Advertisement

QM/MM Investigations Of Organic Chemistry Oriented Questions

  • Thomas C. Schmidt
  • Alexander Paasche
  • Christoph Grebner
  • Kay Ansorg
  • Johannes Becker
  • Wook Lee
  • Bernd EngelsEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 351)

Abstract

About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.

In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy.

Keywords

Application Conformational search Developments EPR Force fields Hybrid approaches NMR Organic semiconductors QM/MM Reaction mechanism Reaction pathways Review Solvent effects Solvent shells Spectroscopy Theoretical organic chemistry UV/Vis VUV 

Notes

Acknowledgement

Financial support by the DFG (Deutsche Forschungsgemeinschaft) in the framework of the SFB 630 and the GRK1221 and by the Volkswagen Stiftung is gratefully acknowledged.

References

  1. 1.
    Himo F (2006) Quantum chemical modeling of enzyme active sites and reaction mechanisms. Theor Chem Acc 116:232–240Google Scholar
  2. 2.
    Siegbahn PEM, Blomberg MRA (2000) Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chem Rev 100:421–437Google Scholar
  3. 3.
    Siegbahn PEM, Borowski T (2006) Modeling enzymatic reactions involving transition metals. Acc Chem Res 39:729–738Google Scholar
  4. 4.
    Hu LH et al (2009) Do quantum mechanical energies calculated for small models of protein-active sites converge? J Phys Chem A 113:11793–11800Google Scholar
  5. 5.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions - dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol 103:227–249Google Scholar
  6. 6.
    Field MJ, Bash PA, Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J Comput Chem 11:700–733Google Scholar
  7. 7.
    Brooks BR et al (2009) CHARMM – Chemistry at HARvard Macromolecular Mechanics (22 and higher) available at: http://www.charmm.org
  8. 8.
    ISI Web of Knowledge at http://www.isiknowledge.com. Accessed 2011
  9. 9.
    Gao J (1996) Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc Chem Res 29:298–305Google Scholar
  10. 10.
    Gao J (2007) Methods and applications of combined quantum mechanical and molecular mechanical potentials. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New YorkGoogle Scholar
  11. 11.
    Cunningham MA, Bash PA (1997) Computational enzymology. Biochimie 79:687–689Google Scholar
  12. 12.
    Gao J (1998) Hybrid quantum mechanical/molecular mechanical (QM/MM) methods. In: Schleyer PV et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  13. 13.
    Amara P, Field MJ (1998) Combined Q/M. In: Schleyer PV et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  14. 14.
    Ruiz-López MF, Rivail J-L (1998) Combined quantum mechanics and molecular mechanics approaches to chemical and biochemical reactivity. In: Schleyer PV et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  15. 15.
    Merz KMJ, Stanton RV (1998) Divide and conquer for semiempirical MO methods. In: Schleyer PV (ed) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  16. 16.
    Friesner RA, Beachy MD (1998) Quantum mechanical calculations on biological systems. Curr Opin Struct Biol 8:257–262Google Scholar
  17. 17.
    Beck B, Clark T (1998) Some biological applications of semiempirical MO theory. Perspect Drug Discov 9–11:131–159Google Scholar
  18. 18.
    Mordasini TZ, Thiel W (1998) Combined quantum mechanical and molecular mechanical approaches. Chimia 52:288–291Google Scholar
  19. 19.
    Monard G, Merz KM (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32:904–911Google Scholar
  20. 20.
    Hillier IH (1999) ChemInform abstract: chemical reactivity studied by hybrid QM/MM methods. ChemInform 30:45–52Google Scholar
  21. 21.
    Amara P, Field MJ (1999) Hybrid potentials for large molecular systems. In: Leszczynski J (ed) Computational molecular biology. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Bruice TC, Kahn K (2000) Computational enzymology. Curr Opin Chem Biol 4:540–544Google Scholar
  23. 23.
    Sherwood P (2000) Hybrid quantum mechanics/molecular mechanics approaches. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry 2. John von Neumann Institute of Computing, JülichGoogle Scholar
  24. 24.
    Lyne PD, Walsh OA (2001) Computer simulation of biochemical reactions with QM-MM methods. In: Becker OM et al (eds) Computational biochemistry and biophysics. Decker, New YorkGoogle Scholar
  25. 25.
    Mulholland AJ (2001) The QM/MM approach to enzymatic reactions. In: Eriksson LA (ed) Theoretical biochemistry: processes and properties of biological systems. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Field MJ (2002) Simulating enzyme reactions: challenges and perspectives. J Comput Chem 23:48–58Google Scholar
  27. 27.
    Gogonea V (2002) The QM/MM method. An overview. Internet Electron J Mol Des 1:173–184Google Scholar
  28. 28.
    Gao JL, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505Google Scholar
  29. 29.
    Monard G et al (2003) Determination of enzymatic reaction pathways using QM/MM methods. Int J Quantum Chem 93:229–244Google Scholar
  30. 30.
    Ridder L, Mulholland AJ (2003) Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: from structure to activity. Curr Top Med Chem 3:1241–1256Google Scholar
  31. 31.
    Náray-Szabó G, Berente I (2003) Computer modelling of enzyme reactions. J Mol Struct THEOCHEM 666–667:637–644Google Scholar
  32. 32.
    Ryde U (2003) Combined quantum and molecular mechanics calculations on metalloproteins. Curr Opin Chem Biol 7:136–142Google Scholar
  33. 33.
    Kästner J (2011) QM/MM: Quantenmechanik und empirische Kraftfelder. Nachr Chem 59:286–288Google Scholar
  34. 34.
    Zhang R et al (2010) A guide to QM/MM methodology and applications. In: Sabin JR, Brandas E (eds) Advances in quantum chemistry. Elsevier Academic, San DiegoGoogle Scholar
  35. 35.
    Chen X et al (2011) Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine. J Phys Chem B 115:1315–1322Google Scholar
  36. 36.
    van der Kamp MW et al (2008) Biomolecular simulation and modelling: status, progress and prospects. J R Soc Interface 5:S173–S190Google Scholar
  37. 37.
    Sierka M, Sauer J (2005) Hybrid quantum mechanics/molecular mechanics methods and their application. In: Yip S (ed) Handbook of materials modeling. Springer, DordrechtGoogle Scholar
  38. 38.
    Eichler U, Kolmel CM, Sauer J (1997) Combining ab initio techniques with analytical potential functions for structure predictions of large systems: method and application to crystalline silica polymorphs. J Comput Chem 18:463–477Google Scholar
  39. 39.
    Sauer J, Sierka M (2000) Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems. J Comput Chem 21:1470–1493Google Scholar
  40. 40.
    Sherwood P et al (1997) Computer simulation of zeolite structure and reactivity using embedded cluster methods. Faraday Discuss 106:79–92Google Scholar
  41. 41.
    French SA et al (2003) Identification and characterization of active sites and their catalytic processes - the Cu/ZnO methanol catalyst. Top Catal 24:161–172Google Scholar
  42. 42.
    Catlow CRA et al (2005) Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts. Philos T R Soc A 363:913–936Google Scholar
  43. 43.
    Sokol AA et al (2004) Hybrid QM/MM embedding approach for the treatment of localized surface states in ionic materials. Int J Quantum Chem 99:695–712Google Scholar
  44. 44.
    Sherwood P et al (2003) QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J Mol Struct-Theochem 632:1–28Google Scholar
  45. 45.
    Bernstein N, Kermode JR, Csanyi G (2009) Hybrid atomistic simulation methods for materials systems. Rep Prog Phys 72:1–25Google Scholar
  46. 46.
    Acevedo O, Jorgensen WL (2010) Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Acc Chem Res 43:142–151Google Scholar
  47. 47.
    Hu H, Yang WT (2009) Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. J Mol Struct-Theochem 898:17–30Google Scholar
  48. 48.
    Rode BM et al (2005) Coordination and ligand exchange dynamics of solvated metal ions. Coord Chem Rev 249:2993–3006Google Scholar
  49. 49.
    Hu H, Yang WT (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 59:573–601Google Scholar
  50. 50.
    Bearpark MJ et al (2007) CASSCF calculations for photoinduced processes in large molecules: choosing when to use the RASSCF, ONIOM and MMVB approximations. J Photochem Photobiol A 190:207–227Google Scholar
  51. 51.
    Bearpark MJ et al (2006) Excited states of conjugated hydrocarbons using the molecular mechanics-valence bond (MMVB) method: Conical intersections and dynamics. Theor Chem Acc 116:670–682Google Scholar
  52. 52.
    Garavelli M (2006) Computational organic photochemistry: strategy, achievements and perspectives. Theor Chem Acc 116:87–105Google Scholar
  53. 53.
    Blancafort L et al (2005) Computational investigations of photochemical reaction mechanisms. In: Kutateladze AG (ed) Computational methods in photochemistry. Taylor & Francis, Boca RatonGoogle Scholar
  54. 54.
    Corbeil CR, Moitessier N (2010) Theory and application of medium to high throughput prediction method techniques for asymmetric catalyst design. J Mol Catal A-Chem 324:146–155Google Scholar
  55. 55.
    Balcells D, Maseras F (2007) Computational approaches to asymmetric synthesis. New J Chem 31:333–343Google Scholar
  56. 56.
    Maldonado AG, Rothenberg G (2010) Predictive modeling in homogeneous catalysis: a tutorial. Chem Soc Rev 39:1891–1902Google Scholar
  57. 57.
    Menikarachchi LC, Gascon JA (2010) QM/MM approaches in medicinal chemistry research. Curr Top Med Chem 10:46–54Google Scholar
  58. 58.
    Gao JL, Thompson MA (1998) Combined quantum mechanical and molecular mechanical methods. American Chemical Society, WashingtonGoogle Scholar
  59. 59.
    Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182–187Google Scholar
  60. 60.
    Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229Google Scholar
  61. 61.
    Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185–199Google Scholar
  62. 62.
    Senn HM, Thiel W (2007) QM/MM methods for biological systems. In: Reiher M (ed) Atomistic approaches in modern biology: from quantum chemistry to molecular simulations. Springer, BerlinGoogle Scholar
  63. 63.
    Hsiao YW, Drakenberg T, Ryde U (2005) NMR structure determination of proteins supplemented by quantum chemical calculations: detailed structure of the Ca2+ sites in the EGF34 fragment of protein S. J Biomol NMR 31:97–114Google Scholar
  64. 64.
    Lennartz C et al (2002) Enzymatic reactions of triosephosphate isomerase: a theoretical calibration study. J Phys Chem B 106:1758–1767Google Scholar
  65. 65.
    Jensen F (2007) Introduction to computational chemistry. Wiley, ChichesterGoogle Scholar
  66. 66.
    Cramer CJ (2003) Essentials of computational chemistry. Wiley, ChichesterGoogle Scholar
  67. 67.
    Koch W, Holthausen MC (2001) A chemist's guide to density functional theory. Wiley-VCH, WeinheimGoogle Scholar
  68. 68.
    Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452Google Scholar
  69. 69.
    Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover Publications, Inc, New YorkGoogle Scholar
  70. 70.
    Helgaker T, Jorgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, ChichesterGoogle Scholar
  71. 71.
    Schutz M, Manby FR (2003) Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals. Phys Chem Chem Phys 5:3349–3358Google Scholar
  72. 72.
    Werner HJ, Manby FR, Knowles PJ (2003) Fast linear scaling second-order Moller-Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys 118:8149–8160Google Scholar
  73. 73.
    Schutz M (2002) A new, fast, semi-direct implementation of linear scaling local coupled cluster theory. Phys Chem Chem Phys 4:3941–3947Google Scholar
  74. 74.
    Werner HJ, Manby FR (2006) Explicitly correlated second-order perturbation theory using density fitting and local approximations. J Chem Phys 124:12Google Scholar
  75. 75.
    Claeyssens F et al (2006) High-accuracy computation of reaction barriers in enzymes. Angew Chem Int Ed 45:6856–6859Google Scholar
  76. 76.
    Mata RA et al (2008) Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. J Chem Phys 128:8Google Scholar
  77. 77.
    Mulholland AJ (2007) Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions. Chem Cent J 1:5Google Scholar
  78. 78.
    Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-Boltzmann sampling - Application to subcritical Lennard-Jones fluid. Chem Phys Lett 28:578–581Google Scholar
  79. 79.
    Valleau JP, Torrie GMA (1977) A guide for Monte Carlo for statistical mechanics. In: Berne BJ (ed) Statistical mechanics. Plenum, New YorkGoogle Scholar
  80. 80.
    Ridder L et al (2002) Quantum mechanical/molecular mechanical free energy simulations of the glutathione S-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J Am Chem Soc 124:9926–9936Google Scholar
  81. 81.
    Senn HM, Thiel S, Thiel W (2005) Enzymatic hydroxylation in p-hydroxybenzoate hydroxylase: a case study for QM/MM molecular dynamics. J Chem Theory Comput 1:494–505Google Scholar
  82. 82.
    Engels B, Peyerimhoff SD (1989) Theoretical-study of FC2H4. J Phys Chem-Us 93:4462–4470Google Scholar
  83. 83.
    Peric M, Engels B, Peyerimhoff SD (1995) Ab initio study of the Renner-Teller effect in the X2Πu electronic-state of B2H2+. J Mol Spectrosc 171:494–503Google Scholar
  84. 84.
    Engels B (1994) A detailed study of the configuration selected multireference configuration-interaction method combined with perturbation-theory to correct the wave-function. J Chem Phys 100:1380–1386Google Scholar
  85. 85.
    Muhlhauser M et al (1994) Ab-initio investigation of the stability of Si3C3 clusters and their structural and bonding features. Z Phys D Atom Mol Cl 32:113–123Google Scholar
  86. 86.
    Musch PW et al (2002) On the regioselectivity of the cyclization of enyne-ketenes: a computational investigation and comparison with the Myers-Saito and Schmittel reaction. J Am Chem Soc 124:1823–1828Google Scholar
  87. 87.
    Schmittel M et al (1998) Two novel thermal biradical cyclizations in theory and experiment: new synthetic routes to 6H-indolo 2,3-b quinolines and 2-amino-quinolines from enyne-carbodiimides. Angew Chem Int Ed 37:2371–2373Google Scholar
  88. 88.
    Schmittel M et al (2001) Ring size effects in the C2-C6 biradical cyclisation of enyne-allenes and the relevance for neocarzinostatin. J Chem Soc Perkin Trans 2 1331–1339Google Scholar
  89. 89.
    Engels B et al (1998) Regioselectivity of biradical cyclizations of enyne-allenes: influence of substituents on the switch from the Myers-Saito to the novel C2-C6 cyclization. Angew Chem Int Ed 37:1960–1963Google Scholar
  90. 90.
    Christl M, Engels B (2009) Stable five-membered-ring allenes with second-row elements only: not allenes, but zwitterions. Angew Chem Int Ed 48:1538–1539Google Scholar
  91. 91.
    Schoneboom JC et al (2003) Computational assessment of the electronic structure of 1-azacyclohexa-2,3,5-triene (3 delta(2)-1H-pyridine) and its benzo derivative (3 delta(2)-1H-quinoline) as well as generation and interception of 1-methyl-3 delta(2)-1H-quinoline. Chem-Eur J 9:4641–4649Google Scholar
  92. 92.
    Engels B et al (2002) Cycloallenes. Part 17. Computational assessment of the electronic structures of cyclohexa-1,2,4-triene, 1-oxacyclohexa-2,3,5-triene (3 delta(2)-pyran), their benzo derivatives, and cyclohexa-1,2-diene. An experimental approach to 3 delta(2)-pyran. J Am Chem Soc 124:287–297Google Scholar
  93. 93.
    Musch PW, Engels B (2001) The importance of the ene reaction for the C2-C6 cyclization of enyne-allenes. J Am Chem Soc 123:5557–5562Google Scholar
  94. 94.
    Shaik S et al (2010) P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem Rev 110:949–1017Google Scholar
  95. 95.
    Sit PHL et al (2010) Quantum mechanical and quantum mechanical/molecular mechanical studies of the iron-dioxygen intermediates and proton transfer in superoxide reductase. J Chem Theory Comput 6:2896–2909Google Scholar
  96. 96.
    Scherlis DA et al (2007) Simulation of heme using DFT+U: a step toward accurate spin-state energetics. J Phys Chem B 111:7384–7391Google Scholar
  97. 97.
    Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B 71:16Google Scholar
  98. 98.
    Kulik HJ et al (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97:4Google Scholar
  99. 99.
    Bikiel DE et al (2006) Modeling heme proteins using atomistic simulations. Phys Chem Chem Phys 8:5611–5628Google Scholar
  100. 100.
    Sit PHL, Cococcioni M, Marzari N (2007) Car-Parrinello molecular dynamics in the DFT+U formalism: structure and energetics of solvated ferrous and ferric ions. J Electroanal Chem 607:107–112Google Scholar
  101. 101.
    Toniolo A et al (2004) QM/MM connection atoms for the multistate treatment of organic and biological molecules. Theor Chem Acc 111:270–279Google Scholar
  102. 102.
    Toniolo A, Granucci G, Martinez TJ (2003) Conical intersections in solution: a QM/MM study using floating occupation semiempirical configuration interaction wave functions. J Phys Chem A 107:3822–3830Google Scholar
  103. 103.
    Martinez TJ (2006) Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores. Acc Chem Res 39:119–126Google Scholar
  104. 104.
    Marques MAL, Rubio A (2009) Time-dependent density-functional theory. Phys Chem Chem Phys 11:4436Google Scholar
  105. 105.
    Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037Google Scholar
  106. 106.
    Caricato M et al (2009) Using the ONIOM hybrid method to apply equation of motion CCSD to larger systems: benchmarking and comparison with time-dependent density functional theory, configuration interaction singles, and time-dependent Hartree-Fock. J Chem Phys 131:12Google Scholar
  107. 107.
    Dinh PM, Reinhard PG, Suraud E (2010) Dynamics of clusters and molecules in contact with an environment. Phys Rep 485:43–107Google Scholar
  108. 108.
    Parac M et al (2010) QM/MM calculation of solvent effects on absorption spectra of guanine. J Comput Chem 31:90–106Google Scholar
  109. 109.
    Sanchez-Garcia E, Doerr M, Thiel W (2010) QM/MM Study of the absorption spectra of DsRed.M1 chromophores. J Comput Chem 31:1603–1612Google Scholar
  110. 110.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57Google Scholar
  111. 111.
