The Beauty of Chemistry in the Words of Writers and in the Hands of Scientists

  • Margherita VenturiEmail author
  • Enrico Marchi
  • Vincenzo Balzani
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 323)


Chemistry is a central science because all the processes that sustain life are based on chemical reactions, and all things that we use in everyday life are natural or artificial chemical compounds. Chemistry is also a fantastic world populated by an unbelievable number of nanometric objects called molecules, the smallest entities that have distinct shapes, sizes, and properties. Molecules are the words of matter. Indeed, most of the other sciences have been permeated by the concepts of chemistry and the language of molecules. Like words, molecules contain specific pieces of information that are revealed when they interact with one another or when they are stimulated by photons or electrons. In the hands of chemists, molecules, particularly when they are suitably combined or assembled to create supramolecular systems, can play a variety of functions, even more complex and more clever than those invented by nature. The wonderful world of chemistry has inspired scientists not only to prepare new molecules or investigate new chemical processes, but also to create masterpieces. Some nice stories based on chemical concepts (1) show that there cannot be borders on the Earth, (2) underline that there is a tight connection among all forms of matter, and (3) emphasize the irreplaceable role of sunlight.


Catenanes Dendrimers Molecular logic Molecules as words Rotaxanes Supramolecular chemistry Writers and chemistry 



Authors acknowledge Alberto Credi for fruitful discussion and artistic suggestions. Support by Alma Mater Studiorum − Università di Bologna, Ministero dell’Università e della Ricerca (PRIN 2008HZJW2L), and Fondazione CARISBO is gratefully acknowledged.


  1. 1.
    Greenberg A (2003) The art of chemistry – Myths, medicine, and materials. Wiley, HobokenGoogle Scholar
  2. 2.
    Smith MF (2001) Lucretius: on the nature of things. Hackett, Indianapolis/CambridgeGoogle Scholar
  3. 3.
    The literary works of Leonardo da Vinci, compiled and edited from the original manuscripts by Richter J-P, commentary by Pedretti C (1977) Phaidon, Oxford, p 102Google Scholar
  4. 4.
    Balzani V, Scandola F (1991) Supramolecular photochemistry. Horwood, ChichesterGoogle Scholar
  5. 5.
    Vögtle F (1992) Fascinating molecules in organic chemistry. Wiley, ChichesterGoogle Scholar
  6. 6.
    Hopf H (2000) Classics in hydrocarbon chemistry. Syntheses, concepts, perspectives. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Timmerman P, Verboom W, Van Veggel FCJM, Vanhoorn WP, Reinhoudt DN (1994) Angew Chem Int Ed Engl 33:1292–1295CrossRefGoogle Scholar
  8. 8.
    Lawson JM, Paddon-Row MN (1993) J Chem Soc Chem Commun 1641–1643Google Scholar
  9. 9.
    Soi A, Hirsch A (1998) New J Chem 22:1337–1339CrossRefGoogle Scholar
  10. 10.
    Levi P (2000) The periodic table. Penguin, London, p 149Google Scholar
  11. 11.
    Béla V (1990) Chemistry in sculptures. Last accessed 8 Sept 2011
  12. 12.
    Feynman RP (1969) Phys Teach 7:313–320CrossRefGoogle Scholar
  13. 13.
    Levi P (1995) The monkey’s wrench. Penguin, New York, pp 142–143Google Scholar
  14. 14.
    Levi P (2000) The periodic table. Penguin, London, pp 189–191Google Scholar
  15. 15.
    Hoffmann R (2011) Clin Chem 57:144CrossRefGoogle Scholar
  16. 16.
    Breslow R (1997) Chemistry today and tomorrow – The central, useful, and creative science. American Chemical Society and Jones and Bartlett Publishers, Washington DCGoogle Scholar
  17. 17.
    Balzani V, Credi A, Venturi M (2008) Chem Eur J 14:26–39CrossRefGoogle Scholar
  18. 18.
    Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimCrossRefGoogle Scholar
  19. 19.
    Lehn J-M (2007) Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  20. 20.
    de Silva AP, Uchiyama S (2007) Nat Nanotechnol 2:399–410CrossRefGoogle Scholar
  21. 21.
