Skip to main content

Molecular Crowding and Hydration Regulating of G-Quadruplex Formation

  • Chapter
  • First Online:
Book cover Quadruplex Nucleic Acids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 330))

Abstract

Intracellular space is highly crowded with soluble and insoluble biomolecules that range from large polymers, such as proteins and nucleic acids, to small molecules, including metabolites and metal ions. It is therefore of interest to understand the effects of molecular crowding on the structure, stability, and function of biomolecules. Moreover, molecular crowding is observed not only intracellularly but also in the extracellular matrix and under the conditions used in in vitro biotechnological and nanotechnological processes. However, most biochemical studies of biomolecules are performed under dilute conditions. Recent studies have demonstrated critical effects of molecular crowding on nucleic acids. In the present study we discuss how molecular crowding affects the properties of G-quadruplexes as well as other non-canonical nucleic acid structures.

Graphical Abstract

G-quadruplexes under molecular crowding conditions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    CAS  Google Scholar 

  2. Parsegian VA, Rand RP, Rau DC (2000) Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proc Natl Acad Sci USA 97:3987–3992

    CAS  Google Scholar 

  3. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    CAS  Google Scholar 

  4. Ellis RJ, Minton AP (2003) Join the crowd. Nature 425:27–28

    CAS  Google Scholar 

  5. Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22:27–65

    CAS  Google Scholar 

  6. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    CAS  Google Scholar 

  7. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    CAS  Google Scholar 

  8. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    CAS  Google Scholar 

  9. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    CAS  Google Scholar 

  10. Miyoshi D, Sugimoto N (2008) Molecular crowding effects on structure and stability of DNA. Biochimie 90:1040–1051

    CAS  Google Scholar 

  11. Lewis JD, Tollervey C (2000) Like attracts like: getting RNA processing together in the nucleus. Science 288:1385–1389

    CAS  Google Scholar 

  12. O’Brien TP, Bult CJ, Cremer C, Grunze M, Knowles BB, Langowski J, McNally J, Pederson T, Politz JC, Pombo A, Schmahl G, Spatz JP, van Driel R (2003) Genome function and nuclear architecture: from gene expression to nanoscience. Genome Res 13:1029–1041

    Google Scholar 

  13. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  Google Scholar 

  14. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    CAS  Google Scholar 

  15. Narlikar GJ, Fan H-Y, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    CAS  Google Scholar 

  16. Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341

    CAS  Google Scholar 

  17. Beck M, Lucić V, Förster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449:611–615

    CAS  Google Scholar 

  18. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    CAS  Google Scholar 

  19. Srere PA (1981) Protein crystals as a model for mitochondrial matrix proteins. Trends Biochem Sci 6:4–7

    CAS  Google Scholar 

  20. Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    CAS  Google Scholar 

  21. Goodsell DS (1991) Inside a living cell. Trends Biochem Sci 16:203–206

    CAS  Google Scholar 

  22. MacMillen RE, Lee AK (1967) Australian desert mice: independence of exogenous water. Science 158:383–385

    CAS  Google Scholar 

  23. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    CAS  Google Scholar 

  24. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  Google Scholar 

  25. Akamatsu K, Kimura M, Shibata Y, Nakano S, Miyoshi D, Nawafune H, Sugimoto N (2006) A DNA duplex with extremely enhanced thermal stability based on controlled immobilization on gold nanoparticles. Nano Lett 6:491–495

    CAS  Google Scholar 

  26. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103

    CAS  Google Scholar 

  27. Demers LM, Mirkin CA, Mucic RC, Reynolds RA 3rd, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    CAS  Google Scholar 

  28. Bayley H (2009) Membrane-protein structure: piercing insights. Nature 459:651–652

    CAS  Google Scholar 

  29. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J (2010) Graphene as a sub-nanometer trans-electrode membrane. Nature 467:190–193

    CAS  Google Scholar 

  30. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    CAS  Google Scholar 

  31. Stroeve P, Ileri N (2011) Biotechnical and other applications of nanoporous membranes. Trends Biotechnol 29:259–266

    CAS  Google Scholar 

  32. Capp MW, Pegram LM, Saecker RM, Kratz M, Riccardi D, Wendorff T, Cannon JG, Record MT Jr (2009) Interactions of the osmolyte glycine betaine with molecular surfaces in water: thermodynamics, structural interpretation, and prediction of m-values. Biochemistry 48:10372–10379

    CAS  Google Scholar 

  33. Knowles DB, LaCroix AS, Deines NF, Shkel I, Record MT Jr (2011) Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proc Natl Acad Sci USA 108:12699–12704