    Peach MJG et al (2006) Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 8:558–562Google Scholar
  112. 112.
    Rohrdanz MA, Herbert JM (2008) Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J Chem Phys 129:034107Google Scholar
  113. 113.
    Fan P-D, Valiev M, Kowalski K (2008) Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: excitation energies of zinc-porphyrin in aqueous solution. Chem Phys Lett 458:205–209Google Scholar
  114. 114.
    Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacterlochlorin and bacteriochlorophyll-spheroidene complexes. J Am Chem Soc 126:4007–4016Google Scholar
  115. 115.
    Tozer DJ et al (1999) Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97:859–868Google Scholar
  116. 116.
    Moret ME et al (2005) Quantum mechanical/molecular mechanical (OM/MM) car-parrinello simulations in excited states. Chimia 59:493–498Google Scholar
  117. 117.
    Grimm S, Nonnenberg C, Frank I (2003) Restricted open-shell Kohn-Sham theory for pi-pi(*) transitions. I. Polyenes, cyanines, and protonated imines. J Chem Phys 119:11574–11584Google Scholar
  118. 118.
    Nonnenberg C, Grimm S, Frank I (2003) Restricted open-shell Kohn-Sham theory for pi-pi(*) transitions. II. Simulation of photochemical reactions. J Chem Phys 119:11585–11590Google Scholar
  119. 119.
    Rohrig UF et al (2003) QM/MM Car-Parrinello molecular dynamics study of the solvent effects on the ground state and on the first excited singlet state of acetone in water. Chemphyschem 4:1177–1182Google Scholar
  120. 120.
    Masson F et al (2009) A QM/MM investigation of thymine dimer radical anion splitting catalyzed by DNA photolyase. Chemphyschem 10:400–410Google Scholar
  121. 121.
    Langer H, Doltsinis NL (2003) Excited state tautomerism of the DNA base guanine: a restricted open-shell Kohn-Sham study. J Chem Phys 118:5400–5407Google Scholar
  122. 122.
    Ben-Nun M, Quenneville J, Martinez TJ (2000) Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J Phys Chem A 104:5161–5175Google Scholar
  123. 123.
    Ben-Nun M, Martinez TJ (2002) Ab initio quantum molecular dynamics. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New YorkGoogle Scholar
  124. 124.
    Manthe U, Koppel H (1990) Dynamics on potential-energy surfaces with a conical intersection - adiabatic, intermediate, and diabatic behavior. J Chem Phys 93:1658–1669Google Scholar
  125. 125.
    Manthe U, Koppel H, Cederbaum LS (1991) Dissociation and predissociation on coupled electronic potential-energy surfaces - a 3-dimensional wave packet dynamic study. J Chem Phys 95:1708–1720Google Scholar
  126. 126.
    Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH, New YorkGoogle Scholar
  127. 127.
    Robb MA, Bernardi F, Olivucci M (1995) Conical intersections as a mechanistic feature of organic-photochemistry. Pure Appl Chem 67:783–789Google Scholar
  128. 128.
    Yarkony DR (1996) Diabolical conical intersections. Rev Mod Phys 68:985–1013Google Scholar
  129. 129.
    Turro NJ (1991) Modern molecular photochemistry. University Science Books, SausalitoGoogle Scholar
  130. 130.
    Heller EJ (1981) Frozen Gaussians - a very simple semi-classical approximation. J Chem Phys 75:2923–2931Google Scholar
  131. 131.
    Virshup AM et al (2009) Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. J Phys Chem B 113:3280–3291Google Scholar
  132. 132.
    Garcia JI et al (2007) QM/MM modeling of enantioselective pybox-ruthenium- and box-copper-catalyzed cyclopropanation reactions: scope, performance, and applications to ligand design. Chem-Eur J 13:4064–4073Google Scholar
  133. 133.
    Levine BG, Martinez TJ (2007) Isomerization through conical intersections. Annu Rev Phys Chem 58:613–634Google Scholar
  134. 134.
    Bearpark MJ, Larkin SM, Vreven T (2008) Searching for conical intersections of potential energy surfaces with the ONIOM method: application to previtamin D. J Phys Chem A 112:7286–7295Google Scholar
  135. 135.
    Sicilia F et al (2008) New algorithms for optimizing and linking conical intersection points. J Chem Theory Comput 4:257–266Google Scholar
  136. 136.
    Tokmachev AM et al (2010) Fluorescence of the perylene radical cation and an inaccessible D-0/D-1 conical intersection: an MMVB, RASSCF, and TD-DFT computational study. J Chem Phys 132:9Google Scholar
  137. 137.
    Dewar MJS, Thiel W (1977) Ground-states of molecules.38. MNDO method - approximations and parameters. J Am Chem Soc 99:4899–4907Google Scholar
  138. 138.
    Dewar MJS, Thiel W (1977) Ground-states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J Am Chem Soc 99:4907–4917Google Scholar
  139. 139.
    Dewar MJS et al (1985) The development and use of quantum-mechanical molecular-models. 76. AM1 - a new general-purpose quantum-mechanical molecular-model. J Am Chem Soc 107:3902–3909Google Scholar
  140. 140.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods. 1. Method. J Comput Chem 10:209–220Google Scholar
  141. 141.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods. 2. Applications. J Comput Chem 10:221–264Google Scholar
  142. 142.
    Stewart JJP (1991) Optimization of parameters for semiempirical methods. 3. Extension of Pm3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J Comput Chem 12:320–341Google Scholar
  143. 143.
    Elstner M (2006) The SCC-DFTB method and its application to biological systems. Theor Chem Acc 116:316–325Google Scholar
  144. 144.
    Elstner M et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268Google Scholar
  145. 145.
    Repasky MP, Chandrasekhar J, Jorgensen WL (2002) PDDG/PM3 and PDDG/MNDO: improved semiempirical methods. J Comput Chem 23:1601–1622Google Scholar
  146. 146.
    Weber W, Thiel W (2000) Orthogonalization corrections for semiempirical methods. Theor Chem Acc 103:495–506Google Scholar
  147. 147.
    Tuttle T, Thiel W (2008) OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. Phys Chem Chem Phys 10:2159–2166Google Scholar
  148. 148.
    Silva-Junior MR, Thiel W (2010) Benchmark of electronically excited states for semiempirical methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2. J Chem Theory Comput 6:1546–1564Google Scholar
  149. 149.
    Sattelmeyer KW, Tubert-Brohman I, Jorgensen WL (2006) NO-MNDO: reintroduction of the overlap matrix into MNDO. J Chem Theory Comput 2:413–419Google Scholar
  150. 150.
    Rocha GB et al (2006) RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comput Chem 27:1101–1111Google Scholar
  151. 151.
    Feng F et al (2009) Can semiempirical quantum models calculate the binding energy of hydrogen bonding for biological systems? J Theor Comput Chem 8:691–711Google Scholar
  152. 152.
    Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213Google Scholar
  153. 153.
    Danilov VI, Stewart JJP, van Mourik T (2007) A PM6 study of the “hydration shell” of nucleic acid 64 bases in small water clusters. J Biomol Struct Dyn 24:64Google Scholar
  154. 154.
    Kruger T et al (2005) Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J Chem Phys 122:5Google Scholar
  155. 155.
    Yang Y et al (2007) Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. J Phys Chem A 111:10861–10873Google Scholar
  156. 156.
    Schaefer P, Riccardi D, Cui Q (2005) Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J Chem Phys 123:014905Google Scholar
  157. 157.
    Riccardi D, Schaefer P, Cui Q (2005) pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. J Phys Chem B 109:17715–17733Google Scholar
  158. 158.
    Riccardi D et al (2006) Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. J Phys Chem B 110:6458–6469Google Scholar
  159. 159.
    Sattelmeyer KW, Tirado-Rives J, Jorgensen WL (2006) Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules. J Phys Chem A 110:13551–13559Google Scholar
  160. 160.
    Otte N, Scholten M, Thiel W (2007) Looking at self-consistent-charge density functional tight binding from a semiempirical perspective. J Phys Chem A 111:5751–5755Google Scholar
  161. 161.
    Seabra GD, Walker RC, Roitberg AE (2009) Are current semiempirical methods better than force fields? A study from the thermodynamics perspective. J Phys Chem A 113:11938–11948Google Scholar
  162. 162.
    McNamara JP et al (2004) Towards a quantum mechanical force field for carbohydrates: a reparametrized semi-empirical MO approach. Chem Phys Lett 394:429–436Google Scholar
  163. 163.
    Sattelle BM, Almond A (2010) Less is more when simulating unsulfated glycosaminoglycan 3D-structure: comparison of GLYCAM06/TIP3P, PM3-CARB1/TIP3P, and SCC-DFTB-D/TIP3P predictions with experiment. J Comput Chem 31:2932–2947Google Scholar
  164. 164.
    Shaik S, Hiberty PC (2008) A chemist's guide to valence bond theory. Wiley, HobokenGoogle Scholar
  165. 165.
    Shaik S, Shurki A (1999) Valence bond diagrams and chemical reactivity. Angew Chem Int Ed 38:586–625Google Scholar
  166. 166.
    Shaik SS (1989) A Qualitative Valence Bond Approach to Organic Reactions. In: Bertrán J, Csizmadia GI (eds) New theoretical concepts for understanding organic reactions. Kluwer Academic Publishers, DordrechtGoogle Scholar
  167. 167.
    Shaik SS, Hilberty PC (1991) Theoretical concepts for chemical bonding. Springer, BerlinGoogle Scholar
  168. 168.
    Hilberty PC, Shaik S (2002) BOVB - a valence bond method incorporating static and dynamic electron correlation effects. In: Cooper DL (ed) Valence bond theory. Elsevier, AmsterdamGoogle Scholar
  169. 169.
    Aqvist J, Warshel A (1993) Simulation of enzyme-reactions using valence-bond force-fields and other hybrid quantum-classical approaches. Chem Rev 93:2523–2544Google Scholar
  170. 170.
    Warshel A, Weiss RM (1980) An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 102:6218–6226Google Scholar
  171. 171.
    Warshel A (1991) Modeling of chemical reactions in enzymes and solutions. Wiley, New YorkGoogle Scholar
  172. 172.
    Shurki A, Warshel A (2003) Protein simulations. Academic, San DiegoGoogle Scholar
  173. 173.
    Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Biophys Biomol Struct 32:425–443Google Scholar
  174. 174.
    Leach AR (2001) Molecular modelling. Pearson Education Limited, HarlowGoogle Scholar
  175. 175.
    Shurki A, Crown HA (2005) Hybrid ab initio VB/MM method - a valence bond ride through classical landscapes. J Phys Chem B 109:23638–23644Google Scholar
  176. 176.
    Bearpark MJ et al (1997) Benchmarking the molecular mechanics valence bond method: photophysics of styrene and indene. J Phys Chem A 101:8395–8401Google Scholar
  177. 177.
    Bearpark MJ, Boggio-Pasqua M (2003) Excited states of conjugated hydrocarbon radicals using the molecular mechanics - valence bond (MMVB) method. Theor Chem Acc 110:105–114Google Scholar
  178. 178.
    Bearpark MJ et al (1994) Molecular mechanics valence-bond methods for large active spaces - application to conjugated polycyclic-hydrocarbons. Chem Phys Lett 217:513–519Google Scholar
  179. 179.
    Blancafort L et al (2003) A valence-bond-based complete-active-space self-consistent-field method for the evaluation of bonding in organic molecules. Theor Chem Acc 110:92–99Google Scholar
  180. 180.
    Garavelli M et al (2003) A simple approach for improving the hybrid MMVB force field: application to the photoisomerization of s-cis butadiene. J Comput Chem 24:1357–1363Google Scholar
  181. 181.
    Durand P, Malrieu JP (2007) Effective Hamiltonians and pseudo-operators as tools for rigorous modelling. Adv Chem Phys 67:321–412Google Scholar
  182. 182.
    Bernardi F et al (1988) Parametrization of a Heitler-London valence bond Hamiltonian from complete-active-space self-consistent-field computations - an application to chemical-reactivity. J Chem Phys 89:6365–6375Google Scholar
  183. 183.
    Said M, Maynau D, Malrieu JP (1984) Excited-state properties of linear polyenes studied through a nonempirical Heisenberg Hamiltonian. J Am Chem Soc 106:580–587Google Scholar
  184. 184.
    Said M et al (1984) A nonempirical Heisenberg Hamiltonian for the study of conjugated hydrocarbons - ground-state conformational studies. J Am Chem Soc 106:571–579Google Scholar
  185. 185.
    Allinger NL (1976) Calculation of molecular structure and energy by force-field methods. Adv Phys Org Chem 13:1–82Google Scholar
  186. 186.
    Allinger NL (1977) Conformational-analysis.130. MM2 - hydrocarbon force-field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134Google Scholar
  187. 187.
    Bernardi F, Olivucci M, Robb MA (1992) Simulation of MC-SCF results on covalent organic multibond reactions - molecular mechanics with valence bond (MM-VB). J Am Chem Soc 114:1606–1616Google Scholar
  188. 188.
    Warshel A (1991) Computer modelling of chemical reactions in enzymes and solutions. Wiley, New YorkGoogle Scholar
  189. 189.
    Chang YT, Minichino C, Miller WH (1992) Classical trajectory studies of the molecular dissociation dynamics of formaldehyde: H2CO → H2 + CO. J Chem Phys 96:4341–4355Google Scholar
  190. 190.
    Grochowski P et al (1996) Density functional based parametrization of a valence bond method and its applications in quantum classical molecular dynamics simulations of enzymatic reactions. Int J Quantum Chem 60:1143–1164Google Scholar
  191. 191.
    Albu TV, Corchado JC, Truhlar DG (2001) Molecular mechanics for chemical reactions: a standard strategy for using multiconfiguration molecular mechanics for variational transition state theory with optimized multidimensional tunneling. J Phys Chem A 105:8465–8487Google Scholar
  192. 192.
    Wei W, Zhong SJ, Shaik S (1998) VBDFT(s): a Huckel-type semi-empirical valence bond method scaled to density functional energies. Application to linear polyenes. Chem Phys Lett 292:7–14Google Scholar
  193. 193.
    Wu W, Shaik S (1999) VB-DFT: a nonempirical hybrid method combining valence bond theory and density functional energies. Chem Phys Lett 301:37–42Google Scholar
  194. 194.
    Wu W et al (2000) Using valence bond theory to understand electronic excited states: application to the hidden excited state (21Ag) of C2nH2n+2 (n = 2-14) polyenes. J Phys Chem A 104:8744–8758Google Scholar
  195. 195.
    Wu W et al (2001) VBDFT(s) - a semi-empirical valence bond method: application to linear polyenes containing oxygen and nitrogen heteroatoms. Phys Chem Chem Phys 3:5459–5465Google Scholar
  196. 196.
    Sharir-Ivry A et al (2010) VB/MM protein landscapes: a study of the SN2 reaction in haloalkane dehalogenase. J Phys Chem B 114:2212–2218Google Scholar
  197. 197.
    Cornell WD et al (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197Google Scholar
  198. 198.
    Kollman P et al (1998) AMBER: a program for simulation of biological and organic molecules. In: Schleyer PV et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  199. 199.
    Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074Google Scholar
  200. 200.
    Duan Y et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012Google Scholar
  201. 201.
    MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616Google Scholar
  202. 202.
    MacKerell ADJ et al (1998) Protein force fields. Wiley, ChichesterGoogle Scholar
  203. 203.
    Foloppe N, MacKerell JAD (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104Google Scholar
  204. 204.
    MacKerell AD, Banavali NK (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120Google Scholar
  205. 205.
    MacKerell JAD (2001) Atomistic models and force fields. In: Becker OM et al (eds) Computational biochemistry and biophysics. Dekker, New YorkGoogle Scholar
  206. 206.
    van Gunsteren WF, Daura X, Mark AE (1998) GROMOS force field. In: Schleyer Pv et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  207. 207.
    Scott WRP et al (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607Google Scholar
  208. 208.
    van Gunsteren WF et al (1996) Gromos – GROningen MOlecular Simulation computer program package (GROMOS96) available at: http://www.gromos.net/
  209. 209.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236Google Scholar
  210. 210.
    Jorgensen WL (1998) OPLS force fields. In: Schleyer Pv et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  211. 211.
    Kaminski GA et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487Google Scholar
  212. 212.
    Allinger NL, Kok RA, Imam MR (1988) Hydrogen-bonding in MM2. J Comput Chem 9:591–595Google Scholar
  213. 213.
    Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics - the MM3 force-field for hydrocarbons. 1. J Am Chem Soc 111:8551–8566Google Scholar
  214. 214.
    Lii JH, Allinger NL (1989) Molecular mechanics - The MM3 force-field for hydrocarbons. 3. The vanderwaals potentials and crystal data for aliphatic and aromatic-hydrocarbons. J Am Chem Soc 111:8576–8582Google Scholar
  215. 215.
    Lii JH, Allinger NL (1989) Molecular mechanics - the MM3 force-field for hydrocarbons. 2. Vibrational frequencies and thermodynamics. J Am Chem Soc 111:8566–8575Google Scholar
  216. 216.
    Allinger NL, Chen KS, Lii JH (1996) An improved force field (MM4) for saturated hydrocarbons. J Comput Chem 17:642–668Google Scholar
  217. 217.
    Ma BY et al (1996) Systematic comparison of experimental, quantum mechanical, and molecular mechanical bond lengths for organic molecules. J Phys Chem-Us 100:8763–8769Google Scholar
  218. 218.
    Nevins N, Chen KS, Allinger NL (1996) Molecular mechanics (MM4) calculations on alkenes. J Comput Chem 17:669–694Google Scholar
  219. 219.
    Nevins N, Lii JH, Allinger NL (1996) Molecular mechanics (MM4) calculations on conjugated hydrocarbons. J Comput Chem 17:695–729Google Scholar
  220. 220.
    Lifson S, Warshel A (1968) Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49:5116Google Scholar
  221. 221.
    Warshel A, Levitt M, Lifson S (1970) Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings. J Mol Spectrosc 33:84Google Scholar
  222. 222.
    Warshel A, Lifson S (1970) Consistent force field calculations. 2. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. J Chem Phys 53:582Google Scholar
  223. 223.
    Liang CX et al (1994) Ab-initio studies of lipid model species. 2. Conformational-analysis of inositols. J Am Chem Soc 116:3904–3911Google Scholar
  224. 224.
