Skip to main content

Calculation of Hydrodynamic Properties for G-Quadruplex Nucleic Acid Structures from in silico Bead Models

  • Chapter
  • First Online:
Quadruplex Nucleic Acids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 330))

Abstract

Nucleic acids enriched in guanine bases can adopt unique quadruple helical tertiary structures known as G-quadruplexes. G-quadruplexes have emerged as attractive drug targets as many G-quadruplex-forming sequences have been discovered in functionally critical sites within the human genome, including the telomere, oncogene promoters, and mRNA processing sites. A single G-quadruplex-forming sequence can adopt one of many folding topologies, often resulting in a lack of a single definitive atomic-level resolution structure for many of these sequences and a major challenge to the discovery of G-quadruplex-selective small molecule drugs. Low-resolution techniques employed to study G-quadruplex structures (e.g., CD spectroscopy) are often unable to discern between G-quadruplex structural ensembles, while high-resolution techniques (e.g., NMR spectroscopy) can be overwhelmed by a highly polymorphic system. Hydrodynamic bead modeling is an approach to studying G-quadruplex structures that could bridge the gap between low-resolution techniques and high-resolution molecular models. Here, we present a discussion of hydrodynamic bead modeling in the context of studying G-quadruplex structures, highlighting recent successes and limitations to this approach, as well as an example featuring a G-quadruplex structure formed from the human telomere. This example can easily be adapted to the investigation of any other G-quadruplex-forming sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byron O (2008) Hydrodynamic modeling: the solution conformation of macromolecules and their complexes. In: John JC, William Detrich H III (eds) Methods in cell biology, vol 84. Academic Press in Waltham, MA, Burlington

    Google Scholar 

  2. Carrasco B, García de la Torre J (1999) Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys J 76(6):3044–3057

    CAS  Google Scholar 

  3. García de la Torre J, Bloomfield VA (1981) Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys 14(01):81–139

    Google Scholar 

  4. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    CAS  Google Scholar 

  5. Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964

    CAS  Google Scholar 

  6. Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5(10):821–834

    CAS  Google Scholar 

  7. Chaires JB (1986) Allosteric conversion of Z DNA to an intercalated right-handed conformation by daunomycin. J Biol Chem 261(19):8899–8907

    CAS  Google Scholar 

  8. Chaires JB (1986) Inhibition of the thermally driven B to Z transition by intercalating drugs. Biochemistry 25(26):8436–8439

    CAS  Google Scholar 

  9. Qu X, Trent JO, Fokt I, Priebe W, Chaires JB (2000) Allosteric, chiral-selective drug binding to DNA. Proc Natl Acad Sci USA 97(22):12032–12037

    CAS  Google Scholar 

  10. Scanlon K (2004) Anti-genes: siRNA, ribozymes and antisense. Curr Pharm Biotechnol 5(5):415–420

    CAS  Google Scholar 

  11. Sepp-Lorenzino L, Ruddy MK (2008) Challenges and opportunities for local and systemic delivery of siRNA and antisense oligonucleotides. Clin Pharmacol Ther 84(5):628–632

    CAS  Google Scholar 

  12. de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6(6):443–453

    Google Scholar 

  13. Tiemann K, Rossi JJ (2009) RNAi-based therapeutics – current status, challenges and prospects. EMBO Mol Med 1(3):142–151

    CAS  Google Scholar 

  14. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9(10):775–789

    CAS  Google Scholar 

  15. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457(7228):426–433

    CAS  Google Scholar 

  16. Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59(5):871–880

    CAS  Google Scholar 

  17. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916

    CAS  Google Scholar 

  18. Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35(2):406–413

    CAS  Google Scholar 

  19. Neidle S (2010) Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 277(5):1118–1125

    CAS  Google Scholar 

  20. De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL (2008) Targeting telomeres and telomerase. Biochimie 90(1):131–155

    Google Scholar 

  21. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11(21):2801–2809

    CAS  Google Scholar 

  22. Riou JF, Guittat L, Mailliet P, Laoui A, Renou E, Petitgenet O, Mégnin-Chanet F, Hélène C, Mergny JL (2002) Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 99(5):2672–2677

    CAS  Google Scholar 

  23. Cuesta J, Read MA, Neidle S (2003) The design of G-quadruplex ligands as telomerase inhibitors. Mini Rev Med Chem 3(1):11