    CAS  Google Scholar 

  34. Hong J, Capp MW, Saecker RM, Record MT Jr (2005) Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding. Biochemistry 44:16896–16911

    CAS  Google Scholar 

  35. Koumoto K, Ochiai H, Sugimoto N (2008) Structural effect of synthetic zwitterionic cosolutes on the stability of DNA duplexes. Tetrahedron 64:168–174

    CAS  Google Scholar 

  36. Uversky VN, Li J, Fink AL (2001) Trimethylamine-N-oxide-induced folding of alpha-synuclein. FEBS Lett 509:31–35

    CAS  Google Scholar 

  37. Miklos AC, Li C, Sharaf NG, Pielak GJ (2010) Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry 49:6984–6991

    CAS  Google Scholar 

  38. Spink CH, Chaires JB (1995) Selective stabilization of triplex DNA by poly(ethylene glycols). J Am Chem Soc 117:12887–12888

    CAS  Google Scholar 

  39. Goobes R, Minsky A (2001) Thermodynamic aspects of triplex DNA formation in crowded environments. J Am Chem Soc 123:12692–12693

    CAS  Google Scholar 

  40. Goobes R, Kahana N, Cohen O, Minsky A (2003) Metabolic buffering exerted by macromolecular crowding on DNA-DNA interactions: origin and physiological significance. Biochemistry 42:2431–2440

    CAS  Google Scholar 

  41. Kitts PA, Nash HA (1987) Homology-dependent interactions in phage lambda site-specific recombination. Nature 329:346–348

    CAS  Google Scholar 

  42. Lu M, Guo Q, Marky LA, Seeman NC, Kallenbach NR (1992) Thermodynamics of DNA branching. J Mol Biol 223:781–789

    CAS  Google Scholar 

  43. Muhuri S, Mimura K, Miyoshi D, Sugimoto N (2009) Stabilization of three-way junctions of DNA under molecular crowding conditions. J Am Chem Soc 131:9268–9280

    CAS  Google Scholar 

  44. Shiman R, Draper DE (2000) Stabilization of RNA tertiary structure by monovalent cations. J Mol Biol 302:79–91

    CAS  Google Scholar 

  45. Semrad K, Green R (2002) Osmolytes stimulate the reconstitution of functional 50S ribosomes from in vitro transcripts of Escherichia coli 23S rRNA. RNA 8:401–411

    CAS  Google Scholar 

  46. Gluick TC, Yadav S (2003) Trimethylamine N-oxide stabilizes RNA tertiary structure and attenuates the denaturating effects of urea. J Am Chem Soc 125:4418–4419

    CAS  Google Scholar 

  47. Lambert D, Leipply D, Draper DE (2010) The osmolyte TMAO stabilizes native RNA tertiary structures in the absence of Mg2+: evidence for a large barrier to folding from phosphate dehydration. J Mol Biol 404:138–157

    CAS  Google Scholar 

  48. Pincus DL, Hyeon C, Thirumalai D (2008) Effects of trimethylamine N-oxide (TMAO) and crowding agents on the stability of RNA hairpins. J Am Chem Soc 130:7364–7372

    CAS  Google Scholar 

  49. Denesyuk NA, Thirumalai D (2011) Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA. J Am Chem Soc 133:11858–11861

    CAS  Google Scholar 

  50. Tobe S, Heams T, Vergne J, Herve G, Maurel MC (2005) The catalytic mechanism of hairpin ribozyme studied by hydrostatic pressure. Nucleic Acids Res 33:2557–2564

    CAS  Google Scholar 

  51. Herve G, Tobe S, Heams T, Vergne J, Maurel MC (2006) Hydrostatic and osmotic pressure study of the hairpin ribozyme. Biochim Biophys Acta 1764:573–577

    CAS  Google Scholar 

  52. Downey CD, Crisman RL, Randolph TW, Pardi A (2007) Influence of hydrostatic pressure and cosolutes on RNA tertiary structure. J Am Chem Soc 129:9290–9291

    CAS  Google Scholar 

  53. Kilburn D, Roh JH, Guo L, Briber RM, Woodson SA (2010) Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J Am Chem Soc 132:8690–8696

    CAS  Google Scholar 

  54. Nakano S, Karimata HT, Kitagawa Y, Sugimoto N (2009) Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J Am Chem Soc 131:16881–16888