    Maple JR et al (1994) Derivation of class-II force-fields. 1. Methodology and quantum force-field for the alkyl functional-group and alkane molecules. J Comput Chem 15:162–182Google Scholar
  225. 225.
    Halgren TA (1996) Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519Google Scholar
  226. 226.
    Halgren TA (1996) Merck molecular force field. 2. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552Google Scholar
  227. 227.
    Halgren TA (1996) Merck molecular force field. 3. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586Google Scholar
  228. 228.
    Halgren TA (1996) Merck molecular force field. 5. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641Google Scholar
  229. 229.
    Halgren TA (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem 20:730–748Google Scholar
  230. 230.
    Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729Google Scholar
  231. 231.
    Halgren TA, Nachbar RB (1996) Merck molecular force field. 4. Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615Google Scholar
  232. 232.
    Rappe AK et al (1992) UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc 114:10024–10035Google Scholar
  233. 233.
    Casewit CJ, Colwell KS, Rappe AK (1992) Application of a universal force-field to organic-molecules. J Am Chem Soc 114:10035–10046Google Scholar
  234. 234.
    Mayo SL, Olafson BD, Goddard WA (1990) Dreiding - a generic force-field for molecular simulations. J Phys Chem-Us 94:8897–8909Google Scholar
  235. 235.
    Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  236. 236.
    van der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718Google Scholar
  237. 237.
    Clark M, Cramer RD, Vanopdenbosch N (1989) Validation of the general-purpose tripos 5.2 force-field. J Comput Chem 10:982–1012Google Scholar
  238. 238.
    Hagler AT, Dauber P, Lifson S (1979) Consistent force-field studies of inter-molecular forces in hydrogen-bonded crystals. 3. C=O…H-O hydrogen-bond and the analysis of the energetics and packing of carboxylic-acids. J Am Chem Soc 101:5131–5141Google Scholar
  239. 239.
    Hobza P et al (1997) Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree-Fock method for interaction of DNA bases: comparison with nonempirical beyond Hartree-Fock results. J Comput Chem 18:1136–1150Google Scholar
  240. 240.
    Hornak V et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725Google Scholar
  241. 241.
    Hu H, Elstner M, Hermans J (2003) Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Proteins 50:451–463Google Scholar
  242. 242.
    Gundertofte K, Liljefors T, Norrby PO (1996) A comparison of conformational energies calculated by several molecular mechanics methods. J Comput Chem 17:429–449Google Scholar
  243. 243.
    Ponder JW, Case DA (2003) Force fields for protein simulations. In: Richards FM, Eisendberg DS, Kuriyan J (eds) Protein simulations. Elsevier Academic, AmsterdamGoogle Scholar
  244. 244.
    MacKerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604Google Scholar
  245. 245.
    Okur A et al (2003) Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins. J Comput Chem 24:21–31Google Scholar
  246. 246.
    Wikipedia, the free encyclopedia: force field (chemistry) at http://en.wikipedia.org/wiki/Force_field_%28chemistry%29. Accessed: March 2011
  247. 247.
    Imberty A, Perez S (2000) Structure, conformation, and dynamics of bioactive oligosaccharides: theoretical approaches and experimental validations. Chem Rev 100:4567–4588Google Scholar
  248. 248.
    Kirschner KN et al (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655Google Scholar
  249. 249.
    Tessier MB et al (2008) Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids. Mol Simul 34:349–363Google Scholar
  250. 250.
    Hemmingsen L et al (2004) Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations. Carbohydr Res 339:937–948Google Scholar
  251. 251.
    Swope WC et al (2008) COMP 327-Comprehensive comparison and assessment of force fields for pharmaceutical applications by computation of hydration free energy. Abstr Pap Am Chem S 236Google Scholar
  252. 252.
    Vanommeslaeghe K, Acharya C, MacKerell AD (2008) COMP 6-development of parameters for the CHARMM general force field. Abstr Pap Am Chem S 236Google Scholar
  253. 253.
    Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690Google Scholar
  254. 254.
    Sherrill CD et al (2009) Assessment of standard force field models against high-quality ab initio potential curves for prototypes of pi-pi, CH/pi, and SH/pi interactions. J Comput Chem 30:2187–2193Google Scholar
  255. 255.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation-theory approach to intermolecular potential-energy surfaces of van-der-Waals complexes. Chem Rev 94:1887–1930Google Scholar
  256. 256.
    van der Avoird A et al (1980) Ab initio studies of the interactions in vanderwaals molecules. Top Curr Chem 93:1–51Google Scholar
  257. 257.
    Hesselmann A, Korona T (2011) On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT plus Disp methods for the interaction energies of endohedral complexes of the C60 fullerene with a rare gas atom. Phys Chem Chem Phys 13:732–743Google Scholar
  258. 258.
    Hobza P et al (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063Google Scholar
  259. 259.
    Hohenstein EG, Sherrill CD (2010) Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. J Chem Phys 133:014101Google Scholar
  260. 260.
    Jansen G et al (2008) Stacking energies for average B-DNA structures from the combined density functional theory and symmetry-adapted perturbation theory approach. J Am Chem Soc 130:1802Google Scholar
  261. 261.
    Jansen G, Tekin A (2007) How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-pi and pi-pi interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer. Phys Chem Chem Phys 9:1680–1687Google Scholar
  262. 262.
    Mooij WTM et al (1999) Transferable ab initio intermolecular potentials. 1. Derivation from methanol dimer and trimer calculations. J Phys Chem A 103:9872–9882Google Scholar
  263. 263.
    Chipot C et al (2009) Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions. J Chem Theory Comput 5:3022–3031Google Scholar
  264. 264.
    Hloucha M, Sum AK, Sandler SI (2000) Computer simulation of acetonitrile and methanol with ab initio-based pair potentials. J Chem Phys 113:5401–5406Google Scholar
  265. 265.
    Jansen G, Torheyden M (2006) A new potential energy surface for the water dimer obtained from separate fits of ab initio electrostatic, induction, dispersion and exchange energy contributions. Mol Phys 104:2101–2138Google Scholar
  266. 266.
    Li X et al (2006) Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. Acta Crystallogr D 62:639–647Google Scholar
  267. 267.
    Misquitta AJ, Totton TS, Kraft M (2010) A first principles development of a general anisotropic potential for polycyclic aromatic hydrocarbons. J Chem Theory Comput 6:683–695Google Scholar
  268. 268.
    Mitchell JBO, Price SL (2000) A systematic nonempirical method of deriving model intermolecular potentials for organic molecules: application to amides. J Phys Chem A 104:10958–10971Google Scholar
  269. 269.
    van der Avoird A, Szalewicz K, Leforestier C (2009) Towards the complete understanding of water by a first-principles computational approach. Chem Phys Lett 482:1–14Google Scholar
  270. 270.
    Goodman JM, Paton RS (2009) Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions. J Chem Inf Model 49:944–955Google Scholar
  271. 271.
    Sponer J et al (2009) Balance of attraction and repulsion in nucleic-acid base stacking: CCSD(T)/complete-basis-set-limit calculations on uracil dimer and a comparison with the force-field description. J Chem Theory Comput 5:1524–1544Google Scholar
  272. 272.
    Sponer J et al (2010) Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions. Phys Chem Chem Phys 12:3522–3534Google Scholar
  273. 273.
    Zgarbova M et al (2010) Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Phys Chem Chem Phys 12:10476–10493Google Scholar
  274. 274.
    Corry B et al (2010) Molecular dynamics simulations of structure and dynamics of organic molecular crystals. Phys Chem Chem Phys 12:14916–14929Google Scholar
  275. 275.
    Hobza P et al (2010) On the reliability of the AMBER force field and its empirical dispersion contribution for the description of noncovalent complexes. Chemphyschem 11:2399–2408Google Scholar
  276. 276.
    Tateno M, Hagiwara Y (2009) Evaluation of stabilization energies in π–π and cation–π interactions involved in biological macromolecules by ab initio calculations. J Phys Condens Matter 21:064243Google Scholar
  277. 277.
    Wetmore SD, Rutledge LR (2010) The assessment of density functionals for DNA-protein stacked and T-shaped complexes. Can J Chem 88:815–830Google Scholar
  278. 278.
    Tafipolsky M, Engels B (2011) Accurate intermolecular potentials with physically grounded electrostatics. J Chem Theory Comput 7:1791–1803Google Scholar
  279. 279.
    Head-Gordon T et al (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549–2564Google Scholar
  280. 280.
    Ponder JW et al (2010) Tinker – software tools for molecular modelling (5.1) available at: http://dasher.wustl.edu/tinker
  281. 281.
    van der Avoird A et al (2010) Vibration-rotation-tunneling states of the benzene dimer: an ab initio study. Phys Chem Chem Phys 12:8219–8240Google Scholar
  282. 282.
    Spackman MA (2006) The use of the promolecular charge density to approximate the penetration contribution to intermolecular electrostatic energies. Chem Phys Lett 418:158–162Google Scholar
  283. 283.
    Spackman MA (1986) A simple quantitative model of hydrogen-bonding. J Chem Phys 85:6587–6601Google Scholar
  284. 284.
    Gordon MS, Slipchenko LV (2009) Damping functions in the effective fragment potential method. Mol Phys 107:999–1016Google Scholar
  285. 285.
    Piquemal JP et al (2008) Simple formulas for improved point-charge electrostatics in classical force fields and hybrid quantum mechanical/molecular mechanical embedding. Int J Quantum Chem 108:1905–1912Google Scholar
  286. 286.
    Pedersen LG et al (2010) Gaussian multipole model (GMM). J Chem Theory Comput 6:190–202Google Scholar
  287. 287.
    Wang B, Truhlar DG (2010) Including charge penetration effects in molecular modeling. J Chem Theory Comput 6:3330–3342Google Scholar
  288. 288.
    Singh UC, Kollman PA (1986) A combined ab initio quantum-mechanical and molecular mechanical method for carrying out simulations on complex molecular-systems - applications to the CH3Cl+Cl exchange-reaction and gas-phase protonation of polyethers. J Comput Chem 7:718–730Google Scholar
  289. 289.
    Bakowies D, Thiel W (1996) Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem-Us 100:10580–10594Google Scholar
  290. 290.
    Gao J (1997) Energy components of aqueous solution: insight from hybrid QM/MM simulations using a polarizable solvent model. J Comput Chem 18:1061–1071Google Scholar
  291. 291.
    Gao JL, Byun K (1997) Solvent effects on the n->pi transition of pyrimidine in aqueous solution. Theor Chem Acc 96:151–156Google Scholar
  292. 292.
    Thompson MA (1996) QM/MMpol: a consistent model for solute/solvent polarization. Application to the aqueous solvation and spectroscopy of formaldehyde, acetaldehyde, and acetone. J Phys Chem-Us 100:14492–14507Google Scholar
  293. 293.
    Thompson MA, Schenter GK (1995) Excited-states of the bacteriochlorophyll-B dimer of Rhodopseudomonas-viridis - a QM/MM study of the photosynthetic reaction-center that includes MM polarization. J Phys Chem-Us 99:6374–6386Google Scholar
  294. 294.
    Cornell WD et al (1996) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). J Am Chem Soc 118:2309Google Scholar
  295. 295.
    Kunz APE, Eichenberger AP, van Gunsteren WF (2011) A simple, efficient polarizable molecular model for liquid carbon tetrachloride. Mol Phys 109:365–372Google Scholar
  296. 296.
    Kunz APE, van Gunsteren WF (2009) Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. J Phys Chem A 113:11570–11579Google Scholar
  297. 297.
    Geerke DP, Van Gunsteren WF (2007) The performance of non-polarizable and polarizable force-field parameter sets for ethylene glycol in molecular dynamics simulations of the pure liquid and its aqueous mixtures. Mol Phys 105:1861–1881Google Scholar
  298. 298.
    Grossfield A, Ren PY, Ponder JW (2003) Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125:15671–15682Google Scholar
  299. 299.
    Maple JR et al (2005) A polarizable force field and continuum solvation methodology for modeling of protein-ligand interactions. J Chem Theory Comput 1:694–715Google Scholar
  300. 300.
    Oostenbrink C et al (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676Google Scholar
  301. 301.
    Chang TM, Dang LX (2005) Liquid-vapor interface of methanol-water mixtures: a molecular dynamics study. J Phys Chem B 109:5759–5765Google Scholar
  302. 302.
    Patel SA, Brooks CL (2006) Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. J Chem Phys 124:204706Google Scholar
  303. 303.
    Warshel A, Kato M, Pisliakov AV (2007) Polarizable force fields: history, test cases, and prospects. J Chem Theory Comput 3:2034–2045Google Scholar
  304. 304.
    Harder E et al (2008) Understanding the dielectric properties of liquid amides from a polarizable force field. J Phys Chem B 112:3509–3521Google Scholar
  305. 305.
    Xie WS et al (2007) Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory Comput 3:1878–1889Google Scholar
  306. 306.
    Rick SW, Stuart SJ (2003) Potentials and algorithms for incorporating polarizability in computer simulations. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, New YorkGoogle Scholar
  307. 307.
    Yu HB, van Gunsteren WF (2005) Accounting for polarization in molecular simulation. Comput Phys Commun 172:69–85Google Scholar
  308. 308.
    van Belle D et al (1987) Calculations of electrostatic properties in proteins - analysis of contributions from induced protein dipoles. J Mol Biol 198:721–735Google Scholar
  309. 309.
    Vesely FJ (1977) N-Particle dynamics of polarizable Stockmayer-type molecules. J Comput Phys 24:361–371Google Scholar
  310. 310.
    Straatsma TP, McCammon JA (1990) Molecular dynamics simulations with interaction potentials including polarization development of a noniterative method and application to water. Mol Simul 5:181–192Google Scholar
  311. 311.
    Drude P (1902) The theory of optics. Longmans, Green and Co, New YorkGoogle Scholar
  312. 312.
    Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force-fields - application to liquid water. J Chem Phys 101:6141–6156Google Scholar
  313. 313.
    Anisimov VM et al (2005) Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J Chem Theory Comput 1:153–168Google Scholar
  314. 314.
    Cieplak P, Caldwell J, Kollman P (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J Comput Chem 22:1048–1057Google Scholar
  315. 315.
    Cieplak P et al (2009) Polarization effects in molecular mechanical force fields. J Phys Condens Matter 21:21Google Scholar
  316. 316.
    Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–15Google Scholar
  317. 317.
    Patel S, Mackerell AD, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25:1504–1514Google Scholar
  318. 318.
    Vorobyov IV, Anisimov VM, MacKerell AD (2005) Polarizable empirical force field for alkanes based on the classical drude oscillator model. J Phys Chem B 109:18988–18999Google Scholar
  319. 319.
    Wang ZX et al (2006) Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. J Comput Chem 27:781–790Google Scholar
  320. 320.
    Banks JL et al (1999) Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J Chem Phys 110:741–754Google Scholar
  321. 321.
    Kaminski GA et al (2004) Development of an accurate and robust polarizable molecular mechanics force field from ab initio quantum chemistry. J Phys Chem A 108:621–627Google Scholar
  322. 322.
    Kaminski GA et al (2002) Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests. J Comput Chem 23:1515–1531Google Scholar
  323. 323.
    Xie WS, Gao JL (2007) Design of a next generation force field: the X-POL potential. J Chem Theory Comput 3:1890–1900Google Scholar
  324. 324.
    Cho AE et al (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915–931Google Scholar
  325. 325.
    Friesner RA (2006) Modeling polarization in proteins and protein-ligand complexes: methods and preliminary results. Adv Protein Chem 72:79Google Scholar
  326. 326.
    Illingworth CJR et al (2006) Classical polarization in hybrid QM/MM methods. J Phys Chem A 110:6487–6497Google Scholar
  327. 327.
    Kaminski S et al (2010) Vibrational Raman spectra from the self-consistent charge density functional tight binding method via classical time-correlation functions. J Chem Theory Comput 6:1240–1255Google Scholar
  328. 328.
    Lopes PEM, Roux B, MacKerell AD (2009) Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theor Chem Acc 124:11–28Google Scholar
  329. 329.
    Geerke DP, van Gunsteren WF (2007) Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. J Phys Chem B 111:6425–6436Google Scholar
  330. 330.
    Lin ZX, Schmid N, van Gunsteren WF (2011) The effect of using a polarizable solvent model upon the folding equilibrium of different -peptides. Mol Phys 109:493–506Google Scholar
  331. 331.
    Illingworth CJR et al (2008) Toward a consistent treatment of polarization in model QM/MM calculations. J Phys Chem A 112:12151–12156Google Scholar
  332. 332.
    Swope WC, Horn HW, Rice JE (2010) Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration. J Phys Chem B 114:8631–8645Google Scholar
  333. 333.
    Biswas PK, Gogonea V (2008) A polarizable force-field model for quantum-mechanical-molecular-mechanical Hamiltonian using expansion of point charges into orbitals. J Chem Phys 129:154108Google Scholar
  334. 334.
    Pliego JR (2011) Shells theory of solvation and the long-range born correction. Theor Chem Acc 128:275–283Google Scholar
  335. 335.
    Jiang W et al (2011) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD. J Phys Chem Lett 2:87–92Google Scholar
  336. 336.
    Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular-dynamics. J Chem Phys 60:1545–1557Google Scholar
  337. 337.
    Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802Google Scholar
  338. 338.
    Zhang Y, Lin H (2008) Flexible-boundary quantum-mechanical/molecular-mechanical calculations: partial charge transfer between the quantum-mechanical and molecular-mechanical subsystems. J Chem Theory Comput 4:414–425Google Scholar
  339. 339.
    Zhang Y, Lin H, Truhlar DG (2007) Self-consistent polarization of the boundary in the redistributed charge and dipole scheme for combined quantum-mechanical and molecular-mechanical calculations. J Chem Theory Comput 3:1378–1398Google Scholar
  340. 340.
    Hamad S, Woodley SM, Catlow CRA (2009) Experimental and computational studies of ZnS nanostructures. Mol Simul 35:1015–1032Google Scholar
  341. 341.
    Catlow CRA et al (2008) Zinc oxide: a case study in contemporary computational solid state chemistry. J Comput Chem 29:2234–2249Google Scholar
  342. 342.
    To J et al (2008) Hybrid QM/MM investigations into the structure and properties of oxygen-donating species in TS-1. J Phys Chem C 112:7173–7185Google Scholar
  343. 343.
    Goumans TPM et al (2008) Hydrogenation of CO on a silica surface: an embedded cluster approach. J Chem Phys 128:6Google Scholar
  344. 344.