    Chichak KS, Cantrill SJ, Pease AR, Chiu S-H, Cave GWV, Atwood JL, Stoddart JF (2004) Science 304:1308–1312CrossRefGoogle Scholar
  22. 22.
    de Silva AP, Gunaratne HQN, McCoy CP (1993) Nature 364:42–44CrossRefGoogle Scholar
  23. 23.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515–1566CrossRefGoogle Scholar
  24. 24.
    Tian H, Wang QC (2006) Chem Soc Rev 35:361–374CrossRefGoogle Scholar
  25. 25.
    Raymo FM, Tomasulo M (2006) Chem Eur J 12:3186–3193CrossRefGoogle Scholar
  26. 26.
    Pischel U (2007) Angew Chem Int Ed Engl 46:4026–4040CrossRefGoogle Scholar
  27. 27.
    Szacilowski K (2008) Chem Rev 108:3481–3548CrossRefGoogle Scholar
  28. 28.
    Balzani V, Credi A, Venturi M (2008) Molecular devices and machines – Concepts and perspectives for the nanoworld, 2nd edn. Wiley-VCH, Weinheim, pp 259–311Google Scholar
  29. 29.
    Pimentel GC, Coonrod AJ (1985) Opportunities in chemistry. National Academy of Sciences, National Academy Press, WashingtonGoogle Scholar
  30. 30.
    Credi A (2007) Angew Chem Int Ed Engl 46:5472–5475CrossRefGoogle Scholar
  31. 31.
    Ceroni P, Bergamini G, Balzani V (2009) Angew Chem Int Ed Engl 48:8516–8518CrossRefGoogle Scholar
  32. 32.
    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85–277CrossRefGoogle Scholar
  33. 33.
    Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) Top Curr Chem 280:117–214CrossRefGoogle Scholar
  34. 34.
    Webb R (2006) Nature 443:39CrossRefGoogle Scholar
  35. 35.
    de Silva AP, James MR, McKinney BOF, Pears DA, Weir SM (2006) Nat Mater 5:787–789CrossRefGoogle Scholar
  36. 36.
    Muramatsu S, Kinbara K, Taguchi H, Ishii N, Aida T (2006) J Am Chem Soc 128:3764–3769CrossRefGoogle Scholar
  37. 37.
    Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Nature 414:430–434CrossRefGoogle Scholar
  38. 38.
    Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) Nature 429:423–429CrossRefGoogle Scholar
  39. 39.
    Balzani V, Venturi M, Credi A (2003) Molecular devices and machines: a journey into the nanoworld, 1st edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  40. 40.
    Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for the nanoworld, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  41. 41.
    Hoffmann R (1995) Nobel chemist on nanotechnology. Foresight Update 20 Accessed 23 June 2011
  42. 42.
    Stoddart JF (ed) (2001) Special issue on molecular machines. Acc Chem Res 34(6):409–522Google Scholar
  43. 43.
    Sauvage J-P (ed) (2001) Molecular machines and motors. Structure and bonding, vol 99. Springer, BerlinGoogle Scholar
  44. 44.
    Flood AH, Ramirez RJA, Deng WQ, Muller RP, Goddard WA III, Stoddart JF (2004) Aust J Chem 57:301–322CrossRefGoogle Scholar
  45. 45.
    Kelly TR, Sestelo JP (2005) Rotary motion in single-molecule machines. In: Sauvage J-P (ed) Molecular machines and motors. Structure and bonding, vol 99. Springer, BerlinGoogle Scholar
  46. 46.
    Sauvage J-P (2005) Chem Commun:1507–1510Google Scholar
  47. 47.
    Kinbara K, Aida T (2005) Chem Rev 105:1377–1400CrossRefGoogle Scholar
  48. 48.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281–1376CrossRefGoogle Scholar
  49. 49.
    Balzani V, Credi A, Silvi S, Venturi M (2006) Chem Soc Rev 35:1135–1149CrossRefGoogle Scholar
  50. 50.
    Browne WR, Feringa BL (2006) Nat Nanotech 1:25–35CrossRefGoogle Scholar
  51. 51.
    Balzani V, Credi A, Venturi M (2007) Nano Today 2:18–25CrossRefGoogle Scholar
  52. 52.
    Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed Engl 46:72–191CrossRefGoogle Scholar
  53. 53.
    Credi A, Tian H (eds) (2007) Special issue: molecular machines and switches. Adv Funct Mater 17(5):671–840Google Scholar
  54. 54.
    Mateo-Alonso A, Guldi DM, Paolucci F, Prato M (2007) Angew Chem Int Ed Engl 46:8120–8126CrossRefGoogle Scholar
  55. 55.
    Levi P (1995) The monkey’s wrench. Penguin Books, New York, p 144Google Scholar
  56. 56.
    Balzani V, Credi A, Venturi M (2002) Proc Natl Acad Sci USA 99:4814–4817CrossRefGoogle Scholar
  57. 57.
    Ishow E, Credi A, Balzani V, Spadola F, Mandolini L (1999) Chem Eur J 5:984–989CrossRefGoogle Scholar
  58. 58.
    Ferrer B, Rogez G, Credi A, Ballardini R, Gandolfi MT, Balzani V, Liu Y, Tseng H-R, Stoddart JF (2006) Proc Natl Acad Sci USA 103:18411–18416CrossRefGoogle Scholar
  59. 59.
    Ballardini R, Balzani V, Clemente-Leon M, Credi A, Gandolfi MT, Ishow E, Perkins J, Stoddart JF, Tseng H-R, Wenger S (2002) J Am Chem Soc 124:12786–12795CrossRefGoogle Scholar
  60. 60.
    Rogez G, Ferrer Ribera B, Credi A, Ballardini R, Gandolfi MT, Balzani V, Liu Y, Northrop BH, Stoddart JF (2007) J Am Chem Soc 129:4633–4642Google Scholar
  61. 61.
    Balzani V, Ceroni P, Maestri M, Vicinelli V (2003) Curr Opin Chem Biol 7:657–665CrossRefGoogle Scholar
  62. 62.
    Puntoriero F, Nastasi F, Cavazzini M, Quici S, Campagna S (2007) Coord Chem Rev 251:536–545CrossRefGoogle Scholar
  63. 63.
    Hahn U, Gorka M, Vögtle F, Vicinelli V, Ceroni P, Maestri M, Balzani V (2002) Angew Chem Int Ed 41:3595–3598CrossRefGoogle Scholar
  64. 64.
    Ceroni P, Venturi M (2010) In: Ceroni P, Credi A, Venturi M (eds) Electrochemistry of functional supramolecular systems. Wiley, Hoboken, pp 145–184CrossRefGoogle Scholar
  65. 65.
    Astruc D, Ornelas C, Ruiz J (2009) Chem Eur J 15:8936–8944CrossRefGoogle Scholar
  66. 66.
    Ornelas C, Ruiz J, Belin C, Astruc D (2009) J Am Chem Soc 131:590–601CrossRefGoogle Scholar
  67. 67.
    Heinen S, Walder L (2000) Angew Chem Int Ed 39:806–809CrossRefGoogle Scholar
  68. 68.
    Heinen S, Meyer W, Walder L (2001) J Electroanal Chem 498:34–43CrossRefGoogle Scholar
  69. 69.
    Marchioni F, Venturi M, Credi A, Balzani V, Belohradsky M, Elizarov AM, Tseng H-R, Stoddart JF (2004) J Am Chem Soc 126:568–573CrossRefGoogle Scholar
  70. 70.
    Marchioni F, Venturi M, Ceroni P, Balzani V, Belohradsky M, Elizarov AM, Tseng H-R, Stoddart JF (2004) Chem Eur J 10:6361–6368CrossRefGoogle Scholar
  71. 71.
    Ronconi CM, Stoddart JF, Balzani V, Baroncini M, Ceroni P, Giansante C, Venturi M (2008) Chem Eur J 14:8365–8373CrossRefGoogle Scholar
  72. 72.
    Monk PMS (1998) The Viologens – Physicochemical properties, synthesis and applications of the salts of 4,4′-bipyridine. Wiley, ChichesterGoogle Scholar
  73. 73.
    Baker WS, Lemon BI III, Crooks RM (2001) J Phys Chem B 105:8885–8894CrossRefGoogle Scholar
  74. 74.
    Elston T, Wang H, Oster G (1998) Nature 391:510–513CrossRefGoogle Scholar
  75. 75.
    Ashton PR, Ballardini R, Balzani V, Credi A, Dress R, Ishow E, Kleverlaan CJ, Kocian O, Preece JA, Spencer N, Stoddart JF, Venturi M, Wenger S (2000) Chem Eur J 6:3558–3574CrossRefGoogle Scholar
  76. 76.
    Balzani V, Clemente-León M, Credi A, Ferrer B, Venturi M, Flood AH, Stoddart JF (2006) Proc Natl Acad Sci USA 103:1178–1183CrossRefGoogle Scholar
  77. 77.
    Inverting the positions of EA1 2+ and EA2 2+ increases the quantum yield of photoinduced electron transfer (F2 = 0.50) but prevents ring displacement because the back-electron-transfer reaction becomes exceedingly fast: Balzani V, Clemente-León M, Credi A, Semeraro M, Venturi M, Tseng H-R, Wegner S, Saha S, Stoddart JF (2006) Aust J Chem 59:193–206Google Scholar
  78. 78.
    Balzani V, Clemente-León M, Credi A, Lowe JN, Badjic JD, Stoddart JF, Williams DJ (2003) Chem Eur J 9:5348–5360CrossRefGoogle Scholar
  79. 79.
    Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) Science 303:1845–1849CrossRefGoogle Scholar
  80. 80.
    Badjic JD, Ronconi CM, Stoddart JF, Balzani V, Silvi S, Credi A (2006) J Am Chem Soc 128:1489–1499CrossRefGoogle Scholar
  81. 81.
    Sauvage J-P (1998) Acc Chem Res 31:611–619CrossRefGoogle Scholar
  82. 82.
    Asakawa M, Ashton PR, Balzani V, Credi A, Hamers C, Mattersteig G, Montalti M, Shipway AN, Spencer N, Stoddart JF, Tolley MS, Venturi M, White AJP, Williams DJ (1998) Angew Chem Int Ed 37:333–337CrossRefGoogle Scholar
  83. 83.
    Balzani V, Credi A, Mattersteig G, Matthews OA, Raymo FM, Stoddart JF, Venturi M, White AJP, Williams DJ (2000) J Org Chem 65:1924–1936CrossRefGoogle Scholar
  84. 84.
    Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) Science 289:1172–1175CrossRefGoogle Scholar
  85. 85.
    Luo Y, Collier CP, Jeppesen JO, Nielsen KA, Delonno E, Ho G, Perkins J, Tseng H-R, Yamamoto T, Stoddart JF, Heath JR (2002) Chemphyschem 3:519–525CrossRefGoogle Scholar
  86. 86.
    Steuerman DW, Tseng H-R, Peters AJ, Flood AH, Jeppesen JO, Nielsen KA, Stoddart JF, Heath JR (2004) Angew Chem Int Ed 43:6486–6491CrossRefGoogle Scholar
  87. 87.
    Ashton PR, Baldoni V, Balzani V, Credi A, Hoffmann HDA, Martinez-Diaz MV, Raymo FM, Stoddart JF, Venturi M (2001) Chem Eur J 7:3482–3493CrossRefGoogle Scholar
  88. 88.
    Balzani V, Credi A, Venturi M (2003) ChemPhysChem 4:49–59CrossRefGoogle Scholar
  89. 89.
    Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Acc Chem Res 34:445–455CrossRefGoogle Scholar
  90. 90.
    Astumian RD (2005) Proc Natl Acad Sci USA 102:1843–1847CrossRefGoogle Scholar
  91. 91.
    Astumian RD (2005) J Phys Condens Matter 17:S3753–S3766CrossRefGoogle Scholar
  92. 92.
    Hernandez JV, Kay ER, Leigh DA (2004) Science 306:1532–1547CrossRefGoogle Scholar
  93. 93.
    Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Nature 424:174–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Margherita Venturi
    • 1
    Email author
  • Enrico Marchi
    • 2
  • Vincenzo Balzani
    • 1
  1. 1.Dipartimento di Chimica “G. Ciamician”, Alma Mater StudiorumUniversità di BolognaBolognaItaly
  2. 2.Centro di Ricerca Interuniversitario per la Conversione Chimica dell’Energia SolareUniversità di BolognaBolognaItaly

Personalised recommendations