    CAS  Google Scholar 

  24. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou M-P, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30(19):4033–4046

    CAS  Google Scholar 

  25. Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, Oelschlaegel T, Xhemalce B, Balasubramanian S, Jackson SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8(3):301–310

    CAS  Google Scholar 

  26. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5):787–791

    CAS  Google Scholar 

  27. Ambrus A, Chen D, Dai JX, Jones RA, Yang DZ (2005) Solution structure of the biologically relevant g-quadruplex element in the human c-MYC promoter. Implications for g-quadruplex stabilization. Biochemistry 44(6):2048–2058

    CAS  Google Scholar 

  28. Hsu STD, Varnai P, Bugaut A, Reszka AP, Neidle S, Balasubramanian S (2009) A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J Am Chem Soc 131(37):13399–13409

    CAS  Google Scholar 

  29. Phan AT, Kuryavyi V, Burge S, Neidle S, Patel DJ (2007) Structure of an unprecedented G-quadruplex scaffold in the human c-Kit promoter. J Am Chem Soc 129(14):4386–4392

    CAS  Google Scholar 

  30. Dai J, Chen D, Jones RA, Hurley LH, Yang D (2006) NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res 34(18):5133–5144

    CAS  Google Scholar 

  31. Sun DY, Guo KX, Rusche JJ, Hurley LH (2005) Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res 33(18):6070–6080

    CAS  Google Scholar 

  32. De Armond R, Wood S, Sun DY, Hurley LH, Ebbinghaus SW (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1 alpha promoter. Biochemistry 44(49):16341–16350

    Google Scholar 

  33. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34(14):3887–3896

    CAS  Google Scholar 

  34. Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S (2008) Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 51(18):5641–5649

    CAS  Google Scholar 

  35. Brooks TA, Kendrick S, Hurley L (2010) Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277(17):3459–3469

    CAS  Google Scholar 

  36. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275

    CAS  Google Scholar 

  37. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99(18):11593–11598

    CAS  Google Scholar 

  38. Huppert JL, Bugaut A, Kumari S, Balasubramanian S (2008) G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res 36(19):6260–6268

    CAS  Google Scholar 

  39. Halder K, Wieland M, Hartig JS (2009) Predictable suppression of gene expression by 5′-UTR-based RNA quadruplexes. Nucleic Acids Res 37(20):6811–6817

    CAS  Google Scholar 

  40. Arora A, Suess B (2011) An RNA G-quadruplex in the 3′ UTR of the proto-oncogene PIM1 represses translation. RNA Biol 8(5):802–805

    CAS  Google Scholar 

  41. Marcel V, Tran PLT, Sagne C, Martel-Planche G, Vaslin L, Teulade-Fichou M-P, Hall J, Mergny J-L, Hainaut P, Van Dyck E (2011) G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32(3):271–278

    CAS  Google Scholar 

  42. Bang I (1910) Untersuchungen über die Guanylsäure. Biochem Z 26:293–311

    CAS  Google Scholar 

  43. Gellert M, Lipsett MN, Davies DR (1962) HELIX formation by guanylic acid. Proc Natl Acad Sci USA 48(12):2013–2018

    CAS  Google Scholar 

  44. Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D 59(4):620–626

    Google Scholar 

  45. Laughlan G, Murchie A, Norman D, Moore M, Moody P, Lilley D, Luisi B (1994) The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265(5171):520–524

    CAS  Google Scholar 

  46. Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B (1997) The crystal structure of a parallel-stranded guanine tetraplex at 0.95 Å resolution. J Mol Biol 273(1):171–182

    CAS  Google Scholar 

  47. Smith FFWJ (1992) Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356(6365):164–168

    CAS  Google Scholar 

  48. Smith FW, Feigon J (1993) Strand orientation in the DNA quadruplex formed from the Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution. Biochemistry 32(33):8682–8692

    CAS  Google Scholar 

  49. Haider S, Parkinson GN, Neidle S (2002) Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J Mol Biol 320(2):189–200

    CAS  Google Scholar 

  50. Horvath MP, Schultz SC (2001) DNA G-quartets in a 1.86 Å resolution structure of an Oxytricha nova telomeric protein-DNA complex. J Mol Biol 310(2):367–377

    CAS  Google Scholar 

  51. Kang C, Zhang X, Ratliff R, Moyzis R, Rich A (1992) Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356(6365):126–131