    Goumans TPM, Catlow CRA, Brown WA (2008) Catalysis of addition reactions by a negatively charged silica surface site on a dust grain. J Phys Chem C 112:15419–15422Google Scholar
  345. 345.
    Adriaens DA et al (2010) Computational study of carbonyl sulphide formation on model interstellar dust grains. J Phys Chem C 114:1892–1900Google Scholar
  346. 346.
    Goumans TPM et al (2009) An embedded cluster study of the formation of water on interstellar dust grains. Phys Chem Chem Phys 11:5431–5436Google Scholar
  347. 347.
    Goumans TPM et al (2009) Formation of H2 on an olivine surface: a computational study. Mon Not R Astron Soc 393:1403–1407Google Scholar
  348. 348.
    Olsen JM, Aidas K, Kongsted J (2010) Excited states in solution through polarizable embedding. J Chem Theory Comput 6:3721–3734Google Scholar
  349. 349.
    Slipchenko LV (2010) Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization. J Phys Chem A 114:8824–8830Google Scholar
  350. 350.
    Mata RA, Cabral BJC (2010) QM/MM approaches to the electronic spectra of hydrogen-bonding systems with connection to many-body decomposition schemes. In: Sabin JR, Brandas, E, Canuto S (eds) Advances in quantum chemistry. Elsevier Academic, San DiegoGoogle Scholar
  351. 351.
    Yoo S et al (2008) Solvent effects on optical properties of molecules: a combined time-dependent density functional theory/effective fragment potential approach. J Chem Phys 129:144112Google Scholar
  352. 352.
    Fujimoto K, Yang WT (2008) Density-fragment interaction approach for quantum-mechanical/molecular-mechanical calculations with application to the excited states of a Mg(2+)-sensitive dye. J Chem Phys 129:054102Google Scholar
  353. 353.
    Fux S et al (2010) Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds. J Chem Phys 132:164101Google Scholar
  354. 354.
    Neugebauer J et al (2010) A subsystem TDDFT approach for solvent screening effects on excitation energy transfer couplings. J Chem Theory Comput 6:1843–1851Google Scholar
  355. 355.
    Neugebauer J et al (2005) An explicit quantum chemical method for modeling large solvation shells applied to aminocoumarin C151. J Phys Chem A 109:7805–7814Google Scholar
  356. 356.
    Neugebauer J et al (2005) The merits of the frozen-density embedding scheme to model solvatochromic shifts. J Chem Phys 122:094115Google Scholar
  357. 357.
    Neugebauer J et al (2005) Modeling solvent effects on electron-spin-resonance hyperfine couplings by frozen-density embedding. J Chem Phys 123:114101Google Scholar
  358. 358.
    Ranaghan KE, Mulholland AJ (2010) Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. Int Rev Phys Chem 29:65–133Google Scholar
  359. 359.
    Maseras F, Morokuma K (1995) IMOMM - a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J Comput Chem 16:1170–1179Google Scholar
  360. 360.
    Matsubara T, Sieber S, Morokuma K (1996) A test of the new “integrated MO + MM” (IMOMM) method for the conformational energy of ethane and n-butane. Int J Quantum Chem 60:1101–1109Google Scholar
  361. 361.
    Froese RDJ, Morokuma K (1999) IMOMO-G2MS approaches to accurate calculations of bond dissociation energies of large molecules. J Phys Chem A 103:4580–4586Google Scholar
  362. 362.
    Humbel S, Sieber S, Morokuma K (1996) The IMOMO method: integration of different levels of molecular orbital approximations for geometry optimization of large systems: test for n-butane conformation and SN2 reaction: RCl + Cl. J Chem Phys 105:1959–1967Google Scholar
  363. 363.
    Froese RDJ, Morokuma K (1996) The IMOMO and IMOMM methods for excited states. A study of the adiabatic S0->T1, T2 excitation energies of cyclic alkenes and enones. Chem Phys Lett 263:393–400Google Scholar
  364. 364.
    Svensson M et al (1996) ONIOM: a multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J Phys Chem-Us 100:19357–19363Google Scholar
  365. 365.
    Dapprich S et al (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct-Theochem 461:1–21Google Scholar
  366. 366.
    Vreven T et al (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2:815–826Google Scholar
  367. 367.
    Vreven T et al (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comput Chem 24:760–769Google Scholar
  368. 368.
    Ryde U (1996) The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J Comput Aided Mol Des 10:153–164Google Scholar
  369. 369.
    Ryde U, Olsson MHM (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quantum Chem 81:335–347Google Scholar
  370. 370.
    Zhang YK, Lee TS, Yang WT (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110:46–54Google Scholar
  371. 371.
    Nicoll RM et al (2001) Quantum mechanical/molecular mechanical methods and the study of kinetic isotope effects: modelling the covalent junction region and application to the enzyme xylose isomerase. Theor Chem Acc 106:105–112Google Scholar
  372. 372.
    Reuter N et al (2000) Frontier bonds in QM/MM methods: a comparison of different approaches. J Phys Chem A 104:1720–1735Google Scholar
  373. 373.
    Hall RJ et al (2000) Aspects of hybrid QM/MM calculations: the treatment of the QM/MM interface region and geometry optimization with an application to chorismate mutase. J Comput Chem 21:1433–1441Google Scholar
  374. 374.
    Amara P, Field MJ (2003) Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method. Theor Chem Acc 109:43–52Google Scholar
  375. 375.
    Lin H, Truhlar DG (2005) Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 109:3991–4004Google Scholar
  376. 376.
    Konig PH et al (2005) A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 109:9082–9095Google Scholar
  377. 377.
    Assfeld X, Rivail JL (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263:100–106Google Scholar
  378. 378.
    Pu JZ, Gao JL, Truhlar DG (2004) Generalized hybrid orbital (GHO) method for combining ab initio Hartree-Fock wave functions with molecular mechanics. J Phys Chem A 108:632–650Google Scholar
  379. 379.
    Jung J et al (2007) New implementation of a combined quantum mechanical and molecular mechanical method using modified generalized hybrid orbitals. J Chem Phys 127:204102Google Scholar
  380. 380.
    Bessac F et al (2003) Effective group potentials: a powerful tool for hybrid QM/MM methods? J Mol Struct-Theochem 632:43–59Google Scholar
  381. 381.
    Day PN et al (1996) An effective fragment method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 105:1968–1986Google Scholar
  382. 382.
    Adamovic I, Freitag MA, Gordon MS (2003) Density functional theory based effective fragment potential method. J Chem Phys 118:6725–6732Google Scholar
  383. 383.
    Adamovic I, Gordon MS (2006) Methanol-water mixtures: a microsolvation study using the effective fragment potential method. J Phys Chem A 110:10267–10273Google Scholar
  384. 384.
    Netzloff HM, Gordon MS (2004) The effective fragment potential: small clusters and radial distribution functions. J Chem Phys 121:2711–2714Google Scholar
  385. 385.
    Poteau R et al (2001) Effective group potentials. 1. Method. J Phys Chem A 105:198–205Google Scholar
  386. 386.
    Poteau R et al (2001) Effective group potentials. 2. Extraction and transferability for chemical groups involved in covalent or donor-acceptor bonds. J Phys Chem A 105:206–214Google Scholar
  387. 387.
    Exner TE, Mezey PG (2003) Ab initio quality properties for macromolecules using the ADMA approach. J Comput Chem 24:1980–1986Google Scholar
  388. 388.
    Exner TE, Mezey PG (2005) Evaluation of the field-adapted ADMA approach: absolute and relative energies of crambin and derivatives. Phys Chem Chem Phys 7:4061–4069Google Scholar
  389. 389.
    Eckard S, Exner TE (2006) Generalized hybrid orbitals in the FA-ADMA method. Z Phys Chem 220:927–944Google Scholar
  390. 390.
    DiLabio GA, Hurley MM, Christiansen PA (2002) Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules. J Chem Phys 116:9578–9584Google Scholar
  391. 391.
    Moon S, Christiansen PA, DiLabio GA (2004) Quantum capping potentials with point charges: a simple QM/MM approach for the calculation of large-molecule NMR shielding tensors. J Chem Phys 120:9080–9086Google Scholar
  392. 392.
    Jardillier N, Goursot A (2008) One-electron quantum capping potential for hybrid QM/MM studies of silicate molecules and solids. Chem Phys Lett 454:65–69Google Scholar
  393. 393.
    Ohnishi YY et al (2008) Frontier orbital consistent quantum capping potential (FOC-QCP) for bulky ligand of transition metal complexes. J Phys Chem A 112:1946–1955Google Scholar
  394. 394.
    Komin S, Sebastiani D (2009) Optimization of capping potentials for spectroscopic parameters in hybrid quantum mechanical/mechanical modeling calculations. J Chem Theory Comput 5:1490–1498Google Scholar
  395. 395.
    Wang B, Truhlar DG (2010) Combined quantum mechanical and molecular mechanical methods for calculating potential energy surfaces: tuned and balanced redistributed-charge algorithm. J Chem Theory Comput 6:359–369Google Scholar
  396. 396.
    DiLabio GA, Wolkow RA, Johnson ER (2005) Efficient silicon surface and cluster modeling using quantum capping potentials. J Chem Phys 122:5Google Scholar
  397. 397.
    Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710Google Scholar
  398. 398.
    Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662Google Scholar
  399. 399.
    Schiffmann C, Sebastiani D (2011) Artificial bee colony optimization of capping potentials for hybrid QM/MM calculations. J Chem Theory Comput 7:1307–1315Google Scholar
  400. 400.
    Brown SP, Spiess HW (2001) Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev 101:4125–4155Google Scholar
  401. 401.
    Schulz-Dobrick M et al (2005) Determining the geometry of hydrogen bonds in solids with picometer accuracy by quantum chemical calculations and NMR spectroscopy. Chemphyschem 6:315–327Google Scholar
  402. 402.
    Spiess HW (2003) Nuclear magnetic resonance spectroscopy in macromolecular science. Macromol Chem Phys 204:340–346Google Scholar
  403. 403.
    Press WH et al (1992) Numerical recipes. Cambridge University Press, Cambridge, UKGoogle Scholar
  404. 404.
    Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61–85Google Scholar
  405. 405.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471Google Scholar
  406. 406.
    Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697Google Scholar
  407. 407.
    Moon S, Patchkovskii S, Salahub DR (2003) QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins. J Mol Struct-Theochem 632:287–295Google Scholar
  408. 408.
    Kerdcharoen T, Liedl KR, Rode BM (1996) A QM/MM simulation method applied to the solution of Li+ in liquid ammonia. Chem Phys 211:313–323Google Scholar
  409. 409.
    Hofer TS et al (2005) Structure and dynamics of solvated Sn(II) in aqueous solution: an ab initio QM/MM MD approach. J Am Chem Soc 127:14231–14238Google Scholar
  410. 410.
    Schwenk CF, Loeffler HH, Rode BM (2003) Structure and dynamics of metal ions in solution: QM/MM molecular dynamics simulations of Mn2+ and V2+. J Am Chem Soc 125:1618–1624Google Scholar
  411. 411.
    Rode BM, Schwenk CF, Tongraar A (2004) Structure and dynamics of hydrated ions-new insights through quantum mechanical simulations. J Mol Liq 110:105–122Google Scholar
  412. 412.
    Kerdcharoen T, Morokuma K (2002) ONIOM-XS: an extension of the ONIOM method for molecular simulation in condensed phase. Chem Phys Lett 355:257–262Google Scholar
  413. 413.
    Kerdcharoen T, Morokuma K (2003) Combined quantum mechanics and molecular mechanics simulation of Ca2+/ammonia solution based on the ONIOM-XS method: octahedral coordination and implication to biology. J Chem Phys 118:8856–8862Google Scholar
  414. 414.
    Morokuma K (2003) ONIOM and its applications to material chemistry and catalyses. Bull Korean Chem Soc 24:797–801Google Scholar
  415. 415.
    Heyden A, Lin H, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B 111:2231–2241Google Scholar
  416. 416.
    Zhang Y, Lin H (2010) Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond. Theor Chem Acc 126:315–322Google Scholar
  417. 417.
    Nielsen SO et al (2010) Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Phys Chem Chem Phys 12:12401–12414Google Scholar
  418. 418.
    Hofer TS et al (2010) Simulations of liquids and solutions based on quantum mechanical forces. In: vanEldik R, Harvey J (eds) Advances in inorganic chemistry: theoretical and computational inorganic chemistry, Vol 62. Elsevier Academic, San DiegoGoogle Scholar
  419. 419.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald - an N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092Google Scholar
  420. 420.
    York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals - a comparison of the Ewald and truncated list methods. J Chem Phys 99:8345–8348Google Scholar
  421. 421.
    Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593Google Scholar
  422. 422.
    Nam K, Gao JL, York DM (2005) An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations. J Chem Theory Comput 1:2–13Google Scholar
  423. 423.
    Walker RC, Crowley MF, Case DA (2008) The implementation of a fast and accurate QM/MM potential method in Amber. J Comput Chem 29:1019–1031Google Scholar
  424. 424.
    Laino T et al (2005) An efficient real space multigrid OM/MM electrostatic coupling. J Chem Theory Comput 1:1176–1184Google Scholar
  425. 425.
    Laino T et al (2006) An efficient linear-scaling electrostatic coupling for treating periodic boundary conditions in QM/MM simulations. J Chem Theory Comput 2:1370–1378Google Scholar
  426. 426.
    Berkowitz M, McCammon JA (1982) Molecular-dynamics with stochastic boundary-conditions. Chem Phys Lett 90:215–217Google Scholar
  427. 427.
    Brunger A, Brooks CL, Karplus M (1984) Stochastic boundary-conditions for molecular-dynamics simulations of St2 water. Chem Phys Lett 105:495–500Google Scholar
  428. 428.
    Brooks CL, Karplus M (1983) Deformable stochastic boundaries in molecular-dynamics. J Chem Phys 79:6312–6325Google Scholar
  429. 429.
    Lee FS, Warshel A (1992) A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J Chem Phys 97:3100–3107Google Scholar
  430. 430.
    Tironi IG et al (1995) A generalized reaction field method for molecular-dynamics simulations. J Chem Phys 102:5451–5459Google Scholar
  431. 431.
    Beglov D, Roux B (1994) Finite representation of an infinite bulk system - solvent boundary potential for computer-simulations. J Chem Phys 100:9050–9063Google Scholar
  432. 432.
    Benighaus T, Thiel W (2011) Long-range electrostatic effects in QM/MM studies of enzymatic reactions: application of the solvated macromolecule boundary potential. J Chem Theory Comput 7:238–249Google Scholar
  433. 433.
    Im W, Berneche S, Roux B (2001) Generalized solvent boundary potential for computer simulations. J Chem Phys 114:2924–2937Google Scholar
  434. 434.
    Thiel W, Benighaus T (2008) Efficiency and accuracy of the generalized solvent boundary potential for hybrid QM/MM simulations: implementation for semiempirical Hamiltonians. J Chem Theory Comput 4:1600–1609Google Scholar
  435. 435.
    Thiel W, Benighaus T (2009) A general boundary potential for hybrid QM/MM simulations of solvated biomolecular systems. J Chem Theory Comput 5:3114–3128Google Scholar
  436. 436.
    Wales DJ (2003) Energy landscapes. Cambridge University Press, CambridgeGoogle Scholar
  437. 437.
    Moult J et al (2009) Critical assessment of methods of protein structure prediction—round VIII. Proteins Struct Funct Bioinf 77:1–4Google Scholar
  438. 438.
    Klahn M et al (2005) On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J Phys Chem B 109:15645–15650Google Scholar
  439. 439.
    Christen M, van Gunsteren WF (2008) On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: a review. J Comput Chem 29:157–166Google Scholar
  440. 440.
    Oakley MT et al (2008) Search strategies in structural bioinformatics. Curr Protein Pept Sci 9:260–274Google Scholar
  441. 441.
    van Gunsteren WF et al (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092Google Scholar
  442. 442.
    Chen IJ, Foloppe N (2011) Is conformational sampling of drug-like molecules a solved problem? Drug Dev Res 72:85–94Google Scholar
  443. 443.
    Chen IJ, Foloppe N (2010) Drug-like bioactive structures and conformational coverage with the ligprep/confgen suite: comparison to programs MOE and catalyst. J Chem Inf Model 50:822–839Google Scholar
  444. 444.
    Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48:1773–1791Google Scholar
  445. 445.
    Bruccoleri RE, Karplus M (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26:137–168Google Scholar
  446. 446.
    Gippert GP, Wright PE, Case DA (1998) Distributed torsion angle grid search in high dimensions: a systematic approach to NMR structure determination. J Biomol NMR 11:241–263Google Scholar
  447. 447.
    Sadowski J, Bostrom J (2006) MIMUMBA revisited: torsion angle rules for conformer generation derived from X-ray structures. J Chem Inf Model 46:2305–2309Google Scholar
  448. 448.
    Smellie A et al (2003) Conformational analysis by intersection: CONAN. J Comput Chem 24:10–20Google Scholar
  449. 449.
    Chandrasekhar J, Saunders M, Jorgensen WL (2001) Efficient exploration of conformational space using the stochastic search method: application to beta-peptide oligomers. J Comput Chem 22:1646–1654Google Scholar
  450. 450.
    Chen JH, Im W, Brooks CL (2005) Application of torsion angle molecular dynamics for efficient sampling of protein conformations. J Comput Chem 26:1565–1578Google Scholar
  451. 451.
    Glen RC, Payne AWR (1995) A genetic algorithm for the automated generation of molecules within constraints. J Comput Aided Mol Des 9:181–202Google Scholar
  452. 452.
    Scheraga HA et al (1999) Surmounting the multiple-minima problem in protein folding. J Global Optim 15:235–260Google Scholar
  453. 453.
    Bohm G (1996) New approaches in molecular structure prediction. Biophys Chem 59:1–32Google Scholar
  454. 454.
    Floudas CA, Klepeis JL, Pardalos PM (1999) Global optimization approaches in protein folding and peptide docking. American Mathematical Society, New JerseyGoogle Scholar
  455. 455.
    Leach AR (1991) A survey of methods for searching the conformational space of small and medium-sized molecules. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. VCH, New YorkGoogle Scholar
  456. 456.
    Neumaier A (1997) Molecular modeling of proteins and mathematical prediction of protein structure. Siam Rev 39:407–460Google Scholar
  457. 457.
