Structural, Physical, and Chemical Properties of Fluorous Compounds

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 308)

Abstract

The sizes and structures of fluorous molecules are analyzed, particularly with respect to the helical conformations of perfluoroalkyl segments and their phase separation in crystal lattices. Basic molecular properties, bond energies, and special bonding motifs are reviewed. Solubility, adsorption, and related phenomena are treated. Miscibilities of fluorous solvents, and partition coefficients of solutes in fluorous/organic biphase mixtures, are analyzed. Electronic effects and NMR properties are discussed, and some reactions involving the fluorinated parts of fluorous substances are presented.

Keywords

Bond energies Conformations Electronic effects Fluorous Miscibilities NMR Partition coefficient Reactivity Solubilities 

References

  1. 1.
    Horváth IT, Curran DP, Gladysz JA (2004) Fluorous chemistry: scope and definition. In: Gladysz JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Weinheim, Wiley/VCH, pp 1–4Google Scholar
  2. 2.
    Yu MS, Curran DP, Nagashima T (2005) Increasing fluorous partition coefficients by solvent tuning. Org Lett 7:3677CrossRefGoogle Scholar
  3. 3.
    Curran DP, Bajpai R, Sanger E (2006) Purification of fluorous Mitsunobu reactions by liquid-liquid extraction. Adv Synth Catal 348:1621CrossRefGoogle Scholar
  4. 4.
    Chu Q, Yu MS, Curran DP (2007) New fluorous/organic biphasic systems achieved by solvent tuning. Tetrahedron 63:9890CrossRefGoogle Scholar
  5. 5.
    Chu Q, Yu MS, Curran DP (2008) CBS reductions with a fluorous prolinol immobilized in a hydrofluoroether solvent. Org Lett 10:749CrossRefGoogle Scholar
  6. 6.
    Gladysz JA (2004) Ponytails: structural and electronic considerations. In: Gladysz JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Wiley/VCH, Weinheim, pp 41–55CrossRefGoogle Scholar
  7. 7.
    Rábai J, Szabó D, Borbás EK, Kövesi I, Kövesdi I, Csámpai A, Gömöry Á, Pashinnik VE, Shermolovich YG (2002) Practice of fluorous biphase chemistry: convenient synthesis of novel fluorophilic ethers via a Mitsunobu reaction. J Fluor Chem 114:199CrossRefGoogle Scholar
  8. 8.
    Jiang Z-X, Yu YB (2007) The design and synthesis of highly branched and spherically symmetric fluorinated oils and amphiles. Tetrahedron 63:3982CrossRefGoogle Scholar
  9. 9.
    Szabó D, Bonto A-M, Kövesdi I, Gömöry A, Rábai J (2005) Synthesis of novel lipophilic and/or fluorophilic ethers of perfluoro-tert-butyl alcohol, perfluoropinacol and hexafluoroacetone hydrate via a Mitsunobu reaction: typical cases of ideal product separation. J Fluor Chem 126:641CrossRefGoogle Scholar
  10. 10.
    Szabó D, Mohl J, Bálint A-M, Bodor A, Rábai J (2006) Novel generation ponytails in fluorous chemistry: syntheses of primary, secondary, and tertiary (nonafluoro-tert-butyloxy) ethyl amines. J Fluor Chem 127:1496CrossRefGoogle Scholar
  11. 11.
    Jiang Z-X, Yu YB (2007) The synthesis of a geminally perfluoro-tert-butylated β-amino acid and its protected forms as potential pharmacokinetic modulator and reporter for peptide-based pharmaceuticals. J Org Chem 72:1464CrossRefGoogle Scholar
  12. 12.
    Jiang Z-X, Yu YB (2008) The design and synthesis of highly branched and spherically symmetric fluorinated macrocyclic chelators. Synthesis 215Google Scholar
  13. 13.
    Dunitz JD, Gavezzotti A, Schweizer WB (2003) Molecular shape and intermolecular liaison: hydrocarbons and fluorocarbons. Helv Chim Acta 86:4073CrossRefGoogle Scholar
  14. 14.