    CAS  Google Scholar 

  52. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1(4):263–282

    CAS  Google Scholar 

  53. Parkinson GN, Lee MPH, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880

    CAS  Google Scholar 

  54. Li J, Correia JJ, Wang L, Trent JO, Chaires JB (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 33(14):4649–4659

    CAS  Google Scholar 

  55. Miller MC, Buscaglia R, Chaires JB, Lane AN, Trent JO (2010) Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3′ sequence of d[AG3(TTAG3)3]. J Am Chem Soc 132(48):17105–17107

    CAS  Google Scholar 

  56. Heddi B, Phan AT (2011) Structure of human telomeric DNA in crowded solution. J Am Chem Soc 133(25):9824–9833

    CAS  Google Scholar 

  57. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34(9):2723–2735

    CAS  Google Scholar 

  58. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K + solution: an intramolecular (3+1) G-quadruplex scaffold. J Am Chem Soc 128(30):9963–9970

    CAS  Google Scholar 

  59. Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35(15):4927–4940

    CAS  Google Scholar 

  60. Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y, Patel DJ, Luu KN, Phan AT (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 131(12):4301–4309

    CAS  Google Scholar 

  61. Schultze P, Macaya RF, Feigon J (1994) Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J Mol Biol 235(5):1532–1547

    CAS  Google Scholar 

  62. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36(17):5482–5515

    CAS  Google Scholar 

  63. Dailey MM, Miller MC, Bates PJ, Lane AN, Trent JO (2010) Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res 38(14):4877–4888

    CAS  Google Scholar 

  64. Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90(8):1172–1183

    CAS  Google Scholar 

  65. Yang D, Okamoto K (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem 2(4):619–646

    CAS  Google Scholar 

  66. Virgilio A, Esposito V, Randazzo A, Mayol L, Galeone A (2005) 8-Methyl-2′-deoxyguanosine incorporation into parallel DNA quadruplex structures. Nucleic Acids Res 33(19):6188–6195

    CAS  Google Scholar 

  67. Virgilio A, Esposito V, Randazzo A, Mayol L, Galeone A (2005) Effects of 8-methyl-2′-deoxyadenosine incorporation into quadruplex forming oligodeoxyribonucleotides. Bioorg Med Chem 13(4):1037–1044

    CAS  Google Scholar 

  68. Esposito V, Randazzo A, Piccialli G, Petraccone L, Giancola C, Mayol L (2004) Effects of an 8-bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)](4). Org Biomol Chem 2(3):313–318

    CAS  Google Scholar 

  69. Mekmaysy CS, Petraccone L, Garbett NC, Ragazzon PA, Gray RD, Trent JO, Chaires JB (2008) Effect of O6-methylguanine on the stability of G-quadruplex DNA. J Am Chem Soc 130(21):6710–6711

    CAS  Google Scholar 

  70. Petrovic AG, Polavarapu PL (2008) Quadruplex structure of polyriboinosinic acid: dependence on alkali metal ion concentration, pH and temperature. J Phys Chem B 112(7):2255–2260

    CAS  Google Scholar 

  71. Marathias VM, Sawicki MJ, Bolton PH (1999) 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation. Nucleic Acids Res 27(14):2860–2867

    CAS  Google Scholar 

  72. Spackova N, Cubero E, Sponer J, Orozco M (2004) Theoretical study of the guanine -- > 6-thioguanine substitution in duplexes, triplexes, and tetraplexes. J Am Chem Soc 126(44):14642–14650

    CAS  Google Scholar 

  73. Gros J, Avino A, de la Osa JL, Gonzalez C, Lacroix L, Perez A, Orozco M, Eritja R, Mergny JL (2008) 8-Amino guanine accelerates tetramolecular G-quadruplex formation. Chem Commun (25):2926–2928

    Google Scholar 

  74. Esposito V, Virgilio A, Randazzo A, Galeone A, Mayol L (2005) A new class of DNA quadruplexes formed by oligodeoxyribonucleotides containing a 3′-3′ or 5′-5′ inversion of polarity site. Chem Commun (31):3953–3955

    Google Scholar 

  75. Bonifacio L, Church FC, Jarstfer MB (2008) Effect of locked-nucleic acid on a biologically active G-quadruplex. A structure-activity relationship of the thrombin aptamer. Int J Mol Sci 9(3):422–433

