Disord 24:S39–S40CrossRefGoogle Scholar
  366. 366.
    Liu J, Zhang JP et al (2009) Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. J Neurosci 29(5):1480–1485CrossRefGoogle Scholar
  367. 367.
    Lee SJ, Lim HS et al (2011) Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci Res 70(4):339–348CrossRefGoogle Scholar
  368. 368.
    Ko HS, Bailey R et al (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci USA 106(8):2897–2902CrossRefGoogle Scholar
  369. 369.
    Hinault MP, Ben-Zvi A et al (2006) Chaperones and proteases – cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30(3):249–265CrossRefGoogle Scholar
  370. 370.
    McNaught KSP, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging 27(4):530–545CrossRefGoogle Scholar
  371. 371.
    Olanow CW, McNaught KS (2006) Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord 21(11):1806–1823CrossRefGoogle Scholar
  372. 372.
    Adachi H, Katsuno M et al (2009) Heat shock proteins in neurodegenerative diseases: pathogenic roles and therapeutic implications. Int J Hyperthermia 25(8):647–654CrossRefGoogle Scholar
  373. 373.
    Connelly S, Choi S et al (2010) Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol 20(1):54–62CrossRefGoogle Scholar
  374. 374.
    Sekijima Y, Kelly JW et al (2008) Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des 14(30):3219–3230CrossRefGoogle Scholar
  375. 375.
    Kubota H, Kitamura A et al (2011) Analyzing the aggregation of polyglutamine-expansion proteins and its modulation by molecular chaperones. Methods 53(3):267–274CrossRefGoogle Scholar
  376. 376.
    Evans CG, Wisen S et al (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1–42) aggregation in vitro. J Biol Chem 281(44):33182–33191CrossRefGoogle Scholar
  377. 377.
    Takata K, Kitamura Y et al (2003) Heat shock protein-90-induced microglial clearance of exogenous amyloid-beta(1–42) in rat hippocampus in vivo. Neurosci Lett 344(2):87–90CrossRefGoogle Scholar
  378. 378.
    Kakimura J, Kitamura Y et al (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16(2):601–603Google Scholar
  379. 379.
    Veereshwarayya V, Kumar P et al (2006) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem 281(40):29468–29478CrossRefGoogle Scholar
  380. 380.
    Sittler A, Lurz R et al (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315CrossRefGoogle Scholar
  381. 381.
    Sato T, Susuki S et al (2007) Endoplasmic reticulum quality control regulates the fate of transthyretin variants in the cell. EMBO J 26(10):2501–2512CrossRefGoogle Scholar
  382. 382.
    Chadli A, Felts SJ et al (2010) Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the Co-chaperone p23. J Biol Chem 285(6):4224–4231CrossRefGoogle Scholar
  383. 383.
    Paris D, Ganey NJ et al (2010) Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 7:17Google Scholar
  384. 384.
    Chiosis G, Kang YL et al (2008) Discovery and development of purine-scaffold Hsp90 inhibitors. Expert Opin Drug Discov 3(1):99–114CrossRefGoogle Scholar
  385. 385.
    Luo WJ, Rodina A et al (2008) Heat shock protein 90: translation from cancer to Alzheimer’s disease treatment? BMC Neurosci 9:Suppl 2. S7 ReviewGoogle Scholar
  386. 386.
    Koren J, Jinwal UK et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13(4):619–630CrossRefGoogle Scholar
  387. 387.
    DeTure M, Hicks C et al (2010) Targeting heat shock proteins in tauopathies. Curr Alzheimer Res 7(8):677–684CrossRefGoogle Scholar
  388. 388.
    Luo WJ, Sun WL et al (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegeneration 5Google Scholar
  389. 389.
    Neckers L, Tatu U (2008) Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4(6):519–527CrossRefGoogle Scholar
  390. 390.
    Folgueira C, Requena JM (2007) A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev 31(4):359–377CrossRefGoogle Scholar
  391. 391.
    Bente M, Harder S et al (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3(9):1811–1829CrossRefGoogle Scholar
  392. 392.
    Graefe SEB, Wiesgigl M et al (2002) Inhibition of HSP90 in trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryot Cell 1(6):936–943CrossRefGoogle Scholar
  393. 393.
    Pesce ER, Cockburn IL et al (2010) Malaria heat shock proteins: drug targets that chaperone other drug targets. Infect Disord Drug Targets 10(3):147–157CrossRefGoogle Scholar
  394. 394.
    Acharya P, Kumar R et al (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153(2):85–94CrossRefGoogle Scholar
  395. 395.
    Wiser MF (2003) A Plasmodium homologue of cochaperone p23 and its differential expression during the replicative cycle of the malaria parasite. Parasitol Res 90(2):166–170Google Scholar
  396. 396.
    Vonlaufen N, Kanzok SM et al (2008) Stress response pathways in protozoan parasites. Cell Microbiol 10(12):2387–2399CrossRefGoogle Scholar
  397. 397.
    Ahn HJ, Kim HW et al (2003) Crystal structure of tRNA(m(1)G37)methyltransferase: insights into tRNA recognition. EMBO J 22(11):2593–2603CrossRefGoogle Scholar
  398. 398.
    Ahn HJ, Kim S et al (2003) Molecular cloning of the 82-kDa heat shock protein (HSP90) of Toxoplasma gondii associated with the entry into and growth in host cells. Biochem Biophys Res Commun 311(3):654–659CrossRefGoogle Scholar
  399. 399.
    Echeverria PC, Matrajt M et al (2005) Toxoplasma gondii Hsp90 is a potential drug target whose expression and subcellular localization are developmentally regulated. J Mol Biol 350(4):723–734CrossRefGoogle Scholar
  400. 400.
    Roy N, Nageshan RK et al (2012) Heat shock protein 90 from neglected protozoan parasites. Biophys Biochim Acta 1823:707–711Google Scholar
  401. 401.
    Abisambra JF, Blair LJ et al (2010) Functionally intact Hsp27 links Tau aggregate disassembly to neuroprotection. Cell Transplant 19(3):329–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryCambridgeUK

Personalised recommendations