    CAS  Google Scholar 

  55. Keniry MA (2000) Quadruplex structures in nucleic acids. Biopolymers 56:123–146

    CAS  Google Scholar 

  56. Simonsson T (2001) G-quadruplex DNA structures – variations on a theme. Biol Chem 382:621–628

    CAS  Google Scholar 

  57. Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90:1149–1171

    CAS  Google Scholar 

  58. Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90:1172–1183

    CAS  Google Scholar 

  59. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    CAS  Google Scholar 

  60. Chen F-M (1992) Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences. Biochemistry 31:3769–3776

    CAS  Google Scholar 

  61. Wang Y, Patel DJ (1992) Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31:8112–8119

    CAS  Google Scholar 

  62. Schultze P, Hud NV, Smith FW, Feigon J (1999) The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G4T4G4). Nucleic Acids Res 27:3018–3028

    CAS  Google Scholar 

  63. Kankia BI, Marky LA (2001) Folding of the thrombin aptamer into a G-quadruplex with Sr2+: stability, heat, and hydration. J Am Chem Soc 123:10799–10804

    CAS  Google Scholar 

  64. Miyoshi D, Nakao A, Sugimoto N (2003) Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Res 31:1156–1163

    CAS  Google Scholar 

  65. Wu G, Wong A, Gan Z, Davis JT (2003) Direct detection of potassium cations bound to G-quadruplex structures by solid-state 39K NMR at 19.6 T. J Am Chem Soc 125:7182–7183

    CAS  Google Scholar 

  66. Sket P, Crnugelj M, Plavec J (2004) d(G3T4G4) forms unusual dimeric G-quadruplex structure with the same general fold in the presence of K+, Na+ or NH +4 ions. Bioorg Med Chem 12:5735–5744

    CAS  Google Scholar 

  67. Ida R, Wu G (2005) Solid-state 87Rb NMR signatures for rubidium cations bound to a G-quadruplex. Chem Commun 4294–4296

    Google Scholar 

  68. Gill ML, Strobel SA, Loria JP (2005) 205TI NMR methods for the characterization of monovalent cation binding to nucleic acids. J Am Chem Soc 127:16723–16732

    CAS  Google Scholar 

  69. Gray RD, Chaires JB (2008) Kinetics and mechanism of K+ and Na+-induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res 36:4191–4203

    CAS  Google Scholar 

  70. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282

    CAS  Google Scholar 

  71. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    CAS  Google Scholar 

  72. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    CAS  Google Scholar 

  73. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3+1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    CAS  Google Scholar 

  74. Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg Med Chem 14:5584–5591

    CAS  Google Scholar 

  75. Miyoshi D, Nakao A, Sugimoto N (2002) Molecular crowding regulates the structural switch of the DNA G-quadruplex. Biochemistry 41:15017–15024

    CAS  Google Scholar 

  76. Li J, Correia JJ, Wang L, Trent JO, Chaires JB (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 33:4649–4659

    CAS  Google Scholar 

  77. Miyoshi D, Karimata H, Sugimoto N (2005) Drastic effect of a single base difference between human and Tetrahymena telomere sequences on their structures under molecular crowding conditions. Angew Chem Int Ed 44:3740–3744

    CAS  Google Scholar 

  78. Xue Y, Kan ZY, Wang Q, Yao Y, Liu J, Hao YH, Tan Z (2007) Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition. J Am Chem Soc 129:11185–11191

    CAS  Google Scholar 

  79. Zhou J, Wei C, Jia G, Wang X, Tang Q, Feng Z, Li C (2008) The structural transition and compaction of human telomeric G-quadruplex induced by excluded volume effect under cation-deficient conditions. Biophys Chem 136:124–127

    CAS  Google Scholar 

  80. Renciuk D, Kejnovská I, Skoláková P, Bednárová K, Motlová J, Vorlícková M (2009) Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res 37:6625–6634

    CAS  Google Scholar 

  81. Xu L, Feng S, Zhou X (2011) Human telomeric G-quadruplexes undergo dynamic conversion in a molecular crowding environment. Chem Commun 47:3517–3519

    CAS  Google Scholar 

  82. Heddi B, Phan AT (2011) Structure of human telomeric DNA in crowded solution. J Am Chem Soc 133:9824–9833

    CAS  Google Scholar 

  83. Hänsel R, Löhr F, Foldynová-Trantírková S, Bamberg E, Trantírek L, Dötsch V (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res 39:5768–5775

    Google Scholar 

  84. Miyoshi D, Karimata H, Sugimoto N (2006) Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. J Am Chem Soc 128:7957–7963

    CAS  Google Scholar 

  85. Miller MC, Buscaglia R, Chaires JB, Lane AN, Trent JO (2010) Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3′ Sequence of d(AG3(TTAG3)3). J Am Chem Soc 132:17105–17107