    Dunitz JD (2004) Organic fluorine: odd man out. ChemBioChem 5:614Google Scholar
  15. 15.
    Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441CrossRefGoogle Scholar
  16. 16.
    Williams DE, Houpt DJ (1986) Fluorine nonbonded potential parameters derived from crystalline perfluorocarbons. Acta Crystallogr B42:286Google Scholar
  17. 17.
    Hansch C, Leo A, Hoekman D (1995) Exploring QSAR. American Chemical Society, Washington DCGoogle Scholar
  18. 18.
    Smart BE (2001) Fluorine substituent effects (on bioactivity). J Fluor Chem 109:3CrossRefGoogle Scholar
  19. 19.
    Kuduva SS, Boese R (2003) Cambridge Crystallographic Data Centre, Deposition 220154. Refcode OLAWUTGoogle Scholar
  20. 20.
    Albinsson B, Michl J (1996) Anti, ortho, and gauche conformers of perfluoro-n-butane: matrix-isolation IR spectra and calculations. J Phys Chem 100:3418CrossRefGoogle Scholar
  21. 21.
    Watkins EK, Jorgensen WL (2001) Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J Phys Chem A 105:4118CrossRefGoogle Scholar
  22. 22.
    Jang SS, Blanco M, Goddard WA III, Caldwell G, Ross RB (2003) The source of helicity in perfluorinated N-alkanes. Macromolecules 36:5331CrossRefGoogle Scholar
  23. 23.
    Bunn CW, Howells ER (1954) Structures of molecules and crystals of fluorocarbons. Nature (London) 174:549Google Scholar
  24. 24.
    Baker RJ, McCabe T, O’Brien JE, Ogilvie HV (2010) Thermomorphic metal scavengers: a synthetic and multinuclear NMR study of highly fluorinated ketones and their application in heavy metal removal. J Fluor Chem 131:621CrossRefGoogle Scholar
  25. 25.
    da Costa RC, Hampel F, Gladysz J (2007) Crystal structure of an unusual bis(fluorous phosphine) ruthenium(III) complex derived from a fluorous Grubbs’ catalyst. Polyhedron 26:581CrossRefGoogle Scholar
  26. 26.
    Monde K, Miura N, Hashimoto M, Taniguchi T, Inabe T (2006) Conformational analysis of chiral helical perfluoroalkyl chains by VCD. J Am Chem Soc 128:6000CrossRefGoogle Scholar
  27. 27.
    Barnes NA, Brisdon AK, Brown FRW, Cross WI, Crossley IR, Fish C, Herbert CJ, Pritchard RG, Warren JE (2011) Synthesis of gold(I) fluoroalkyl and fluoroalkenyl-substituted phosphine complexes and factors affecting their crystal packing. Dalton Trans 40:1743CrossRefGoogle Scholar
  28. 28.
    Kirsch P, Bremer M (2010) Understanding fluorine effects in liquid crystals. ChemPhysChem 11:357 and references thereinGoogle Scholar
  29. 29.
    Rocaboy C, Hampel F, Gladysz JA (2002) Syntheses and reactivities of disubstituted and trisubstituted fluorous pyridines with high fluorous phase affinities: solid state, liquid crystal, and ionic liquid-phase properties. J Org Chem 67:6863 and references thereinGoogle Scholar
  30. 30.
    Casnati A, Liantonio R, Metrangolo P, Resnati G, Ungaro R, Ugozzoli F (2006) Molecular and supramolecular homochirality: enantiopure perfluorocarbon rotamers and halogen-bonded fluorous double helices. Angew Chem Int Ed 45:1915; Angew Chem 118:1949Google Scholar
  31. 31.
    Casnati A, Cavallo G, Metrangolo P, Resnati G, Ugozzoli F, Ungaro R (2009) The role of building-block metrics in the halogen-bonding-driven self-assembly of calixarenes, inorganic salts and diiodoperfluoroalkanes. Chem Eur J 15:7903CrossRefGoogle Scholar
  32. 32.
    van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102:2399CrossRefGoogle Scholar
  33. 33.