    CAS  Google Scholar 

  76. Kumar N, Maiti S (2007) Role of locked nucleic acid modified complementary strand in quadruplex/Watson–Crick duplex equilibrium. J Phys Chem B 111(42):12328–12337

    CAS  Google Scholar 

  77. Tang CF, Shafer RH (2006) Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J Am Chem Soc 128(17):5966–5973

    CAS  Google Scholar 

  78. Qi J, Shafer RH (2007) Human telomere quadruplex: refolding and selection of individual conformers via RNA/DNA chimeric editing. Biochemistry 46(25):7599–7606

    CAS  Google Scholar 

  79. Dai J, Punchihewa C, Ambrus A, Chen D, Jones RA, Yang D (2007) Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res 35(7):2440–2450

    CAS  Google Scholar 

  80. Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35(19):6517–6525

    CAS  Google Scholar 

  81. Zhang Z, Dai J, Veliath E, Jones RA, Yang D (2010) Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res 38(3):1009–1021

    CAS  Google Scholar 

  82. Seenisamy J, Rezler EM, Powell TJ, Tye D, Gokhale V, Joshi CS, Siddiqui-Jain A, Hurley LH (2004) The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4. J Am Chem Soc 126(28):8702–8709

    CAS  Google Scholar 

  83. Phan AT, Modi YS, Patel DJ (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 126(28):8710–8716

    CAS  Google Scholar 

  84. Phan AT, Kuryavyi V, Gaw HY, Patel DJ (2005) Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol 1(3):167–173

    CAS  Google Scholar 

  85. Mathad RI, Hatzakis E, Dai J, Yang D (2011) c-MYC promoter G-quadruplex formed at the 5′-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res 39(20):9023–9033

    CAS  Google Scholar 

  86. Sannohe Y, Sugiyama H (2001) Overview of formation of G-quadruplex structures. In: Current protocols in nucleic acid chemistry. Wiley, New York

    Google Scholar 

  87. Xue Y, Z-y K, Wang Q, Yao Y, Liu J, Y-h H, Tan Z (2007) Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition. J Am Chem Soc 129(36):11185–11191

    CAS  Google Scholar 

  88. Blume SW, Guarcello V, Zacharias W, Miller DM (1997) Divalent transition metal cations counteract potassium-induced quadruplex assembly of oligo(dG) sequences. Nucleic Acids Res 25(3):617–625

    CAS  Google Scholar 

  89. Miyoshi D, Nakao A, Sugimoto N (2001) Structural transition of d(G4T4G4) from antiparallel to parallel G-quartet induced by divalent cations. Nucleic Acids Symp Ser 1(1):259–260

    Google Scholar 

  90. Gray RD, Li J, Chaires JB (2009) Energetics and kinetics of a conformational switch in G-quadruplex DNA. J Phys Chem B 113(9):2676–2683

    CAS  Google Scholar 

  91. Gray RD, Petraccone L, Trent JO, Chaires JB (2009) Characterization of a K+-induced conformational switch in a human telomeric DNA oligonucleotide using 2-aminopurine fluorescence. Biochemistry 49(1):179–194

    Google Scholar 

  92. Miller MC, Le HT, Dean WL, Holt PA, Chaires JB, Trent JO (2011) Polymorphism and resolution of oncogene promoter quadruplex-forming sequences. Org Biomol Chem 9(22):7633–7637

    CAS  Google Scholar 

  93. Niermann M, Bolten M, Eimer W (1999) Optimization of the hydrodynamic bead model for the analysis of DNA conformations in solution. J Phys Chem B 103(45):10065–10074

    CAS  Google Scholar 

  94. Garcia de la Torre J, Navarro S, Lopez Martinez MC, Diaz FG, Lopez Cascales JJ (1994) HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. Biophys J 67(2):530–531

    CAS  Google Scholar 

  95. Bloomfield V, Dalton WO, Van Holde KE (1967) Frictional coefficients of multisubunit structures. I. Theory. Biopolymers 5(2):135–148

    CAS  Google Scholar 

  96. Petraccone L, Garbett NC, Chaires JB, Trent JO (2010) An integrated molecular dynamics (MD) and experimental study of higher order human telomeric quadruplexes. Biopolymers 93(6):533–548