    CAS  Google Scholar 

  86. Phan AT, Mergny JL (2002) Human telomeric DNA: G-quadruplex, i-motif and Watson–Crick double helix. Nucleic Acids Res 30:4618–4625

    CAS  Google Scholar 

  87. Miyoshi D, Matsumura S, Nakano S, Sugimoto N (2004) Duplex dissociation of telomere DNAs induced by molecular crowding. J Am Chem Soc 126:165–169

    CAS  Google Scholar 

  88. Kan Z-Y, Yao Y, Wang P, Li X-H, Hao Y-H, Tan Z (2006) Molecular crowding induces telomere G-quadruplex formation under salt-deficient conditions and enhances its competition with duplex formation. Angew Chem Int Ed 45:1629–1632

    CAS  Google Scholar 

  89. Kan ZY, Lin Y, Wang F, Zhuang XY, Zhao Y, Pang DW, Hao YH, Tan Z (2007) G-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition. Nucleic Acids Res 35:3646–3653

    CAS  Google Scholar 

  90. Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C (2009) Human telomeric G-quadruplex formed from duplex under near physiological conditions: spectroscopic evidence and kinetics. Biochimie 91:1104–1111

    CAS  Google Scholar 

  91. Kumar N, Maiti S (2005) The effect of osmolytes and small molecule on Quadruplex-WC duplex equilibrium: a fluorescence resonance energy transfer study. Nucleic Acids Res 33:6723–6732

    CAS  Google Scholar 

  92. Zheng KW, Chen Z, Hao YH, Tan Z (2010) Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res 38:327–338

    CAS  Google Scholar 

  93. Li W, Miyoshi D, Nakano S, Sugimoto N (2003) Structural competition involving G-quadruplex DNA and its complement. Biochemistry 42:11736–11744

    CAS  Google Scholar 

  94. Miyoshi D, Matsumura S, Li W, Sugimoto N (2003) Structural polymorphism of telomeric DNA regulated by pH and divalent cation. Nucleosides Nucleotides Nucleic Acids 22:203–221

    CAS  Google Scholar 

  95. Kumar N, Maiti S (2004) Quadruplex to Watson–Crick duplex transition of the thrombin binding aptamer: a fluorescence resonance energy transfer study. Biochem Biophys Res Commun 319:759–767

    CAS  Google Scholar 

  96. Miyoshi D, Inoue M, Sugimoto N (2006) DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew Chem Int Ed 45:7716–7719

    CAS  Google Scholar 

  97. Arora A, Maiti S (2009) Stability and molecular recognition of quadruplexes with different loop length in the absence and presence of molecular crowding agents. J Phys Chem B 113:8784–8792

    CAS  Google Scholar 

  98. Zhang DH, Fujimoto T, Saxena S, Yu HQ, Miyoshi D, Sugimoto N (2010) Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 49:4554–4563

    CAS  Google Scholar 

  99. Miyoshi D, Nakamura K, Tateishi-Karimata H, Ohmichi T, Sugimoto N (2009) Hydration of Watson–Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. J Am Chem Soc 131:3522–3531

    CAS  Google Scholar 

  100. Pramanik S, Nakamura K, Usui K, Nakano S, Saxena S, Matsui J, Miyoshi D, Sugimoto N (2011) Thermodynamic stability of Hoogsteen and Watson–Crick base pairs in the presence of histone H3-mimicking peptide. Chem Commun 47:2790–2792

    CAS  Google Scholar 

  101. Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids structures, properties, and functions. University Science Books, Sausalito, California

    Google Scholar 

  102. Foley PL, Wilson DB, Shuler ML (2010) Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure. Biochem Biophys Res Commun 395:42–47

    CAS  Google Scholar 

  103. Olsen CM, Gmeiner WH, Marky LA (2006) Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking. J Phys Chem B 110:6962–6969

    CAS  Google Scholar 

  104. Olsen CM, Lee HT, Marky LA (2009) Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops. J Phys Chem B 113:2587–2595

    CAS  Google Scholar 

  105. Arora A, Maiti S (2009) Differential biophysical behavior of human telomeric RNA and DNA quadruplex. J Phys Chem B 113:10515–10520

    CAS  Google Scholar 

  106. Zimmerman SB, Trach SO (1988) Macromolecular crowding extends the range of conditions under which DNA polymerase is functional. Biochim Biophys Acta 949:297–304

    CAS  Google Scholar 

  107. Jarvis TC, Ring DM, Daube SS, von Hippel PH (1990) “Macromolecular crowding”: thermodynamic consequences for protein–protein interactions within the T4 DNA replication complex. J Biol Chem 265:15160–15167