    Smart BE (1995) Physical and physicochemical properties. In: Hudlický M, Pavlath AE (eds) Chemistry of organic fluorine compounds, ACS Monograph 187. ACS, Washington DC, p 979Google Scholar
  34. 34.
    For some lead references, see [34] and [35]. Palomo C, Aizpurua JM, Loinaz I, Fernandez-Berridi MJ, Irusta L (2001) Scavenging of fluorinated N,N′-dialkylureas by hydrogen binding: a novel separation method for fluorous synthesis. Org Lett 3:2361Google Scholar
  35. 35.
    O’Neal KL, Weber SG (2009) Molecular and ionic hydrogen bond formation in fluorous solvents. J Phys Chem B 113:149CrossRefGoogle Scholar
  36. 36.
    Legon AC (2008) The interaction of dihalogens and hydrogen halides with Lewis bases in the gas phase: an experimental comparison of the halogen bond and the hydrogen bond. Struct Bond 126:17CrossRefGoogle Scholar
  37. 37.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114; Angew Chem 120:6206Google Scholar
  38. 38.
    Dordonne S, Crousse B, Bonnet-Delpon D, Legros J (2011) Fluorous tagging of DABCO through halogen bonding: recyclable catalyst for the Morita–Baylis–Hillman reaction. Chem Commun 47:5855CrossRefGoogle Scholar
  39. 39.
    Serratrice G, Delpuech J-J, Diguet R (1982) Isothermal compressibilities of fluorocarbons. Relationship to gas solubility. Nouv J Chem 6:489Google Scholar
  40. 40.
    Gladysz JA, Emnet C (2004) Fluorous solvents and related media. In: Gladysz JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Wiley/VCH, Weinheim, pp 11–23CrossRefGoogle Scholar
  41. 41.
    For some recent measurements of oxygen, water and halogen solubilities, see [41]–[43]. Costa Gomes MF, Deschamps J, Menz J-H (2004) Solubility of dioxygen in seven fluorinated liquids. J Fluor Chem 125:1325Google Scholar
  42. 42.
    Freire MG, Gomes L, Santos LMNBF, Marrucho IM, Coutinho JAP (2006) Water solubility in linear fluoroalkanes used in blood substitute formulations. J Phys Chem B 110:22923Google Scholar
  43. 43.
    Podgorsek A, Stavber S, Zupan M, Iskra J, Padua AAH, Costa Gomes MF (2008) Solvation of halogens in fluorous phases. Experimental and simulation data for F2, Cl2, and Br2 in several fluorinated liquids. J Phys Chem B 112:6653Google Scholar
  44. 44.
    van Vliet MCA, Arends IWCE, Sheldon RA (1999) Perfluoroheptadecan-9-one: a selective and reusable catalyst for epoxidations with hydrogen peroxide. Chem Commun 263Google Scholar
  45. 45.
    Wende M, Meier R, Gladysz JA (2001) Fluorous catalysis without fluorous solvents: a friendlier catalyst recovery/recycling protocol based upon thermomorphic properties and liquid/solid phase separation. J Am Chem Soc 123:11490CrossRefGoogle Scholar
  46. 46.
    Ishihara K, Kondo S, Yamamoto H (2001) 3,5-Bis(perfluorodecyl)phenylboronic acid as an easily recyclable direct amide condensation catalyst. Synlett 1371Google Scholar
  47. 47.
    Gladysz JA (2009) Catalysis involving fluorous phases: fundamentals and directions for greener methodologies. In: Anastas P (ed), Crabtree RH (vol ed) Handbook of green chemistry, vol 1: Homogeneous catalysis. Wiley/VCH, Weinheim, p 17Google Scholar
  48. 48.
    Additional recent literature Vuluga D, Legros J, Crousse B, Bonnet-Delpon D (2010) Fluorous 4-N,N-dimethylaminopyridine (DMAP) salts as simple recyclable acylation catalysts. Chem Eur J 16:1776Google Scholar
  49. 49.