    Li ZQ, Laidig KE, Daggett V (1998) Conformational search using a molecular dynamics-minimization procedure: applications to clusters of coulombic charges, Lennard-Jones particles, and waters. J Comput Chem 19:60–70Google Scholar
  458. 458.
    Vengadesan K, Gautham N (2005) A new conformational search technique and its applications. Curr Sci India 88:1759–1770Google Scholar
  459. 459.
    Kostrowicki J, Scheraga HA (1992) Application of the diffusion equation method for global optimization to oligopeptides. J Phys Chem-Us 96:7442–7449Google Scholar
  460. 460.
    Chang G, Guida WC, Still WC (1989) An internal coordinate Monte-Carlo method for searching conformational space. J Am Chem Soc 111:4379–4386Google Scholar
  461. 461.
    Morales LB, Gardunojuarez R, Romero D (1991) Applications of simulated annealing to the multiple-minima problem in small peptides. J Biomol Struct Dyn 8:721–735Google Scholar
  462. 462.
    Wilson SR et al (1991) Applications of simulated annealing to the conformational-analysis of flexible molecules. J Comput Chem 12:342–349Google Scholar
  463. 463.
    Grubmuller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52:2893–2906Google Scholar
  464. 464.
    Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8:695–708Google Scholar
  465. 465.
    Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys Rev Lett 90:238302Google Scholar
  466. 466.
    Yang YD, Liu HY (2006) Genetic algorithms for protein conformation sampling and optimization in a discrete backbone dihedral angle space. J Comput Chem 27:1593–1602Google Scholar
  467. 467.
    Nanias M et al (2005) Protein structure prediction with the UNRES force-field using replica-exchange Monte Carlo-with-minimization; comparison with MCM, CSA, and CFMC. J Comput Chem 26:1472–1486Google Scholar
  468. 468.
    Grebner C et al (2011) Efficiency of tabu-search-based conformational search algorithms. J Comput Chem 32:2245–2253Google Scholar
  469. 469.
    Chu CM, Alsberg BK (2010) A knowledge-based approach for screening chemical structures within de novo molecular evolution. J Chemom 24:9Google Scholar
  470. 470.
    Sakae Y et al (2011) New conformational search method using genetic algorithm and knot theory for proteins. Pac Symp Biocomput 217–228Google Scholar
  471. 471.
    Watts KS et al (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–546Google Scholar
  472. 472.
    Ling S, Gutowski M (2011) SSC: a tool for constructing libraries for systematic screening of conformers. J Comput Chem 32:2047–2054, Published online in Wiley Online Library (wileyonlinelibrary.com; DOI 10.1002/jcc.21774)Google Scholar
  473. 473.
    Goldstein M, FredJ E, Gerber RB (2011) A new hybrid algorithm for finding the lowest minima of potential surfaces: approach and application to peptides. J Comput Chem 32:1785–1800, Published online in Wiley Online Library (wileyonlinelibrary.com; DOI 10.1002/jcc.21775)Google Scholar
  474. 474.
    Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116Google Scholar
  475. 475.
    Grebner C, Engels B (2012) A new tabu-search-based algorithm for solvation of proteins (in preparation)Google Scholar
  476. 476.
    Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111:7010–7022Google Scholar
  477. 477.
    Kästner J, Sherwood P (2008) Superlinearly converging dimer method for transition state search. J Chem Phys 128:014106Google Scholar
  478. 478.
    Heyden A, Bell AT, Keil FJ (2005) Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys 123:224101Google Scholar
  479. 479.
    Honda S et al (2004) 10 residue folded peptide designed by segment statistics. Structure 12:1507–1518Google Scholar
  480. 480.
    Satoh D et al (2006) Folding free-energy landscape of a 10-residue mini-protein, chignolin. FEBS Lett 580:3422–3426Google Scholar
  481. 481.
    Suenaga A et al (2007) Folding dynamics of 10-residue beta-hairpin peptide chignolin. Chem Asian J 2:591–598Google Scholar
  482. 482.
    Henkelman G, Jóhannesson G, Jónsson H (2000) Methods for finding saddle points and minimum energy paths. In: Schwartz SD (ed) Progress in theoretical chemistry and physics. Kluwer Academic, New York, page 269–3000Google Scholar
  483. 483.
    Baker J (1986) An algorithm for the location of transition-states. J Comput Chem 7:385–395Google Scholar
  484. 484.
    Banerjee A et al (1985) Search for stationary-points on surface. J Phys Chem-Us 89:52–57Google Scholar
  485. 485.
    Cerjan CJ, Miller WH (1981) On finding transition-states. J Chem Phys 75:2800–2806Google Scholar
  486. 486.
    Simons J et al (1983) Walking on potential-energy surfaces. J Phys Chem-Us 87:2745–2753Google Scholar
  487. 487.
    Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985Google Scholar
  488. 488.
    Quapp W, Bofill JM (2010) A comment to the nudged elastic band method. J Comput Chem 31:2526–2531Google Scholar
  489. 489.
    Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128:134106Google Scholar
  490. 490.
    Peters B et al (2004) A growing string method for determining transition states: comparison to the nudged elastic band and string methods. J Chem Phys 120:7877–7886Google Scholar
  491. 491.
    Woodcock HL et al (2003) Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase. Theor Chem Acc 109:140–148Google Scholar
  492. 492.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904Google Scholar
  493. 493.
    Goodrow A, Bell AT, Head-Gordon M (2008) Development and application of a hybrid method involving interpolation and ab initio calculations for the determination of transition states. J Chem Phys 129:174109Google Scholar
  494. 494.
    Goodrow A, Bell AT, Head-Gordon M (2009) Transition state-finding strategies for use with the growing string method. J Chem Phys 130:244108Google Scholar
  495. 495.
    Goodrow A, Bell AT, Head-Gordon M (2010) A strategy for obtaining a more accurate transition state estimate using the growing string method. Chem Phys Lett 484:392–398Google Scholar
  496. 496.
    Shang C, Liu ZP (2010) Constrained Broyden minimization combined with the dimer method for locating transition state of complex reactions. J Chem Theory Comput 6:1136–1144Google Scholar
  497. 497.
    Schwartz SD, Schramm VL (2009) Enzymatic transition states and dynamic motion in barrier crossing. Nat Chem Biol 5:552–559Google Scholar
  498. 498.
    Peter C et al (2004) Estimating entropies from molecular dynamics simulations. J Chem Phys 120:2652–2661Google Scholar
  499. 499.
    Zhang Y, Liu H, Yang W (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112:3483–3492Google Scholar
  500. 500.
    Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199Google Scholar
  501. 501.
    Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566Google Scholar
  502. 502.
    Hu H, Lu Z, Yang W (2007) QM/MM minimum free-energy path: methodology and application to triosephosphate isomerase. J Chem Theory Comput 3:390–406Google Scholar
  503. 503.
    Jorgensen WL (1989) Free energy calculations: a breakthrough for modeling organic chemistry in solution. Acc Chem Res 22:184–189Google Scholar
  504. 504.
    Rod TH, Ryde U (2005) Accurate QM/MM free energy calculations of enzyme reactions: methylation by catechol O-methyltransferase. J Chem Theory Comput 1:1240–1251Google Scholar
  505. 505.
    Valiev M et al (2007) Hybrid approach for free energy calculations with high-level methods: application to the SN2 reaction of CHCl3 and OH- in water. J Chem Phys 127:051102Google Scholar
  506. 506.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426Google Scholar
  507. 507.
    Hori K et al (2011) A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions. J Comput Chem 32:778–786Google Scholar
  508. 508.
    Kästner J et al (2006) QM/MM free-energy perturbation compared to thermodynamic integration and umbrella sampling: application to an enzymatic reaction. J Chem Theory Comput 2:452–461Google Scholar
  509. 509.
    Senn HM et al (2009) Finite-temperature effects in enzymatic reactions - insights from QM/MM free-energy simulations. Can J Chem 87:1322–1337Google Scholar
  510. 510.
    Maurer P, Iftimie R (2010) Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations. J Chem Phys 132:074112Google Scholar
  511. 511.
    Sheppard AN, Acevedo O (2009) Multidimensional exploration of valley-ridge inflection points on potential-energy surfaces. J Am Chem Soc 131:2530–2540Google Scholar
  512. 512.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300Google Scholar
  513. 513.
    Sharma R et al (2008) A computational study of the intramolecular deprotonation of a carbon acid in aqueous solution. Phys Chem Chem Phys 10:2475–2487Google Scholar
  514. 514.
    Xie H-B et al (2010) Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J Phys Chem A 114:11844–11852Google Scholar
  515. 515.
    Yonezawa Y et al (2009) Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water. J Am Chem Soc 131:4535–4540Google Scholar
  516. 516.
    Yonezawa Y, Standley DM, Nakamura H (2011) Degree of pyramidality governs the height and peak position of the free-energy-barrier for the cis-trans isomerization of N-Methylacetamide. Chem Phys Lett 503:139–144Google Scholar
  517. 517.
    Alfonso-Prieto M et al (2009) The molecular mechanism of the catalase reaction. J Am Chem Soc 131:11751–11761Google Scholar
  518. 518.
    Petersen L et al (2009) Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: a QM/MM metadynamics study. J Phys Chem B 113:7331–7339Google Scholar
  519. 519.
    Stanton CL et al (2007) QM/MM metadynamics study of the direct decarboxylation mechanism for orotidine-5-monophosphate decarboxylase using two different QM regions: acceleration too small to explain rate of enzyme catalysis. J Phys Chem B 111:12573–12581Google Scholar
  520. 520.
    Ayala PY, Schlegel HB (1997) A combined method for determining reaction paths, minima, and transition state geometries. J Chem Phys 107:375Google Scholar
  521. 521.
    Zeng XC et al (2009) Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method. J Chem Phys 130:164111Google Scholar
  522. 522.
    Hu H, Yang W (2010) Elucidating solvent contributions to solution reactions with ab initio QM/MM methods. J Phys Chem B 114:2755–2759Google Scholar
  523. 523.
    Hu H, Boone A, Yang W (2008) Mechanism of OMP decarboxylation in orotidine 5'-monophosphate decarboxylase. J Am Chem Soc 130:14493–14503Google Scholar
  524. 524.
    Kirkilionis M (2010) Exploration of cellular reaction systems. Brief Bioinform 11:153–178Google Scholar
  525. 525.
    Simonson T (2008) Dielectric relaxation in proteins: the computational perspective. Photosynth Res 97:21–32Google Scholar
  526. 526.
    Jensen JH et al (2005) Prediction and rationalization of protein pKa values using QM and QM/MM methods. J Phys Chem A 109:6634–6643Google Scholar
  527. 527.
    Buback V et al (2009) Rational design of improved aziridine-based inhibitors of cysteine proteases. J Phys Chem B 113:5282–5289Google Scholar
  528. 528.
    Helten H, Schirmeister T, Engels B (2004) Model calculations about the influence of protic environments on the alkylation step of epoxide, aziridine, and thiirane based cysteine protease inhibitors. J Phys Chem A 108:7691–7701Google Scholar
  529. 529.
    Paasche A et al (2009) Origin of the reactivity differences of substituted aziridines: CN vs CC bond breakages. J Org Chem 74:5244–5249Google Scholar
  530. 530.
    Vicik R et al (2006) Rational design of aziridine-containing cysteine protease inhibitors with improved potency: studies on inhibition mechanism. ChemMedChem 1:1021–1028Google Scholar
  531. 531.
    Reuter W, Engels B, Peyerimhoff SD (1992) Reaction of singlet and triplet methylene with ethene - a multireference configuration-interaction study. J Phys Chem-Us 96:6221–6232Google Scholar
  532. 532.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001Google Scholar
  533. 533.
    Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. In: Prausnitz JM, Doherty MF, Segalman MA (eds) Annual review of chemical and biomolecular engineering, Vol 1 Annual Reviews, Palo AltoGoogle Scholar
  534. 534.
    Klamt A et al (1998) Refinement and parametrization of COSMO-RS. J Phys Chem A 102:5074–5085Google Scholar
  535. 535.
    Klamt A, Schuurmann G (1993) COSMO – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2 799–805Google Scholar
  536. 536.
    Ruiz-Lopez MF (2008) The multipole moment expansion solvent continuum model: a brief review. In: Canuto S (ed) Solvation effects on molecules and biomolecules: computational methods and applications. SpringerGoogle Scholar
  537. 537.
    Schafer A et al (2000) COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys 2:2187–2193Google Scholar
  538. 538.
    Tomasi J (2004) Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theor Chem Acc 112:184–203Google Scholar
  539. 539.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093Google Scholar
  540. 540.
    Zhan CG (2011) Development and application of first-principles electronic structure approach for molecules in solution based on fully polarizable continuum model. Acta Phys Chim Sin 27:1–10Google Scholar
  541. 541.
    Barone V, Biczysko M, Brancato G (2010) Extending the range of computational spectroscopy by QM/MM approaches: time-dependent and time-independent routes. In: Sabin JR, Brandas E, Canuto S (eds) Advances in quantum chemistry. Elsevier Academic, San DiegoGoogle Scholar
  542. 542.
    Barone V, Improta R, Rega N (2008) Quantum mechanical computations and spectroscopy: from small rigid molecules in the gas phase to large flexible molecules in solution. Acc Chem Res 41:605–616Google Scholar
  543. 543.
    Barone V, Polimeno A (2007) Integrated computational strategies for UV/vis spectra of large molecules in solution. Chem Soc Rev 36:1724–1731Google Scholar
  544. 544.
    Pedone A, Biczysko M, Barone V (2010) Environmental effects in computational spectroscopy: accuracy and interpretation. Chemphyschem 11:1812–1832Google Scholar
  545. 545.
    Curutchet C et al (2009) Electronic energy transfer in condensed phase studied by a polarizable QM/MM model. J Chem Theory Comput 5:1838–1848Google Scholar
  546. 546.
    Difley S et al (2010) Electronic properties of disordered organic semiconductors via QM/MM simulations. Acc Chem Res 43:995–1004Google Scholar
  547. 547.
    Endres F (2010) Physical chemistry of ionic liquids. Phys Chem Chem Phys 12:1648Google Scholar
  548. 548.
    Fanfrlik J et al (2008) Interpretation of protein/ligand crystal structure using QM/MM calculations: case of HIV-1 protease/metallacarborane complex. J Phys Chem B 112:15094–15102Google Scholar
  549. 549.
    Helten H, Schirmeister T, Engels B (2005) Theoretical studies about the influence of different ring substituents on the nucleophilic ring opening of three-membered heterocycles and possible implications for the mechanisms of cysteine protease inhibitors. J Org Chem 70:233–237Google Scholar
  550. 550.
    Peters MB, Raha K, Merz KM (2006) Quantum mechanics in structure-based drug design. Curr Opin Drug Discov Devel 9:370–379Google Scholar
  551. 551.
    Raha K et al (2007) The role of quantum mechanics in structure-based drug design. Drug Discov Today 12:725–731Google Scholar
  552. 552.
    LaPointe SM, Weaver DF (2007) A review of density functional theory quantum mechanics as applied to pharmaceutically relevant systems. Curr Comput Aided Drug Des 3:290–296Google Scholar
  553. 553.
    Cavalli A, Carloni P, Recanatini M (2006) Target-related applications of first principles quantum chemical methods in drug design. Chem Rev 106:3497–3519Google Scholar
  554. 554.
    Mladenovic M et al (2007) The importance of the active site histidine for the activity of epoxide- or aziridine-based inhibitors of cysteine proteases. ChemMedChem 2:120–128Google Scholar
  555. 555.
    Mladenovic M et al (2008) Atomistic insights into the inhibition of cysteine proteases: first QM/MM calculations clarifying the stereoselectivity of epoxide-based inhibitors. J Phys Chem B 112:11798–11808Google Scholar
  556. 556.
    Mladenovic M et al (2008) Atomistic insights into the inhibition of cysteine proteases: first QM/MM calculations clarifying the regiospecificity and the inhibition potency of epoxide- and aziridine-based inhibitors. J Phys Chem B 112:5458–5469Google Scholar
  557. 557.
    Mladenovic M et al (2009) Environmental effects on charge densities of biologically active molecules: do molecule crystal environments indeed approximate protein surroundings? J Phys Chem B 113:5072–5082Google Scholar
  558. 558.
    Warren JG et al (2010) Conformational preferences of pro line analogues with a fused benzene ring. J Phys Chem B 114:11761–11770Google Scholar
  559. 559.
    Gleeson MP, Gleeson D (2009) QM/MM calculations in drug discovery: a useful method for studying binding phenomena? J Chem Inf Model 49:670–677Google Scholar
  560. 560.
    Horowitz G (1998) Organic field-effect transistors. Adv Mater 10:365–377Google Scholar
  561. 561.
    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918Google Scholar
  562. 562.
    Gratzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153Google Scholar
  563. 563.
    Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605–3614Google Scholar
  564. 564.
    Bredas JL et al (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699Google Scholar
  565. 565.
    May V, Kühn O (2004) Charge and energy transfer dynamics in molecular systems. Wiley-VCH, WeinheimGoogle Scholar
  566. 566.
    Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793–1896Google Scholar
  567. 567.
    Pullerits T, Sundstrom V (1996) Photosynthetic light-harvesting pigment-protein complexes: toward understanding how and why. Acc Chem Res 29:381–389Google Scholar
  568. 568.
    Grimsdale AC, Mullen K (2005) The chemistry of organic nanomaterials. Angew Chem Int Ed 44:5592–5629Google Scholar
  569. 569.
    Poulsen L et al (2007) Three-dimensional energy transport in highly luminescent host-guest crystals: a quantitative experimental and theoretical study. J Am Chem Soc 129:8585–8593Google Scholar
  570. 570.
    Herbst W, Hunger K (1997) Industrial organic pigments: production, properties, applications. Wiley-VCH, WeinheimGoogle Scholar
  571. 571.
    Klebe G et al (1989) Crystallochromy as a solid-state effect - correlation of molecular-conformation, crystal packing and color in perylene-3,4-9,10-bis(dicarboximide) pigments. Acta Crystallogr B 45:69–77Google Scholar
  572. 572.
    Graser F, Hadicke E (1984) Crystal-structure and color of perylene-3,4-9,10-bis(dicarboximide) pigments. 2. Liebigs Ann Chem 483–494Google Scholar
  573. 573.
    Forster T (1948) Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann Phys-Berlin 2:55–75Google Scholar
  574. 574.
    Forster T (1949) Experimentelle Und Theoretische Untersuchung Des Zwischenmolekularen Übergangs Von Elektronenanregungsenergie. Z Naturforsch A 4:321–327Google Scholar
  575. 575.
    Forster T (1969) Excimers. Angew Chem Int Ed 8:333Google Scholar
  576. 576.
    Eisenschlitz R, London F (1930) Über das Verhältnis der van der Waalschen Kräfte zu den Homöopolaren Bindungskräften. Zeitschr f Physik 60:491–527Google Scholar
  577. 577.
    Beljonne D et al (2011) Electronic processes at organic-organic interfaces: insight from modeling and implications for opto-electronic devices. Chem Mater 23:591–609Google Scholar
  578. 578.
    Bredas JL et al (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5003Google Scholar
  579. 579.
    Hennebicq E et al (2005) Exciton migration in rigid-rod conjugated polymers: an improved Forster model. J Am Chem Soc 127:4744–4762Google Scholar
  580. 580.
    Cornil J et al (2001) Interchain interactions in organic pi-conjugated materials: impact on electronic structure, optical response, and charge transport. Adv Mater 13:1053–1067Google Scholar
  581. 581.
    Hwang I, Scholes GD (2011) Electronic energy transfer and quantum-coherence in pi-conjugated polymers. Chem Mater 23:610–620Google Scholar
  582. 582.
    Olaya-Castro A, Scholes GD (2011) Energy transfer from Forster-Dexter theory to quantum coherent light-harvesting. Int Rev Phys Chem 30:49–77Google Scholar
  583. 583.
    Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87Google Scholar
  584. 584.
    Scholz R et al (2005) Investigation of molecular dimers in alpha-PTCDA by ab initio methods: binding energies, gas-to-crystal shift, and self-trapped excitons. Phys Rev B 72:18Google Scholar
  585. 585.
    Hoffmann M et al (2000) The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: application to MePTCDI and PTCDA crystals. Chem Phys 258:73–96Google Scholar
  586. 586.
    Gisslen L, Scholz R (2009) Crystallochromy of perylene pigments: interference between Frenkel excitons and charge-transfer states. Phys Rev B 80:23Google Scholar
  587. 587.
    Fink RF et al (2008) Ab initio configuration interaction description of excitation energy transfer between closely packed molecules. Chem Phys 343:353–361Google Scholar
  588. 588.
    Fink RF et al (2008) Assessment of quantum chemical methods and basis sets for excitation energy transfer. Chem Phys 346:275–285Google Scholar
  589. 589.
    Fink RF et al (2008) Exciton trapping in pi-conjugated materials: a quantum-chemistry-based protocol applied to perylene bisimide dye aggregates. J Am Chem Soc 130:12858Google Scholar
  590. 590.
    Zhao HM et al (2009) Understanding ground- and excited-state properties of perylene tetracarboxylic acid bisimide crystals by means of quantum chemical computations. J Am Chem Soc 131:15660–15668Google Scholar
  591. 591.
    Burquel A et al (2006) Pathways for photoinduced charge separation and recombination at donor-acceptor heterojunctions: the case of oligophenylenevinylene-perylene bisimide complexes. J Phys Chem A 110:3447–3453Google Scholar
  592. 592.
    Guthmuller J, Zutterman F, Champagne B (2009) Multimode simulation of dimer absorption spectra from first principles calculations: application to the 3,4,9,10-perylenetetracarboxylic diimide dimer. J Chem Phys 131:8Google Scholar
  593. 593.
    Beljonne D et al (2000) Interchain interactions in conjugated materials: the exciton model versus the supermolecular approach. J Chem Phys 112:4749–4758Google Scholar
  594. 594.
    Liu W et al (2011) Assessment of TD-DFT- and TD-HF-based approaches for the prediction of exciton coupling parameters, potential energy curves and electronic characters of electronically excited aggregates. J Comput Chem 32:1971–1981Google Scholar
  595. 595.
    Marcus Y (1988) Ionic-radii in aqueous-solutions. Chem Rev 88:1475–1498Google Scholar
  596. 596.
    Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370Google Scholar
  597. 597.
    Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204Google Scholar
  598. 598.
    Feig M (2010) Modelling solvent environments: applications to simulations of biomolecules. Wiley-VCH, WeinheimGoogle Scholar
  599. 599.
    Bernal JD (1937) An attempt at a molecular theory of liquid structure. Trans Faraday Soc 33:27–40Google Scholar
  600. 600.
    Bennetto HP, Caldin EF (1971) Solvent effects on kinetics of reactions of nickel(II) and cobalt(II) ions with 2,2′-bipyridyl and 2,2′,2′′-terpyridyl. J Chem Soc A 2191Google Scholar
  601. 601.
    Bennetto HP, Caldin EF (1971) Kinetics of solvent exchange and ligand substitution reactions of metal ions in relation to structural properties of solvent. J Chem Soc A 2198Google Scholar
  602. 602.
    Bennetto HP, Caldin EF (1971) Kinetics of reaction of nickel(II) ions with 2,2′-bipyridyl in water-methanol mixtures. J Chem Soc A 2207Google Scholar
  603. 603.
    Frank HS, Wen W-Y (1957) Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc 24:133–140Google Scholar
  604. 604.
    Tongraar A, Liedl KR, Rode BM (1997) Solvation of Ca2+ in water studied by Born-Oppenheimer ab initio QM/MM dynamics. J Phys Chem A 101:6299–6309Google Scholar
  605. 605.
    Tongraar A, Liedl KR, Rode BM (1998) Born-Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: from structure making to structure breaking effects. J Phys Chem A 102:10340–10347Google Scholar
  606. 606.
    Tongraar A, Liedl KR, Rode BM (1998) The hydration shell structure of Li+ investigated by Born-Oppenheimer ab initio QM/MM dynamics. Chem Phys Lett 286:56–64Google Scholar
  607. 607.
    Tongraar A et al (2010) Structure of the hydrated Ca2+ and Cl: combined X-ray absorption measurements and QM/MM MD simulations study. Phys Chem Chem Phys 12:10876–10887Google Scholar
  608. 608.
    Azam SS, ul Zaheer H, Fatmi MQ (2010) Classical and QM/MM MD simulations of sodium(I) and potassium(I) ions in aqueous solution. J Mol Liq 153:95–100Google Scholar
  609. 609.
    Bucher D et al (2010) Coordination numbers of K+ and Na+ ions inside the selectivity filter of the KcsA potassium channel: insights from first principles molecular dynamics. Biophys J 98:L47–L49Google Scholar
  610. 610.
    Truong TN, Stefanovich EV (1996) Development of a perturbative approach for Monte Carlo simulations using a hybrid ab initio QM/MM method. Chem Phys Lett 256:348–352Google Scholar
  611. 611.
    Tongraar A, Hannongbua S (2008) Solvation structure and dynamics of ammonium (NH4+) in liquid ammonia studied by HF/MM and B3LYP/MM molecular dynamics simulations. J Phys Chem B 112:885–891Google Scholar
  612. 612.
    Intharathep P, Tongraar A, Sagarik K (2005) Structure and dynamics of hydrated NH4+: an ab initio QM/MM molecular dynamics simulation. J Comput Chem 26:1329–1338Google Scholar
  613. 613.
    Intharathep P, Tongraar A, Sagarik K (2006) Ab initio QM/MM dynamics of H3O+ in water. J Comput Chem 27:1723–1732Google Scholar
  614. 614.
    Takenaka N, Koyano Y, Nagaoka M (2010) Microscopic hydration mechanism in the ammonia dissolution process: importance of the solute QM polarization. Chem Phys Lett 485:119–123Google Scholar
  615. 615.
    Mohammed AM et al (2005) Quantum mechanical/molecular mechanical molecular dynamic simulation of zinc(II) ion in water. J Mol Liq 119:55–62Google Scholar
  616. 616.
    Vchirawongkwin V et al (2007) Ti(I) - the strongest structure-breaking metal ion in water? A quantum mechanical/molecular mechanical simulation study. J Comput Chem 28:1006–1016Google Scholar
  617. 617.
    Vchirawongkwin V et al (2007) Quantum mechanical/molecular mechanical simulations of the T1(III) ion in water. J Comput Chem 28:1057–1067Google Scholar
  618. 618.
    Fatmi MQ et al (2005) An extended ab initio QM/MM MD approach to structure and dynamics of Zn(II) in aqueous solution. J Chem Phys 123:054514Google Scholar
  619. 619.
    Fatmi MQ et al (2007) Stability of different zinc(II)-diamine complexes in aqueous solution with respect to structure and dynamics: a QM/MM MD study. J Phys Chem B 111:151–158Google Scholar
  620. 620.
    Fatmi MQ, Hofer TS, Rode BM (2010) The stability of Zn(NH3)42+ in water: a quantum mechanical/molecular mechanical molecular dynamics study. Phys Chem Chem Phys 12:9713–9718Google Scholar
  621. 621.
    Pham VT et al (2010) The solvent shell structure of aqueous iodide: X-ray absorption spectroscopy and classical, hybrid QM/MM and full quantum molecular dynamics simulations. Chem Phys 371:24–29Google Scholar
  622. 622.
    Tongraar A, Hannongbua S, Rode BM (2010) QM/MM MD simulations of iodide ion (I) in aqueous solution: a delicate balance between ion-water and water-water H-bond interactions. J Phys Chem A 114:4334–4339Google Scholar
  623. 623.
    Yagasaki T, Saito S, Ohmine I (2010) Effects of nonadditive interactions on ion solvation at the water/vapor interface: a molecular dynamics study. J Phys Chem A 114:12573–12584Google Scholar
  624. 624.
    Hinteregger E et al (2010) Structure and dynamics of the chromate ion in aqueous solution. An ab initio QMCF-MD simulation. Inorg Chem 49:7964–7968Google Scholar
  625. 625.
    Pribil AB et al (2008) Structure and dynamics of phosphate ion in aqueous solution: an ab initio QMCF MD study. J Comput Chem 29:2330–2334Google Scholar
  626. 626.
    Pribil AB et al (2008) Quantum mechanical simulation studies of molecular vibrations and dynamics of oxo-anions in water. Chem Phys 346:182–185Google Scholar
  627. 627.
    Tongraar A, Rode BM (2003) The hydration structures of F and Cl investigated by ab initio QM/MM molecular dynamics simulations. Phys Chem Chem Phys 5:357–362Google Scholar
  628. 628.
    Tongraar A, Tangkawanwanit P, Rode BM (2006) A combined QM/MM molecular dynamics simulations study of nitrate anion (NO3) in aqueous solution. J Phys Chem A 110:12918–12926Google Scholar
  629. 629.
    Kubozono Y et al (1994) An EXAFS investigation of local-structure around Rb+ in aqueous-solution. Z Naturforsch A 49:727–729Google Scholar
  630. 630.
    Munozpaez A et al (1995) EXAFS investigation of the 2nd hydration shell of metal-cations in dilute aqueous-solutions. Physica B 208:395–397Google Scholar
  631. 631.
    Munozpaez A, Pappalardo RR, Marcos ES (1995) Determination of the 2nd hydration shell of Cr3+ and Zn2+ in aqueous-solutions by extended X-ray-absorption fine-structure. J Am Chem Soc 117:11710–11720Google Scholar
  632. 632.
    Yaita T, Ito D, Tachimori S (1998) La-139 NMR relaxation and chemical shift studies in the aqueous nitrate and chloride solutions. J Phys Chem B 102:3886–3891Google Scholar
  633. 633.
    Chizhik VI et al (2002) Microstructure and dynamics of electrolyte solutions containing polyatomic ions by NMR relaxation and molecular dynamics simulation. J Mol Liq 98–9:173–182Google Scholar
  634. 634.
    Kaatze U (1983) Dielectric effects in aqueous-solutions of 1-1, 2-1, and 3-1 valent electrolytes - kinetic depolarization, saturation, and solvent relaxation. Z Phys Chem Neue Fol 135:51–75Google Scholar
  635. 635.
    Bopp P, Jancsó G, Heinzinger K (1983) An improved potential for non-rigid water molecules in the liquid phase. Chem Phys Lett 98:129–133Google Scholar
  636. 636.
    Jancso G, Bopp P, Heinzinger K (1984) Molecular dynamics study of high-density liquid water using a modified central-force potential. Chem Phys 85:377–387Google Scholar
  637. 637.
    Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935Google Scholar
  638. 638.
    Matsuoka O, Clementi E, Yoshimine M (1976) CI study of water dimer potential surface. J Chem Phys 64:1351–1361Google Scholar
  639. 639.
    Rowlinson JS (1951) The lattice energy of ice and the 2nd virial coefficient of water vapour. Trans Faraday Soc 47:120–129Google Scholar
  640. 640.
    Stillinger FH, Rahman A (1978) Revised central force potentials for water. J Chem Phys 68:666–670Google Scholar
  641. 641.
    Aguilar CM, De Almeida WB, Rocha WR (2008) Solvation and electronic spectrum of Ni2+ ion in aqueous and ammonia solutions: a sequential Monte Carlo/TD-DFT study. Chem Phys 353:66–72Google Scholar
  642. 642.
    Beret EC et al (2009) Opposite effects of successive hydration shells on the aqua ion structure of metal cations. Mol Simul 35:1007–1014Google Scholar
  643. 643.
    Eilmes A, Kubisiak P (2010) Relative complexation energies for Li+ ion in solution: molecular level solvation versus polarizable continuum model study. J Phys Chem A 114:973–979Google Scholar
  644. 644.
    Mallik BS, Semparithi A, Chandra A (2008) A first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions: D2O in hydration shells of Cl ions. J Chem Phys 129:194512Google Scholar
  645. 645.
    Men CJ, Tao FM (2007) Hydration and dissociation of calcium hydroxide in water clusters: a quantum chemical study. J Theor Comput Chem 6:595–609Google Scholar
  646. 646.
    Xenides D, Randolf BR, Rode BM (2006) Hydrogen bonding in liquid water: an ab initio QM/MM MD simulation study. J Mol Liq 123:61–67Google Scholar
  647. 647.
    Armunanto R, Schwenk CF, Rode BM (2005) Ab initio QM/MM simulation of Ag+ in 18.6% aqueous ammonia solution: structure and dynamics investigations. J Phys Chem A 109:4437–4441Google Scholar
  648. 648.
    Santosh MS et al (2010) Molecular dynamics investigation of dipeptide - transition metal salts in aqueous solutions. J Phys Chem B 114:16632–16640Google Scholar
  649. 649.
    Marchi M, Sprik M, Klein ML (1990) Solvation and ionization of alkali-metals in liquid-ammonia - a path integral Monte-Carlo study. J Phys Condens Matter 2:5833–5848Google Scholar
  650. 650.
    Andzelm J, Kolmel C, Klamt A (1995) Incorporation of solvent effects into density-functional calculations of molecular-energies and geometries. J Chem Phys 103:9312–9320Google Scholar
  651. 651.
    Cossi M et al (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54Google Scholar
  652. 652.
    Eckert F, Klamt A (2002) Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J 48:369–385Google Scholar
  653. 653.
    Acevedo O, Jorgensen WL (2006) Solvent effects on organic reactions from QM/MM simulations. In: David CS (ed) Annual reports in computational chemistry. Elsevier, New HavenGoogle Scholar
  654. 654.
    Vayner G et al (2004) Steric retardation of SN2 reactions in the gas phase and solution. J Am Chem Soc 126:9054–9058Google Scholar
  655. 655.
    Acevedo O, Jorgensen WL (2005) Influence of inter- and intramolecular hydrogen bonding on Kemp decarboxylations from QM/MM simulations. J Am Chem Soc 127:8829–8834Google Scholar
  656. 656.
    Acevedo O, Jorgensen WL (2006) Medium effects on the decarboxylation of a biotin model in pure and mixed solvents from QM/MM simulations. J Org Chem 71:4896–4902Google Scholar
  657. 657.
    Acevedo O, Jorgensen WL (2004) Solvent effects and mechanism for a nucleophilic aromatic substitution from QM/MM simulations. Org Lett 6:2881–2884Google Scholar
  658. 658.
    Chen X et al (2009) Steric and solvation effects in ionic SN2 reactions. J Am Chem Soc 131:16162–16170Google Scholar
  659. 659.
    Geerke DP et al (2007) Combined QM/MM molecular dynamics study on a condensed-phase SN2 reaction at nitrogen: the effect of explicitly including solvent polarization. J Chem Theory Comput 3:1499–1509Google Scholar
  660. 660.
    Singleton DA et al (2003) Mechanism of ene reactions of singlet oxygen. A two-step no-intermediate mechanism. J Am Chem Soc 125:1319–1328Google Scholar
  661. 661.
    Thompson JD, Cramer CJ, Truhlar DG (2003) Parameterization of charge model 3 for AM1, PM3, BLYP, and B3LYP. J Comput Chem 24:1291–1304Google Scholar
  662. 662.
    Acevedo O, Squillacote ME (2008) A new solvent-dependent mechanism for a triazolinedione ene reaction. J Org Chem 73:912–922Google Scholar
  663. 663.
    Acevedo O, Jorgensen WL (2006) Cope elimination: elucidation of solvent effects from QM/MM simulations. J Am Chem Soc 128:6141–6146Google Scholar
  664. 664.
    Acevedo O, Jorgensen WL (2007) Understanding rate accelerations for Diels-Alder reactions in solution using enhanced QM/MM methodology. J Chem Theory Comput 3:1412–1419Google Scholar
  665. 665.
    Acevedo O, Jorgensen WL, Evanseck JD (2007) Elucidation of rate variations for a Diels-Alder reaction in ionic liquids from QM/MM simulations. J Chem Theory Comput 3:132–138Google Scholar
  666. 666.
    Chandrasekhar J, Shariffskul S, Jorgensen WL (2002) QM/MM simulations for Diels-Alder reactions in water: contribution of enhanced hydrogen bonding at the transition state to the solvent effect. J Phys Chem B 106:8078–8085Google Scholar
  667. 667.
    Jorgensen WL et al (1994) Investigation of solvent effects on pericyclic-reactions by computer-simulations. J Chem Soc Faraday Trans 90:1727–1732Google Scholar
  668. 668.
    Thomas LL, Tirado-Rives J, Jorgensen WL (2010) Quantum mechanical/molecular mechanical modeling finds Diels-Alder reactions are accelerated less on the surface of water than in water. J Am Chem Soc 132:3097–3104Google Scholar
  669. 669.
    Gunaydin H et al (2007) Computation of accurate activation barriers for methyl-transfer reactions of sulfonium and ammonium salts in aqueous solution. J Chem Theory Comput 3:1028–1035Google Scholar
  670. 670.
    Lebrero MCG, Estrin DA (2007) QM-MM investigation of the reaction of peroxynitrite with carbon dioxide in water. J Chem Theory Comput 3:1405–1411Google Scholar
  671. 671.
    Alexandrova AN, Jorgensen WL (2007) Why urea eliminates ammonia rather than hydrolyzes in aqueous solution. J Phys Chem B 111:720–730Google Scholar
  672. 672.
    Estiu G, Merz KM (2004) Enzymatic catalysis of urea decomposition: elimination or hydrolysis? J Am Chem Soc 126:11832–11842Google Scholar
  673. 673.
    Jung YS, Marcus RA (2007) On the theory of organic catalysis on water. J Am Chem Soc 129:5492–5502Google Scholar
  674. 674.
    Jung YS, Marcus RA (2010) Protruding interfacial OH groups and 'on-water' heterogeneous catalysis. J Phys Condens Matter 22:284117Google Scholar
  675. 675.
    Narayan S et al (2005) "On water": unique reactivity of organic compounds in aqueous suspension. Angew Chem Int Ed 44:3275–3279Google Scholar
  676. 676.
    Zheng YY, Zhang JP (2010) Catalysis in the oil droplet/water interface for aromatic Claisen rearrangement. J Phys Chem A 114:4325–4333Google Scholar
  677. 677.
    Acevedo O, Armacost K (2010) Claisen rearrangements: insight into solvent effects and "on water" reactivity from QM/MM simulations. J Am Chem Soc 132:1966–1975Google Scholar
  678. 678.
    Marcus RA (2010) Spiers memorial lecture interplay of theory and computation in chemistry-examples from on-water organic catalysis, enzyme catalysis, and single-molecule fluctuations. Faraday Discuss 145:9–14Google Scholar
  679. 679.
    Radak BK et al (2009) Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study. J Phys Chem A 113:7218–7226Google Scholar
  680. 680.
    Sambasivarao SV, Acevedo O (2009) Development of OPLS-AA force field parameters for 68 unique ionic liquids. J Chem Theory Comput 5:1038–1050Google Scholar
  681. 681.
    Gao JL (1991) A priori computation of a solvent-enhanced SN2 reaction profile in water - the Menshutkin reaction. J Am Chem Soc 113:7796–7797Google Scholar
  682. 682.
    Arantes GM, Ribeiro MCC (2008) A microscopic view of substitution reactions solvated by ionic liquids. J Chem Phys 128:114503Google Scholar
  683. 683.
    Aggarwal A et al (2002) The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids. Green Chem 4:517–520Google Scholar
  684. 684.
    Ananikov VP, Musaev DG, Morokuma K (2010) Real size of ligands, reactants and catalysts: studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approaches. J Mol Catal A-Chem 324:104–119Google Scholar
  685. 685.
    Qin S et al (2008) Computational investigation on stereochemistry in titanium-salicylaldehydes-catalyzed cyanation of benzaldehyde. J Org Chem 73:4840–4847Google Scholar
  686. 686.
    Drudis-Sole G et al (2008) DFT/MM study on copper-catalyzed cyclopropanation - enantioselectivity with no enthalpy barrier. Eur J Org Chem 5614–5621Google Scholar
  687. 687.
    Curet-Arana MC et al (2008) Quantum chemical determination of stable intermediates for alkene epoxidation with Mn-porphyrin catalysts. J Mol Catal A-Chem 285:120–127Google Scholar
  688. 688.
    Brookes NJ et al (2009) The influence of peripheral ligand bulk on nitrogen activation by three-coordinate molybdenum complexes - a theoretical study using the ONIOM method. J Comput Chem 30:2146–2156Google Scholar
  689. 689.
    Balcells D, Maseras F, Ujaque G (2005) Computational rationalization of the dependence of the enantioselectivity on the nature of the catalyst in the vanadium-catalyzed oxidation of sulfides by hydrogen peroxide. J Am Chem Soc 127:3624–3634Google Scholar
  690. 690.
    Drudis-Sole G et al (2005) A QM/MM study of the asymmetric dihydroxylation of terminal aliphatic n-alkenes with OsO4(DHQD)2PYDZ: enantioselectivity as a function of chain length. Chem-Eur J 11:1017–1029Google Scholar
  691. 691.
    Feldgus S, Landis CR (2000) Large-scale computational modeling of [Rh(DuPHOS)]+-catalyzed hydrogenation of prochiral enamides: reaction pathways and the origin of enantioselection. J Am Chem Soc 122:12714–12727Google Scholar
  692. 692.
    Feldgus S, Landis CR (2001) Origin of enantioreversal in the rhodium-catalyzed asymmetric hydrogenation of prochiral enamides and the effect of the alpha-substituent. Organometallics 20:2374–2386Google Scholar
  693. 693.
    French SA et al (2004) Active sites for heterogeneous catalysis by functionalisation of internal and external surfaces. Catal Today 93–95:535–540Google Scholar
  694. 694.
    Santra S et al (2009) Adsorption of dioxygen to copper in CuHY zeolite. Phys Chem Chem Phys 11:8855–8866Google Scholar
  695. 695.
    Sklenak S et al (2009) Aluminium siting in the ZSM-5 framework by combination of high resolution Al-27 NMR and DFT/MM calculations. Phys Chem Chem Phys 11:1237–1247Google Scholar
  696. 696.
    Zeng XC et al (2008) Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: fractional electron approach. J Chem Phys 128:124510Google Scholar
  697. 697.
    Shavitt I (1985) Geometry and singlet-triplet energy-gap in methylene - a critical-review of experimental and theoretical determinations. Tetrahedron 41:1531–1542Google Scholar
  698. 698.
    Harrison JF (1974) Structure of methylene. Acc Chem Res 7:378–384Google Scholar
  699. 699.
    Borden WT, Davidson ER (1979) Singlet-triplet energy separations in some hydrocarbon diradicals. Annu Rev Phys Chem 30:125–153Google Scholar
  700. 700.
    Leopold DG et al (1985) Methylene - a study of the x 3B1 and a 1A1 states by photoelectron-spectroscopy of CH2 and CD2. J Chem Phys 83:4849–4865Google Scholar
  701. 701.
    Schaefer HF (1986) Methylene - a paradigm for computational quantum-chemistry. Science 231:1100–1107Google Scholar
  702. 702.
    Hayashi S, Taikhorshid E, Schulten K (2009) Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophys J 96:403–416Google Scholar
  703. 703.
    Roca-Sanjuan D et al (2009) DNA nucleobase properties and photoreactivity: modeling environmental effects. Pure Appl Chem 81:743–754Google Scholar
  704. 704.
    Rossle SC, Frank I (2009) First-principles simulation of photoreactions in biological systems. Front Biosci 14:4862–4877Google Scholar
  705. 705.
    Wanko M et al (2006) Computational photochemistry of retinal proteins. J Comput Aided Mol Des 20:511–518Google Scholar
  706. 706.
    Ryde U (2007) Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry. Dalton Trans 607-625Google Scholar
  707. 707.
    Hersleth HP et al (2006) Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. J Inorg Biochem 100:460–476Google Scholar
  708. 708.
    Kallrot N et al (2005) Theoretical study of structure of catalytic copper site in nitrite reductase. Int J Quantum Chem 102:520–541Google Scholar
  709. 709.
    Nilsson K et al (2004) The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement. Biophys J 87:3437–3447Google Scholar
  710. 710.
    Nilsson K, Ryde U (2004) Protonation status of metal-bound ligands can be determined by quantum refinement. J Inorg Biochem 98:1539–1546Google Scholar
  711. 711.
    Rulisek L, Ryde U (2006) Structure of reduced and oxidized manganese superoxide dismutase: a combined computational and experimental approach. J Phys Chem B 110:11511–11518Google Scholar
  712. 712.
    Ryde U, Nilsson K (2003) Quantum refinement - a combination of quantum chemistry and protein crystallography. J Mol Struct-Theochem 632:259–275Google Scholar
  713. 713.
    Ryde U, Nilsson K (2003) Quantum chemistry can locally improve protein crystal structures. J Am Chem Soc 125:14232–14233Google Scholar
  714. 714.
    Ryde U, Olsen L, Nilsson K (2002) Quantum chemical geometry optimizations in proteins using crystallographic raw data. J Comput Chem 23:1058–1070Google Scholar
  715. 715.
    Soderhjelm P, Ryde U (2006) Combined computational and crystallographic study of the oxidised states of NiFe hydrogenase. J Mol Struct-Theochem 770:199–219Google Scholar
  716. 716.
    Ryde U, Greco C, De Gioia L (2010) Quantum refinement of FeFe hydrogenase indicates a dithiomethylamine ligand. J Am Chem Soc 132:4512Google Scholar
  717. 717.
    Ryde U et al (2007) Identification of the peroxy adduct in multicopper oxidases by a combination of computational chemistry and extended X-ray absorption fine-structure measurements. J Am Chem Soc 129:726–727Google Scholar
  718. 718.
    Hsiao YW et al (2006) EXAFS structure refinement supplemented by computational chemistry. Phys Rev B 74:214101Google Scholar
  719. 719.
    Hsiao Y-W, Ryde U (2006) Interpretation of EXAFS spectra for sitting-atop complexes with the help of computational methods. Inorg Chim Acta 359:1081–1092Google Scholar
  720. 720.
    Yu N et al (2006) Assigning the protonation states of the key aspartates in beta-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput 2:1057–1069Google Scholar
  721. 721.
    Hudecova J et al (2010) Side chain and flexibility contributions to the Raman optical activity spectra of a model cyclic hexapeptide. J Phys Chem A 114:7642–7651Google Scholar
  722. 722.
    Bour P et al (2008) Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide. Chirality 20:1104–1119Google Scholar
  723. 723.
    Gauss J (1992) Calculation of NMR chemical-shifts at 2nd-order many-body perturbation-theory using gauge-including atomic orbitals. Chem Phys Lett 191:614–620Google Scholar
  724. 724.
    Gauss J (1993) Effects of electron correlation in the calculation of nuclear-magnetic-resonance chemical-shifts. J Chem Phys 99:3629–3643Google Scholar
  725. 725.
    Buehl M et al (1999) The DFT route to NMR chemical shifts. J Comput Chem 20:91–105Google Scholar
  726. 726.
    Malkina OL et al (1998) Spin-orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? Chem Phys Lett 296:93–104Google Scholar
  727. 727.
    Pickard CJ, Mauri F (2001) All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B 63:245101Google Scholar
  728. 728.
    Vaara J et al (2001) Study of relativistic effects on nuclear shieldings using density-functional theory and spin-orbit pseudopotentials. J Chem Phys 114:61–71Google Scholar
  729. 729.
    Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841Google Scholar
  730. 730.
    Autschbach J, Ziegler T (2000) Nuclear spin-spin coupling constants from regular approximate relativistic density functional calculations. II. Spin-orbit coupling effects and anisotropies. J Chem Phys 113:9410–9418Google Scholar
  731. 731.
    Benedict H et al (2000) Nuclear scalar spin-spin couplings and geometries of hydrogen bonds. J Am Chem Soc 122:1979–1988Google Scholar
  732. 732.
    Helgaker T, Jaszunski M, Ruud K (1999) Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants. Chem Rev 99:293–352Google Scholar
  733. 733.
    Helgaker T, Watson M, Handy NC (2000) Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys 113:9402–9409Google Scholar
  734. 734.
    Beer M, Kussmann J, Ochsenfeld C (2011) Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method. J Chem Phys 134:15Google Scholar
  735. 735.
    Kussmann J, Ochsenfeld C (2007) Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. J Chem Phys 127:16Google Scholar
  736. 736.
    Ochsenfeld C, Kussmann J, Koziol F (2004) Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear scaling method. Angew Chem Int Ed 43:4485–4489Google Scholar
  737. 737.
    Ciofini I (2004) Use of continuum models in magnetic resonance parameter calculation. In: Kaupp M, Buehl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  738. 738.
    Pickard CJ, Mauri F (2004) Calculations of magnetic resonance parameters in solids and liquids using periodic boundary conditions. In: Kaupp M, Buehl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  739. 739.
    Johnson ER, DiLabio GA (2009) Convergence of calculated nuclear magnetic resonance chemical shifts in a protein with respect to quantum mechanical model size. J Mol Struct-Theochem 898:56–61Google Scholar
  740. 740.
    Pedone A et al (2008) Accurate first-principle prediction of 29Si and 17O NMR parameters in SiO2 polymorphs: the cases of zeolites sigma-2 and ferrierite. J Chem Theory Comput 4:2130–2140Google Scholar
  741. 741.
    Heine T et al (2001) Performance of DFT for 29Si NMR chemical shifts of silanes. J Phys Chem A 105:620–626Google Scholar
  742. 742.
    van Wüllen C (2004) Chemical shifts with Hartree-Fock and density functional methods. In: Kaupp M, Buehl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  743. 743.
    Gauss J, Stanton JF (2004) Electron-correlated methods for the calculation of NMR chemical shifts. In: Kaupp M, Buehl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  744. 744.
    Helgaker T, Pecul M (2004) Spin-spin coupling constants with HF and DFT methods. In: Kaupp M, Buehl M, Malkin VG (eds) Calculations of NMR and EPR parameters. Wiley VCH, WeinheimGoogle Scholar
  745. 745.
    Bjornsson R, Fruchtl H, Buehl M (2011) 51V NMR parameters of VOCl3: static and dynamic density functional study from the gas phase to the bulk. Phys Chem Chem Phys 13:619–627Google Scholar
  746. 746.
    Geethalakshmi KR et al (2009) 51V NMR chemical shifts calculated from QM/MM models of peroxo forms of vanadium haloperoxidases. J Phys Chem B 113:4456–4465Google Scholar
  747. 747.
    Gester RM et al (2009) NMR chemical shielding and spin-spin coupling constants of liquid NH3: a systematic investigation using the sequential QM/MM method. J Phys Chem A 113:14936–14942Google Scholar
  748. 748.
    Harriman JE (1978) Theoretical foundations of electronic spin resonance. Academic, New YorkGoogle Scholar
  749. 749.
    Kaupp M, Buehl M, Malkin VG (2004) Calculation of NMR and EPR parameters. Wiley VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  750. 750.
    Weltner W (1983) Magnetic atoms and molecules. Van Nostrand Reinhold Company Inc., New YorkGoogle Scholar
  751. 751.
    Goldfarb D (2009) Modern EPR spectroscopy: beyond the EPR spectrum. Phys Chem Chem Phys 11:6553–6554Google Scholar
  752. 752.
    McWeeny R (1970) Spins in chemistry. Academic, New YorkGoogle Scholar
  753. 753.
    Lushington GH (2000) Small closed-form CI expansions for electronic g-tensor calculations. J Phys Chem A 104:2969–2974Google Scholar
  754. 754.
    Lushington GH, Bundgen P, Grein F (1995) Ab-initio study of molecular g-tensors. Int J Quantum Chem 55:377–392Google Scholar
  755. 755.
    Lushington GH, Grein F (1997) Multireference configuration interaction calculations of electronic g-tensors for NO2, H2O+, and CO+. J Chem Phys 106:3292–3300Google Scholar
  756. 756.
    Schreckenbach G, Ziegler T (1997) Calculation of the G-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 101:3388–3399Google Scholar
  757. 757.
    Malkina OL et al (2000) Density functional calculations of electronic g-tensors using spin-orbit pseudopotentials and mean-field all-electron spin-orbit operators. J Am Chem Soc 122:9206–9218Google Scholar
  758. 758.
    Kaupp M et al (2002) Calculation of electronic g-tensors for transition metal complexes using hybrid density functionals and atomic meanfield spin-orbit operators. J Comput Chem 23:794–803Google Scholar
  759. 759.
    Bolvin H (2006) An alternative approach to the g-matrix: theory and applications. Chemphyschem 7:1575–1589Google Scholar
  760. 760.
    Brownridge S et al (2003) Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin-orbit method. J Chem Phys 118:9552–9562Google Scholar
  761. 761.
    Delabie A et al (2002) The siting of Cu(II) in mordenite: a theoretical spectroscopic study. Phys Chem Chem Phys 4:134–145Google Scholar
  762. 762.
    Gilka N, Tatchen J, Marian CM (2008) The g-tensor of AlO: principal problems and first approaches. Chem Phys 343:258–269Google Scholar
  763. 763.
    Neese F (2007) Analytic derivative calculation of electronic g-tensors based on multireference configuration interaction wavefunctions. Mol Phys 105:2507–2514Google Scholar
  764. 764.
    Neyman KM et al (2002) Calculation of electronic g-tensors using a relativistic density functional Douglas-Kroll method. J Phys Chem A 106:5022–5030Google Scholar
  765. 765.
    Vahtras O, Engstrom M, Schimmelpfennig B (2002) Electronic g-tensors obtained with the mean-field spin-orbit Hamiltonian. Chem Phys Lett 351:424–430Google Scholar
  766. 766.
    Vancoillie S, Malmqvist P-Å, Pierloot K (2007) Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). Chemphyschem 8:1803–1815Google Scholar
  767. 767.
    van Lenthe E, Wormer PES, van der Avoird A (1997) Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. J Chem Phys 107:2488–2498Google Scholar
  768. 768.
    Gauss J, Kallay M, Neese F (2009) Calculation of electronic g-tensors using coupled cluster theory. J Phys Chem A 113:11541–11549Google Scholar
  769. 769.
    Arbuznikov AV et al (2002) Validation study of meta-GGA functionals and of a model exchange-correlation potential in density functional calculations of EPR parameters. Phys Chem Chem Phys 4:5467–5474Google Scholar
  770. 770.
    Arbuznikov AV, Kaupp M (2004) Unrestricted open-shell Kohn-Sham scheme with local hybrid exchange-correlation potentials: improved calculation of electronic g-tensors for transition-metal complexes. Chem Phys Lett 391:16–21Google Scholar
  771. 771.
    Arbuznikov AV, Kaupp M (2005) Localized hybrid exchange-correlation potentials for Kohn-Sham DFT calculations of NMR and EPR parameters. Int J Quantum Chem 104:261–271Google Scholar
  772. 772.
    Engels B, Peyerimhoff SD, Davidson ER (1987) Calculation of hyperfine coupling-constants - an ab initio MRD CI study for nitrogen to analyze the effects of basis-sets and CI parameters. Mol Phys 62:109–127Google Scholar
  773. 773.
    Knight LB et al (1987) Electron-spin-resonance and ab initio theoretical-studies of the cation radicals 14N4+ and 15N4+ - the trapping of ion neutral reaction-products in neon matrices at 4-K. J Chem Phys 87:885–897Google Scholar
  774. 774.
    Feller D, Davidson ER (1984) Ab initio configuration-interaction calculations of the hyperfine-structure in small radicals. J Chem Phys 80:1006–1017Google Scholar
  775. 775.
    Chipman DM (1983) Theoretical-study of the properties of methyl radical. J Chem Phys 78:3112–3132Google Scholar
  776. 776.
    Suter HU, Huang MB, Engels B (1994) A multireference configuration-interaction study of the hyperfine-structure of the molecules CCO, CNN, and NCN in their triplet ground-states. J Chem Phys 101:7686–7691Google Scholar
  777. 777.
    Engels B et al (1992) Study of the hyperfine coupling-constants (14N And 1H) of the NH2 molecules in the X2B1 ground-state and the A2A1 excited-state. J Chem Phys 96:4526–4535Google Scholar
  778. 778.
    Engels B, Peyerimhoff SD (1988) Study of the 1s and 2s shell contributions to the isotropic hyperfine coupling-constant in nitrogen. J Phys B-At Mol Opt Phys 21:3459–3471Google Scholar
  779. 779.
    Engels B et al (1988) The hyperfine coupling-constants of the 5 lowest states of CH - an ab initio MRDCI study. Chem Phys Lett 152:397–401Google Scholar
  780. 780.
    Barone V et al (2009) Magnetic interactions in phenyl-bridged nitroxide diradicals: conformational effects by multireference and broken symmetry DFT approaches. J Phys Chem A 113:15150–15155Google Scholar
  781. 781.
    Svistunenko DA, Jones GA (2009) Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated EPR parameters. Phys Chem Chem Phys 11:6600–6613Google Scholar
  782. 782.
    Munzarova M, Kaupp M (1999) A critical validation of density functional and coupled-cluster approaches for the calculation of EPR hyperfine coupling constants in transition metal complexes. J Phys Chem A 103:9966–9983Google Scholar
  783. 783.
    Munzarova ML, Kubacek P, Kaupp M (2000) Mechanisms of EPR hyperfine coupling in transition metal complexes. J Am Chem Soc 122:11900–11913Google Scholar
  784. 784.
    Arbuznikov AV, Vaara J, Kaupp M (2004) Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory. J Chem Phys 120:2127–2139Google Scholar
  785. 785.
    Suter HU et al (1994) Difficulties in the calculation of electron-spin-resonance parameters using density-functional methods. Chem Phys Lett 230:398–404Google Scholar
  786. 786.
    Fangstrom T et al (1997) Structure and dynamics of the silacyclobutane radical cation, studied by ab initio and density functional theory and electron spin resonance spectroscopy. J Chem Phys 107:297–306Google Scholar
  787. 787.
    Huang MB et al (1995) Multireference configuration-interaction and density-functional study of the azetidine radical-cation and the neutral azetidin-1-Yl radical. J Phys Chem-Us 99:9724–9729Google Scholar
  788. 788.
    Suter HU, Engels B (1996) An ab initio determination of the magnetic hyperfine structure of C2 in the four lowest triplet states. Chem Phys Lett 261:644–650Google Scholar
  789. 789.
    Cimino P et al (2010) Interplay of stereo-electronic, environmental, and dynamical effects in determining the EPR parameters of aromatic spin-probes: INDCO as a test case. Phys Chem Chem Phys 12:3741–3746Google Scholar
  790. 790.
    Engels B, Suter HU, Peric M (1996) Ab initio investigation of vibrational effects on magnetic hyperfine coupling constants in the X3Σg state of B2H2. J Phys Chem-Us 100:10121–10122Google Scholar
  791. 791.
    Peric M, Engels B (1992) Ab initio calculation of the vibronically averaged values for the hyperfine coupling-constants in NH2, NHD, and ND2. J Chem Phys 97:4996–5006Google Scholar
  792. 792.
    Staikova M et al (1993) Ab-initio calculations of the vibronically averaged hyperfine coupling-constants in the 12Πu (X2B1, A2A1) state of the water cation. Mol Phys 80:1485–1497Google Scholar
  793. 793.
    Pavone M et al (2007) Interplay of intrinsic, environmental, and dynamic effects in tuning the EPR parameters of nitroxides: further insights from an integrated computational approach. J Phys Chem B 111:8928–8939Google Scholar
  794. 794.
    Funken K et al (1990) Study of the hyperfine coupling-constants of the molecules NH2, NHD and ND2. Chem Phys Lett 172:180–186Google Scholar
  795. 795.
    Peric M, Engels B, Peyerimhoff SD (1991) Ab initio investigation of the vibronic structure of the C2H spectrum - calculation of the hyperfine coupling-constants for the 3 lowest-lying electronic states. J Mol Spectrosc 150:56–69Google Scholar
  796. 796.
    Peric M, Engels B, Peyerimhoff SD (1991) Ab initio investigation of the vibronic structure of the C2H SPECTRUM - computation of the vibronically averaged values for the hyperfine coupling-constants. J Mol Spectrosc 150:70–85Google Scholar
  797. 797.
    Brancato G et al (2005) A mean field approach for molecular simulations of fluid systems. J Chem Phys 122:154109Google Scholar
  798. 798.
    Brancato G, Rega N, Barone V (2006) Reliable molecular simulations of solute-solvent systems with a minimum number of solvent shells. J Chem Phys 124:214505Google Scholar
  799. 799.
    Brancato G, Rega N, Barone V (2007) Unraveling the role of stereo-electronic, dynamical, and environmental effects in tuning the structure and magnetic properties of glycine radical in aqueous solution at different pH values. J Am Chem Soc 129:15380–15390Google Scholar
  800. 800.
    Brancato G, Rega N, Barone V (2008) A hybrid explicit/implicit solvation method for first-principle molecular dynamics simulations. J Chem Phys 128:144501Google Scholar
  801. 801.
    Rega N, Brancato G, Barone V (2006) Non-periodic boundary conditions for ab initio molecular dynamics in condensed phase using localized basis functions. Chem Phys Lett 422:367–371Google Scholar
  802. 802.
    Cossi M et al (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335Google Scholar
  803. 803.
    Naumov S, Reinhold J, Beckert D (2003) Investigation of the molecular structure of the radical anions of some pyrimidine-type bases in aqueous solution by comparison of calculated hyperfine coupling constants with EPR results. Phys Chem Chem Phys 5:64–72Google Scholar
  804. 804.
    Cances E, Mennucci B (2001) Comment on “reaction field treatment of charge penetration”. J Chem Phys 114:4744–4745Google Scholar
  805. 805.
    Cossi M et al (2001) Polarizable dielectric model of solvation with inclusion of charge penetration effects. J Chem Phys 114:5691–5701Google Scholar
  806. 806.
    Cossi M et al (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681Google Scholar
  807. 807.
    Lu JM et al (2001) A Fourier transform EPR study of uracil and thymine radical anions in aqueous solution. Phys Chem Chem Phys 3:952–956Google Scholar
  808. 808.
    Houriez C et al (2009) Further insights into the environmental effects on the computed hyperfine coupling constants of nitroxides in aqueous solution. J Phys Chem B 113:15047–15056Google Scholar
  809. 809.
    Houriez C et al (2010) Structure and spectromagnetic properties of the superoxide radical adduct of DMPO in water: elucidation by theoretical investigations. J Phys Chem B 114:11793–11803Google Scholar
  810. 810.
    Adamo C et al (1999) Tuning of structural and magnetic properties of nitronyl nitroxides by the environment. A combined experimental and computational study. J Phys Chem A 103:3481–3488Google Scholar
  811. 811.
    Barone V et al (1998) Assessment of a combined QM/MM approach for the study of large nitroxide systems in vacuo and in condensed phases. J Am Chem Soc 120:7069–7078Google Scholar
  812. 812.
    Barone V, Cimino P (2009) Validation of the B3LYP/N07D and PBE0/N07D computational models for the calculation of electronic g-tensors. J Chem Theory Comput 5:192–199Google Scholar
  813. 813.
    Barone V et al (1993) Ab-initio configuration-interaction calculation of isotropic spin-densities in nitronyl and iminonitroxides. New J Chem 17:545–549Google Scholar
  814. 814.
    Beyer M et al (2003) Synthesis of novel aromatic nitroxides as potential DNA intercalators. An EPR spectroscopical and DFT computational study. J Org Chem 68:2209–2215Google Scholar
  815. 815.
    Cirujeda J et al (2000) Spin density distribution of a-nitronyl aminoxyl radicals from experimental and ab initio calculated ESR isotropic hyperfine coupling constants. J Am Chem Soc 122:11393–11405Google Scholar
  816. 816.
    di Matteo A et al (1999) Intrinsic and environmental effects in the physico-chemical properties of nitroxides. The case of 2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide. Chem Phys Lett 310:159–165Google Scholar
  817. 817.
    Mattar SM, Stephens AD (2000) UB1LYP hybrid density functional studies of the 2,2,6,6-tetramethyl-4-piperidone-oxyl (TEMPONE) hyperfine tensors. Chem Phys Lett 319:601–610Google Scholar
  818. 818.
    Stipa P (2006) A multi-step procedure for evaluating the EPR parameters of indolinonic aromatic aminoxyls: a combined DFT and spectroscopic study. Chem Phys 323:501–510Google Scholar
  819. 819.
    Zheludev A et al (1994) Spin-density in a nitronyl nitroxide free-radical - polarized neutron-diffraction investigation and ab-initio calculations. J Am Chem Soc 116:2019–2027Google Scholar
  820. 820.
    Colombo MC et al (2008) Copper binding sites in the C-terminal domain of mouse prion protein: a hybrid (QM/MM) molecular dynamics study. Proteins 70:1084–1098Google Scholar
  821. 821.
    Sinnecker S, Neese F (2006) QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study. J Comput Chem 27:1463–1475Google Scholar
  822. 822.
    Bernini C et al (2011) EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 13:5078–5098Google Scholar
  823. 823.
    Neese F (2003) A spectroscopy oriented configuration interaction procedure. J Chem Phys 119:9428–9443Google Scholar
  824. 824.
    Mattar SM, Durelle J (2010) Calculation of the 4,5-dihydro-1,3,2-dithiazolyl radical g-tensor components by the coupled-perturbed Kohn-Sham hybrid density functional and configuration interaction methods: a comparative study. Magn Reson Chem 48:S122–S131Google Scholar
  825. 825.
    Engels B (1991) Estimation of the influence of the configurations neglected within truncated multireference CI wave-functions on molecular-properties. Chem Phys Lett 179:398–404Google Scholar
  826. 826.
    Mattar SM (1999) Calculation of the 1H 13C, 14N and 33S hyperfine tensors of the 1,3,2-dithiazol-2-yl radical using hybrid density functionals. Chem Phys Lett 300:545–552Google Scholar
  827. 827.
    Arrondo JLR et al (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared-spectroscopy. Prog Biophys Mol Biol 59:23–56Google Scholar
  828. 828.
    Elliot A, Ambrose EJ (1950) Structure of synthetic polypeptides. Nature 165:921–922Google Scholar
  829. 829.
    Bour P, Keiderling TA (1993) Ab-initio simulations of the vibrational circular-dichroism of coupled peptides. J Am Chem Soc 115:9602–9607Google Scholar
  830. 830.
    Berova N, Nakanishi K, Woody RW (2000) Circular dichroism principles and applications. Wiley VCH, New YorkGoogle Scholar
  831. 831.
    Barron LD, Hecht L, Bell AD (1996) Vibrational Raman optical activity of biomolecules. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum, New YorkGoogle Scholar
  832. 832.
    Keiderling TA, Kubelka J, Hilario J (2006) Vibrational circular dichroism of biopolymers. Summary of methods and applications. In: Braiman MS, Gregoriou VG (eds) Vibrational spectroscopy of biological and polymeric materials. CRC, New YorkGoogle Scholar
  833. 833.
    Barron LD, Buckingham AD (1971) Rayleigh and Raman scattering from optically active molecules. Mol Phys 20:1111–1119Google Scholar
  834. 834.
    Barron LD, Buckingham AD (1975) Rayleigh and Raman optical-activity. Annu Rev Phys Chem 26:381–396Google Scholar
  835. 835.
    Barron LD, Buckingh AD (1973) Raman circular intensity differential observations on some monoterpenes. J Chem Soc Chem Commun 152–153Google Scholar
  836. 836.
    Nafie LA, Keiderling TA, Stephens PJ (1976) Vibrational circular-dichroism. J Am Chem Soc 98:2715–2723Google Scholar
  837. 837.
    Polavarapu PL (1990) Ab initio vibrational Raman and Raman optical-activity spectra. J Phys Chem-Us 94:8106–8112Google Scholar
  838. 838.
    Jalkanen KJ et al (2003) Vibrational analysis of various isotopomers of L-alanyl-L-alanine in aqueous solution: vibrational absorption, vibrational circular dichroism, Raman, and Raman optical activity spectra. Int J Quantum Chem 92:239–259Google Scholar
  839. 839.
    Stephens PJ et al (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem-Us 98:11623–11627Google Scholar
  840. 840.
    Jeon J, Cho M (2010) Direct quantum mechanical/molecular mechanical simulations of two-dimensional vibrational responses: N-methylacetamide in water. New J Phys 12:065001Google Scholar
  841. 841.
    Poully JC, Gregoire G, Schermann JP (2009) Evaluation of the ONIOM method for interpretation of infrared spectra of gas-phase molecules of biological interest. J Phys Chem A 113:8020–8026Google Scholar
  842. 842.
    Misra N et al (2010) Vibrational analysis of boldine hydrochloride using QM/MM approach. Spectrosc-Int J 24:483–499Google Scholar
  843. 843.
    Amadei A et al (2010) Theoretical-computational modelling of infrared spectra in peptides and proteins: a new frontier for combined theoretical-experimental investigations. Curr Opin Struct Biol 20:155–161Google Scholar
  844. 844.
    Daidone I et al (2010) On the origin of IR spectral changes upon protein folding. Chem Phys Lett 488:213–218Google Scholar
  845. 845.
    Horspool W, Armesto D (1992) Organic photochemistry: a comprehensive treatment. Ellis Horwood Limited, West SussexGoogle Scholar
  846. 846.
    Dutoi AD et al (2010) Tracing molecular electronic excitation dynamics in real time and space. J Chem Phys 132:144302Google Scholar
  847. 847.
    Moret ME et al (2010) Electron localization dynamics in the triplet excited state of [Ru(bpy)3]2+ in aqueous solution. Chem-Eur J 16:5889–5894Google Scholar
  848. 848.
    Abel S et al (2011) Molecular simulations of dodecyl-beta-maltoside micelles in water: influence of the headgroup conformation and force field parameters. J Phys Chem B 115:487–499Google Scholar
  849. 849.
    Kistler KA, Matsika S (2009) Solvatochromic shifts of uracil and cytosine using a combined multireference configuration interaction/molecular dynamics approach and the fragment molecular orbital method. J Phys Chem A 113:12396–12403Google Scholar
  850. 850.
    Kistler KA, Matsika S (2010) Photophysical pathways of cytosine in aqueous solution. Phys Chem Chem Phys 12:5024–5031Google Scholar
  851. 851.
    Olsen JM et al (2010) Solvatochromic shifts in uracil: a combined MD-QM/MM study. J Chem Theory Comput 6:249–256Google Scholar
  852. 852.
    Oncak M, Lischka H, Slavicek P (2010) Photostability and solvation: photodynamics of microsolvated zwitterionic glycine. Phys Chem Chem Phys 12:4906–4914Google Scholar
  853. 853.
    Loos PF et al (2008) Theoretical investigation of the geometries and UV-vis spectra of poly(L-glutamic acid) featuring a photochromic azobenzene side chain. J Chem Theory Comput 4:637–645Google Scholar
  854. 854.
    Grimme S, Waletzke M (1999) A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys 111:5645–5655Google Scholar
  855. 855.
    Eckert-Maksic M et al (2010) Matrix-controlled photofragmentation of formamide: dynamics simulation in argon by nonadiabatic QM/MM method. Phys Chem Chem Phys 12: 12719–12726Google Scholar
  856. 856.
    Ruckenbauer M et al (2010) Azomethane: nonadiabatic photodynamical simulations in solution. J Phys Chem A 114:12585–12590Google Scholar
  857. 857.
    Koch DM et al (2006) Nonadiabatic trajectory studies of NaI(H2O)n photodissociation dynamics. J Phys Chem A 110:1438–1454Google Scholar
  858. 858.
    Malaspina T, Coutinho K, Canuto S (2008) Analyzing the n ->pi* electronic transition of formaldehyde in water. A sequential Monte Carlo/time-dependent density functional theory. J Braz Chem Soc 19:305–311Google Scholar
  859. 859.
    Nielsen CB et al (2007) Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: applications to solvated water and formaldehyde. J Chem Phys 126:154112Google Scholar
  860. 860.
    Lin YL, Gao J (2007) Solvatochromic shifts of the n → π* transition of acetone from steam vapor to ambient aqueous solution: a combined configuration interaction QM/MM simulation study incorporating solvent polarization. J Chem Theory Comput 3:1484–1493Google Scholar
  861. 861.
    Wallqvist A, Ahlstrom P, Karlstrom G (1990) A new intermolecular energy calculation scheme - applications to potential surface and liquid properties of water. J Phys Chem-Us 94:1649–1656Google Scholar
  862. 862.
    Hermida-Ramon JM, Ohrn A, Karlstrom G (2009) Aqueous solvent effects on structure and lowest electronic transition of methylene peroxide in an explicit solvent model. Chem Phys 359:118–125Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas C. Schmidt
    • 1
  • Alexander Paasche
    • 1
  • Christoph Grebner
    • 1
  • Kay Ansorg
    • 1
  • Johannes Becker
    • 1
  • Wook Lee
    • 1
  • Bernd Engels
    • 1
    Email author
  1. 1.Institut für Phys. und Theor. ChemieWürzburgGermany

Personalised recommendations