    CAS  Google Scholar 

  97. Petraccone L, Spink C, Trent JO, Garbett NC, Mekmaysy CS, Giancola C, Chaires JB (2011) Structure and stability of higher-order human telomeric quadruplexes. J Am Chem Soc 133(51):20951–20961

    CAS  Google Scholar 

  98. Petraccone L, Trent JO, Chaires JB (2008) The tail of the telomere. J Am Chem Soc 130(49):16530–16532

    CAS  Google Scholar 

  99. García de la Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78(2):719–730

    Google Scholar 

  100. Ortega A, Amorós D, García de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101(4):892–898

    CAS  Google Scholar 

  101. García de la Torre J (2001) Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. Biophys Chem 93(2–3):159–170

    Google Scholar 

  102. Fernandes MX, Ortega A, López Martínez MC, García de la Torre J (2002) Calculation of hydrodynamic properties of small nucleic acids from their atomic structure. Nucleic Acids Res 30(8):1782–1788

    CAS  Google Scholar 

  103. Hellman L, Rodgers D, Fried M (2010) Phenomenological partial-specific volumes for G-quadruplex DNAs. Eur Biophys J 39(3):389–396

    CAS  Google Scholar 

  104. Campbell N, Neidle S (2012) G-quadruplexes and metal ions. Met Ions Life Sci 10:119–134

    Google Scholar 

  105. Ida R, Wu G (2008) Direct NMR detection of alkali metal ions bound to G-quadruplex DNA. J Am Chem Soc 130(11):3590–3602

    CAS  Google Scholar 

  106. Gray RD, Chaires JB (2011) Linkage of cation binding and folding in human telomeric quadruplex DNA. Biophys Chem 159(1):205–209

    CAS  Google Scholar 

  107. Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A, Ilin S, Raslin T, Polonskaia A, Chen C, Clain D, Darnell RB, Patel DJ (2011) Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 18(7):796–804

    CAS  Google Scholar 

  108. Wei D, Parkinson GN, Reszka AP, Neidle S (2012) Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation. Nucleic Acids Res 40(10):4691–4700

    CAS  Google Scholar 

  109. Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11(02):179–246

    CAS  Google Scholar 

  110. Record MT, Anderson CF, Lohman TM (1978) Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys 11(02):103–178

    CAS  Google Scholar 

  111. Yphantis DA, Roark DE (1971) Equilibrium centrifugation of nonideal systems. Donnan effect in self-associating systems. Biochemistry 10(17):3241–3249

    CAS  Google Scholar 

  112. Anantha NV, Azam M, Sheardy RD (1998) Porphyrin binding to quadruplexed T4G4. Biochemistry 37(9):2709–2714

    CAS  Google Scholar 

  113. Haq I, Trent JO, Chowdhry BZ, Jenkins TC (1999) Intercalative G-tetraplex stabilization of telomeric DNA by a cationic porphyrin1. J Am Chem Soc 121(9):1768–1779

    CAS  Google Scholar 

  114. Freyer MW, Buscaglia R, Kaplan K, Cashman D, Hurley LH, Lewis EA (2007) Biophysical studies of the c-MYC NHE III1 promoter: model quadruplex interactions with a cationic porphyrin. Biophys J 92(6):2007–2015

    CAS  Google Scholar 

  115. Wei C, Jia G, Zhou J, Han G, Li C (2009) Evidence for the binding mode of porphyrins to G-quadruplex DNA. Phys Chem Chem Phys 11(20):4025–4032

    CAS  Google Scholar 

  116. Fogolari F, Haridas H, Corazza A, Viglino P, Cora D, Caselle M, Esposito G, Xodo L (2009) Molecular models for intrastrand DNA G-quadruplexes. BMC Struct Biol 9(1):64

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Dr. Robert D. Gray for useful discussions in the writing of this chapter. Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR001081). This work was supported by NIH Grants CA35635 (J.B.C), GM077422 (J.B.C. and J.O.T) and University of Louisville grant, CTSPGP 20058 Award (J.B.C. and J.O.T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John O. Trent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le, H.T., Buscaglia, R., Dean, W.L., Chaires, J.B., Trent, J.O. (2012). Calculation of Hydrodynamic Properties for G-Quadruplex Nucleic Acid Structures from in silico Bead Models. In: Chaires, J., Graves, D. (eds) Quadruplex Nucleic Acids. Topics in Current Chemistry, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_351

Download citation

Publish with us

Policies and ethics