    CAS  Google Scholar 

  108. Sasaki Y, Miyoshi D, Sugimoto N (2006) Effect of molecular crowding on DNA polymerase activity. Biotechnol J 1:440–446

    CAS  Google Scholar 

  109. Sasaki Y, Miyoshi D, Sugimoto N (2007) Regulation of DNA nucleases by molecular crowding. Nucleic Acids Res 35:4086–4093

    CAS  Google Scholar 

  110. Yu HQ, Zhang DH, Gu XB, Miyoshi D, Sugimoto N (2008) Regulation of telomerase activity by the thermodynamic stability of a DNA x RNA hybrid. Angew Chem Int Ed 47:9034–9038

    CAS  Google Scholar 

  111. Chen Z, Zheng KW, Hao YH, Tan Z (2009) Reduced or diminished stabilization of the telomere G-quadruplex and inhibition of telomerase by small chemical ligands under molecular crowding condition. J Am Chem Soc 131:10430–10438

    CAS  Google Scholar 

  112. Martino L, Pagano B, Fotticchia I, Neidle S, Giancola C (2009) Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes. J Phys Chem B 113:14779–14786

    CAS  Google Scholar 

  113. Wei C, Wang J, Zhang M (2010) Spectroscopic study on the binding of porphyrins to (G4T4G4)4 parallel G-quadruplex. Biophys Chem 148:51–55

    CAS  Google Scholar 

  114. Wei C, Jia G, Zhou J, Han G, Li C (2009) Evidence for the binding mode of porphyrins to G-quadruplex DNA. Phys Chem Chem Phys 11:4025–4032

    CAS  Google Scholar 

  115. Li W, Zhang M, Zhang JL, Li HQ, Zhang XC, Sun Q, Qiu CM (2006) Interactions of daidzin with intramolecular G-quadruplex. FEBS Lett 580:4905–4910

    CAS  Google Scholar 

  116. Petraccone L, Fotticchia I, Cummaro A, Pagano B, Ginnari-Satriani L, Haider S, Randazzo A, Novellino E, Neidle S, Giancola C (2011) The triazatruxene derivative azatrux binds to the parallel form of the human telomeric G-quadruplex under molecular crowding conditions: biophysical and molecular modeling studies. Biochimie 93:1318–1327

    CAS  Google Scholar 

  117. Dominak LM, Omiatek DM, Gundermann EL, Heien ML, Keating CD (2010) Polymeric crowding agents improve passive biomacromolecule encapsulation in lipid vesicles. Langmuir 26:13195–13200

    CAS  Google Scholar 

  118. Zhao C, Ren J, Qu X (2008) Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: more water molecules released. Chemistry 14:5435–5439

    CAS  Google Scholar 

  119. Khripin CY, Arnold-Medabalimi N, Zheng M (2011) Molecular-crowding-induced clustering of DNA-wrapped carbon nanotubes for facile length fractionation. ACS Nano 5:8258–8266

    CAS  Google Scholar 

  120. Goodrich GP, Helfrich MR, Overberg JJ, Keating CD (2004) Effect of macromolecular crowding on DNA:Au nanoparticle bioconjugate assembly. Langmuir 20:10246–10251

    CAS  Google Scholar 

  121. Zaki A, Dave N, Liu J (2012) Amplifying the macromolecular crowding effect using nanoparticles. J Am Chem Soc 134:35–38

    CAS  Google Scholar 

  122. Ricci F, Lai RY, Heeger AJ, Plaxco KW, Sumner JJ (2007) Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23:6827–6834

    CAS  Google Scholar 

  123. Feng B, Frykholm K, Nordén B, Westerlund F (2010) DNA strand exchange catalyzed by molecular crowding in PEG solutions. Chem Commun 46:8231–8233

    CAS  Google Scholar 

  124. Zhang C, Shao PG, van Kan JA, van der Maarel JR (2009) Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel. Proc Natl Acad Sci USA 106:16651–16666

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research, Scientific Research on Innovative Areas “Nanomedicine Molecular Science” (No. 2306), the “Strategic Research Foundation at Private Universities” (2009–2014), and the “Academic Frontier” project (2004–2009) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Hirao Taro Foundation of the Konan University Association for Academic Research. TF is a research fellow of Japan Society for the promotion of science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Miyoshi or Naoki Sugimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyoshi, D., Fujimoto, T., Sugimoto, N. (2012). Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. In: Chaires, J., Graves, D. (eds) Quadruplex Nucleic Acids. Topics in Current Chemistry, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_335

Download citation

Publish with us

Policies and ethics