    Miura T, Nakashima K, Tada N, Itoh A (2011) An effective and catalytic oxidation using recyclable fluorous IBX. Chem Commun 47:1875CrossRefGoogle Scholar
  50. 50.
    Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475CrossRefGoogle Scholar
  51. 51.
    For recent references see [51] and [52]. Berven BM, Koutsantonis GA, Skelton BW, Trengove RD, White AH (2009) Highly fluorous complexes of ruthenium and osmium and their solubility in supercritical carbon dioxide. Inorg Chem 48:11832Google Scholar
  52. 52.
    Harwardt T, Franciò G, Leitner W (2010) Continuous-flow homogeneous catalysis using the temperature-controlled solvent properties of supercritical carbon dioxide. Chem Commun 46:6669CrossRefGoogle Scholar
  53. 53.
    Jessop PG, Olmstead MM, Ablan CD, Grabenauer M, Sheppard D, Eckert CA, Liotta CL (2002) Carbon dioxide as a solubility ‘switch’ for the reversible dissolution of highly fluorinated complexes and reagents in organic solvents: application to crystallization. Inorg Chem 41:3463CrossRefGoogle Scholar
  54. 54.
    Ablan CD, Hallett JP, West KN, Jones RS, Eckert CA, Liotta CL, Jessop PG (2003) Use and recovery of a homogeneous catalyst with carbon dioxide as a solubility switch. Chem Commun 2972Google Scholar
  55. 55.
    For a recent reference, see Motreff A, Belin C, da Costa RC, El Bakkari M, Vincent J-M (2010) Self-adaptive hydrophilic and coordinating Teflon surfaces through a straightforward physisorption process. Chem Commun 46:6261Google Scholar
  56. 56.
    van Zee NJ, Dragojlovic V (2009) Phase-vanishing reactions with PTFE (Teflon) as a phase screen. Org Lett 11:3190CrossRefGoogle Scholar
  57. 57.
    Zhao H, Zhang J, Wu N, Zhang X, Crowley K, Weber SG (2005) Transport of organic solutes through amorphous teflon AF films. J Am Chem Soc 127:15112CrossRefGoogle Scholar
  58. 58.
    Purse BW, Rebek J Jr (2005) Encapsulation of oligoethylene glycols and perfluoro-n-alkanes in a cylindrical host molecule. Chem Commun 722Google Scholar
  59. 59.
    Horváth IT (1998) Fluorous biphase chemistry. Acc Chem Res 31:641Google Scholar
  60. 60.
    van den Broeke J, Winter F, Deelman B-J, van Koten G (2002) A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett 4:3851CrossRefGoogle Scholar
  61. 61.
    Juliette JJJ, Rutherford D, Horváth IT, Gladysz JA (1999) Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroborations of alkenes and alkynes. J Am Chem Soc 121:2696CrossRefGoogle Scholar
  62. 62.
    West KN, Hallett JP, Jones RS, Bush D, Liotta CL, Eckert CA (2004) CO2-induced miscibility of fluorous and organic solvents for recycling homogeneous catalysts. Ind Eng Chem Res 43:4827CrossRefGoogle Scholar
  63. 63.
    Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525CrossRefGoogle Scholar
  64. 64.
    Kiss LE, Kövesdi I, Rábai J (2001) An improved design of fluorophilic molecules: prediction of the ln P fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks. J Fluor Chem 108:95CrossRefGoogle Scholar
  65. 65.
    Gladysz JA, Emnet C, Rábai J (2004) Partition coefficients involving fluorous solvents. In: Gladysz JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Weinheim, Wiley/VCH, pp 56–100CrossRefGoogle Scholar
  66. 66.
    Huque FTT, Jones K, Saunders RA, Platts JA (2002) Statistical and theoretical studies of fluorophilicity. J Fluor Chem 115:119CrossRefGoogle Scholar
  67. 67.
    de Wolf E, Ruelle P, van den Broeke J, Deelman B-J, van Koten G (2004) Prediction of partition coefficients of fluorous and nonfluorous solutes in fluorous biphasic solvent systems by mobile order and disorder theory. J Phys Chem B 108:1458CrossRefGoogle Scholar
  68. 68.
    Mercader AG, Duchowicz PR, Sanservino MA, Fernández FM, Castro EA (2007) QSPR analysis of fluorophilicity for organic compounds. J Fluor Chem 128:484CrossRefGoogle Scholar
  69. 69.
    de Wolf ACA (2002) Fluorous phosphines as green ligands for homogeneous catalysis; solving problems in fluorous catalysis, Chap 7. Doctoral Thesis, University of UtrechtGoogle Scholar
  70. 70.
    Dolbier WR (2009) Guide to fluorine NMR for organic chemists. Wiley, Hoboken, NJCrossRefGoogle Scholar
  71. 71.
    White HF (1966) Fluorine resonance spectra-structure correlations for perhalogenated propanes. Anal Chem 38:625CrossRefGoogle Scholar
  72. 72.
    Foris A (2004) 19F and 1H NMR spectra of halocarbons. Magn Reson Chem 42:534CrossRefGoogle Scholar
  73. 73.
    Richter B, de Wolf E, van Koten G, Deelman B-J (2000) Synthesis and properties of a novel family of fluorous triphenylphosphine derivatives. J Org Chem 65:3885CrossRefGoogle Scholar
  74. 74.
    Szlávik Z, Tárkányi G, Gömöry Á, Tarczay G, Rábai J (2001) Convenient syntheses and characterization of fluorophilic perfluorooctyl-propyl amines and ab initio calculations of proton affinities of related model compounds. J Fluor Chem 108:7CrossRefGoogle Scholar
  75. 75.
    Ribeiro AA (1997) 19F, 13C single- and two-bond 2D NMR correlations in perfluoroheptanoic acid. J Fluor Chem 83:61CrossRefGoogle Scholar
  76. 76.
    Kysilka O, Rybáčková M, Skalický M, Kvíčalová M, Cvačka J, Kvíčala J (2008) HFPO trimer-based alkyl triflate, a novel building block for fluorous chemistry. Preparation, reactions and 19F gCOSY analysis. Coll Czech Chem Commun 73:1799Google Scholar
  77. 77.
    Kang ET, Zhang Y (2000) Surface modification of fluoropolymers via molecular design. Adv Mater 12:1481CrossRefGoogle Scholar
  78. 78.
    Rocaboy C, Rutherford D, Bennett BL, Gladysz JA (2000) Strategy and design in fluorous phase immobilization: a systematic study of the effect of ‘pony tails’ (CH2)3(CF2)n-1CF3 on the partition coefficients of benzenoid compounds. J Phys Org Chem 13:596CrossRefGoogle Scholar
  79. 79.
    Bayliff AE, Bryce MR, Chambers RD, Matthews RS (1985) Direct observation of simple fluorinated carbanions. J Chem Soc Chem Commun 1018Google Scholar
  80. 80.
    Zhang Q, Luo Z, Curran DP (2000) Separation of “light fluorous” reagents and catalysts by fluorous solid-phase extraction: synthesis and study of a family of triarylphosphines bearing linear and branched fluorous tags. J Org Chem 65:8866CrossRefGoogle Scholar
  81. 81.
    Chambers RD, Magron C, Sandford G (1999) Reactions involving fluoride ion. Part 44.1 Synthesis and chemistry of aromatics with bulky perfluoroalkyl substituents. J Chem Soc Perkin Trans 1:283Google Scholar
  82. 82.
    Ravishankara AR, Solomon S, Turnipseed AA, Warren RF (1993) Atmospheric lifetimes of long-lived halogenated species. Science 259:194CrossRefGoogle Scholar
  83. 83.
    Lopez-Espinosa M-J, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, Ducatman A, Leonardi G (2011) Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol doi: 10.1021/es1038694, and references therein
  84. 84.
    Amii H, Uneyama K (2009) C-F bond activation in organic synthesis. Chem Rev 109:2119Google Scholar
  85. 85.
    Douvris C, Ozerov OV (2008) Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science 321:1188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations