Constitutional Dynamic Chemistry: Bridge from Supramolecular Chemistry to Adaptive Chemistry

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 322)


Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.

CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.

The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.


Adaptive chemistry Dynamic networks Dynamic polymers Molecular recognition Multiple dynamics Self-organization Supramolecular chemistry 



Constitutional dynamic chemistry


Constitutional dynamic library


Constitutional dynamic networks


Dynamic covalent chemistry or dynamic combinatorial chemistry


Dynamic non-covalent chemistry


Virtual combinatorial library


  1. 1.
    Lehn JM (1988) Supramolecular chemistry – scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed Engl 27:89–112CrossRefGoogle Scholar
  2. 2.
    (1994) Perspectives in supramolecular chemistry. Wiley, ChichesterGoogle Scholar
  3. 3.
    Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Atwood JL et al (1996) Comprehensive supramolecular chemistry. Pergamon, OxfordGoogle Scholar
  5. 5.
    Steed J, Atwood JL (2009) Supramolecular chemistry, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  6. 6.
    (a) Ariga K, Kunitake T (2006) Supramolecular chemistry – fundamentals and applications. Springer, Heidelberg. (b) Uhlenheuer DA et al (2010) Combining supramolecular chemistry with biology. Chem Soc Rev 39:2817–2826Google Scholar
  7. 7.
    (a) Lehn JM (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci U S A 99:4763–4768. (b) Lehn JM (2002) Toward self-organization and complex matter. Science 295:2400–2403Google Scholar
  8. 8.
    Lehn J-M (1999) Supramolecular science: where it is and where it is going. Kluwer, DordrechtGoogle Scholar
  9. 9.
    Lehn JM (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  10. 10.
    Lehn JM (1990) Perspectives in supramolecular chemistry – from molecular recognition towards molecular information-processing and self-organization. Angew Chem Int Ed Engl 29:1304–1319CrossRefGoogle Scholar
  11. 11.
    Lehn JM (2000) Programmed chemical systems: multiple subprograms and multiple processing/expression of molecular information. Chem Eur J 6:2097–2102CrossRefGoogle Scholar
  12. 12.
    Whitesides GM et al (1991) Molecular self-assembly and nanochemistry – a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319CrossRefGoogle Scholar
  13. 13.
    Lawrence DS et al (1995) Self-assembling supramolecular complexes. Chem Rev 95:2229–2260CrossRefGoogle Scholar
  14. 14.
    Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed Engl 35:1155–1196CrossRefGoogle Scholar
  15. 15.
    (a) Leininger S et al (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100:853–907. (b) Seidel SR, Stang PJ (2002) High-symmetry coordination cages via self-assemhly. Acc Chem Res 35:972–983Google Scholar
  16. 16.
    Swiegers GF, Malefetse TJ (2000) New self-assembled structural motifs in coordination chemistry. Chem Rev 100:3483–3537CrossRefGoogle Scholar
  17. 17.
    Lindoy LF, Atkinson IM (2000) Self-assembly in supramolecular systems. Royal Society of Chemistry, CambridgeGoogle Scholar
  18. 18.
    (a) Ciferri A (2005) Supramolecular polymers, 2nd edn. Dekker, New York. (b) J.-M. Lehn Ch. 1 in 18aGoogle Scholar
  19. 19.
    (a) Lehn JM (2002) Supramolecular polymer chemistry- scope and perspectives. Polym Int 51:825–839. (b)Lehn JM (1993) Supramolecular chemistry – molecular information and the design of supramolecular materials. Makromol Chem Macromol Symp 69:1–17Google Scholar
  20. 20.
    (a) Brunsveld L et al (2001) Supramolecular polymers. Chem Rev 101:4071–4097. (b) De Greef TFA et al (2009) Supramolecular polymerization. Chem Rev 109:5687–5754Google Scholar
  21. 21.
    (a) Lehn JM (2005) Dynamers: dynamic molecular and supramolecular polymers. Prog Polym Sci 30:814–831. (b)Lehn JM (2010) Dynamers: dynamic molecular and supramolecular polymers. Aust J Chem 63:611–623 (expanded version of [21a])Google Scholar
  22. 22.
    (a) Menger FM, Gabrielson KD (1995) Cytomimetic organic-chemistry – early developments. Angew Chem Int Ed 34:2091–2106. (b) Paleos CM et al (2001) Molecular recognition of complementary liposomes in modeling cell-cell recognition. Chembiochem 2:305–310Google Scholar
  23. 23.
    (a) Marchi-Artzner V et al (2001) Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups. Chemphyschem 2:367–376. (b) Richard A et al (2004) Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligands. Proc Natl Acad Sci USA 101:15279–15284. (c) Gong Y et al (2008) Functional determinants of a synthetic vesicle fusion system. J Am Chem Soc 130:6196–6205. (d) Voskuhl J, Ravoo BJ (2009) Molecular recognition of bilayer vesicles. Chem Soc Rev 38:495–505. (e) Marsden HR et al (2011) Model systems for membrane fusion. Chem Soc Rev 40:1572–1585Google Scholar
  24. 24.
    Desiraju GR (1995) The crystal as a supramolecular entity, perspectives in supramolecular chemistry. Wiley, ChichesterGoogle Scholar
  25. 25.
    Hosseini MW (2005) Molecular tectonics: from simple tectons to complex molecular networks. Acc Chem Res 38:313–323CrossRefGoogle Scholar
  26. 26.
    (a) Reinhoudt DN, Crego-Calama M (2002) Synthesis beyond the molecule. Science 295:2403–2407. (b) Prins LJ et al (2001) Noncovalent synthesis using hydrogen bonding. Angew Chem Int Ed 40:2382–2426Google Scholar
  27. 27.
    (a) Constable EC (1992) Oligopyridines as helicating ligands. Tetrahedron 48:10013–10059. (b) Piguet C et al (1997) Helicates as versatile supramolecular complexes. Chem Rev 97:2005–2062. (c) Albrecht M (2001) “Let’s twist again” – Double-stranded, triple-stranded, and circular helicates. Chem Rev 101:3457–3497. (d) Albrecht M, Frölich R (2007) Symmetry driven self-assembly of metallo-supramolecular architectures. Bull Chem Soc Jpn 80:797–808Google Scholar
  28. 28.
    (a) Fujita M (1998) Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chem Soc Rev 27:417–425. (b) Sun WY et al (2002) Multicomponent metal-ligand self-assembly. Curr Opin Chem Biol 6:757–764. (c) Ward MD (2002) Supramolecular coordination chemistry. Annu Rep Prog Chem A 98:285. (d) Fujita M et al. (2005) Coordination assemblies from a Pd(II)-cornered square complex. Acc Chem Res 38:369–378Google Scholar
  29. 29.
    (a) Caulder DL, Raymond KN (1999) Supermolecules by design. Acc Chem Res 32:975–982. (b) Saalfrank RW, Demleitner B (1999) Transition metals in supramolecular chemistry. Wiley, New York. (c) Swiegers GF, Malefetse TJ, (2000) New self-assembled structural motifs in coordination chemistry. Chem Rev 100:3483. (d) Leininger S, Olenyuk B, Stang PJ (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100:853. (e) Albrecht M (2000) From molecular diversity to template-directed self-assembly – new trends in metallo-supramolecular chemistry. J Incl Phenom Macrocyl Chem 36:127–151. (f) Seidal SR, Stang PJ (2002) High symmetry coordination cages via self-assembly. Acc Chem Res 35:972. (g) Gianneschi NC et al (2005) Development of a coordination chemistry-based approach for functional supramolecular structures. Acc Chem Res 38:825-837. (h) Steel PJ (2005) Ligand design in multimetallic architectures: six lessons learned. Acc Chem Res 38:243–250. (i) Saalfrank RW et al (2008) Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew Chem Int Ed 47:8794–8824Google Scholar
  30. 30.
    Ruben M et al (2004) Grid-type metal ion architectures: functional metallosupramolecular arrays. Angew Chem Int Ed Engl 43:3644–3662CrossRefGoogle Scholar
  31. 31.
    Krämer R et al (1993) Self-recognition in helicate self-assembly – spontaneous formation of helical metal-complexes from mixtures of ligands and metal-ions. Proc Natl Acad Sci USA 90:5394–5398CrossRefGoogle Scholar
  32. 32.
    Funeriu DP et al (2000) Multiple expression of molecular information: enforced generation of different supramolecular inorganic architectures by processing of the same ligand information through specific coordination algorithms. Chem Eur J 6:2103–2111CrossRefGoogle Scholar
  33. 33.
    (a) Lehn JM (1978) Cryptates – inclusion complexes of macropolycyclic receptor molecules. Pure Appl Chem 50:871–892. (b) Lehn JM (1978) Cryptates – chemistry of macropolycyclic inclusion complexes. Acc Chem Res 11:49–57Google Scholar
  34. 34.
    (a) Hasenknopf B et al (1996) Self-assembly of a circular double helicate. Angew Chem Int Ed Engl 35:1838–1840. (b) Hasenknopf B et al (1997) Self-assembly of tetra- and hexanuclear circular helicates. J Am Chem Soc 119:10956–10962. This case represents selection from a dynamic non-covalent (coordination) libraryGoogle Scholar
  35. 35.
    Lehn JM (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463CrossRefGoogle Scholar
  36. 36.
    (a) Rowan SJ et al (2002) Dynamic covalent chemistry. Angew Chem Int Ed 41:898–952. (b) Cheeseman JD et al (2005) Receptor-assisted combinatorial chemistry: Thermodynamics and kinetics in drug discovery. Chem Eur J 11:1708–1716Google Scholar
  37. 37.
    (a) Miller BL (2010) Dynamic combinatorial chemistry. Wiley, Chichester. (b) Reek JNH, Otto S (2010) Dynamic combinatorial chemistry. Wiley-VCH, Weinheim. (c) For self-sorting systems, see: Ghosh S, Isaacs L, Chap. 4, in [37a])Google Scholar
  38. 38.
    (a) Corbett PT et al (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711. (b) Ladame S (2008) Dynamic combinatorial chemistry: on the road to fulfilling the promise. Org Biomol Chem 6:219–226Google Scholar
  39. 39.
    Ramström O, Lehn JM (2002) Drug discovery by dynamic combinatorial libraries. Nature Rev Drug Discovery 1:26–36. (b) Hochgürtel M, Lehn J-M (2006) Fragment-based approaches in drug discovery. Wiley-VCH, Weinheim. (c) Ramström O, Lehn J-M (2007) Comprehensive medicinal chemistry II. Elsevier, Oxford. (d) Ramström O et al (2004) Dynamic combinatorial carbohydrate libraries: probing the binding site of the concanavalin A lectin. Chem Eur J 10:1711–1715. (e) Hotchkiss T et al (2005) Ligand amplification in a dynamic combinatorial glycopeptide library. Chem Commun:4264–4266Google Scholar
  40. 40.
    For reversible coordination processes, see for instance: (a) [34]; (b) Kruppa M, König B (2006) Reversible coordinative bonds in molecular recognition. Chem Rev 106:3520–3560. (c) De S et al (2010) Metal-coordination-driven dynamic heteroleptic architectures. Chem Soc Rev 39:1555–1575. (d) For the interconversion of a quadruple helicate and grid species see: Baxter PNW et al (2000) Self-assembly and structure of interconverting multinuclear inorganic arrays: a [4 x 5]-Ag-20(I) grid and an Ag-10(I) quadruple helicate. Chem Eur J 6:4510–4517. (e) see also Figures 11 and 12 hereafterGoogle Scholar
  41. 41.
    For dynamic processes involving hydrogen-bonded entities, see: (a) Calama MC et al (1998) Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems. Chem Commun:1021–1022. (b) Timmerman P et al. (1997) Noncovalent assembly of functional groups on Calix[4]arene molecular boxes. Chem Eur J 3:1823–1832. (c) Cai MM et al. (2002) Cation-directed self-assembly of lipophilic nucleosides: the cation’s central role in the structure and dynamics of a hydrogen-bonded assembly. Tetrahedron 58:661–671Google Scholar
  42. 42.
    Severin K (2004) The advantage of being virtual-target-induced adaptation and selection in dynamic combinatorial libraries. Chem Eur J 10:2565–2580CrossRefGoogle Scholar
  43. 43.
    Huc I, Lehn JM (1997) Virtual combinatorial libraries: Dynamic generation of molecular and supramolecular diversity by self-assembly. Proc Natl Acad Sci USA 94:2106–2110. This case represents selection from a dynamic covalent library.Google Scholar
  44. 44.
    Brady PA, Sanders JKM (1997) Selection approaches to catalytic systems. Chem Soc Rev 26:327–336CrossRefGoogle Scholar
  45. 45.
    Giuseppone N, Lehn JM (2006) Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. Chem Eur J 12:1715–1722CrossRefGoogle Scholar
  46. 46.
    (a) Otto S, Severin K (2007) Dynamic combinatorial libraries for the development of synthetic receptors and sensors. Top Curr Chem 277:267–288. (b) Lam RTS et al (2005) Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308:667–669. (c) Au-Yeung HY et al (2009) Templated amplification of a naphthalenediimide-based receptor from a donor-acceptor dynamic combinatorial library in water. Chem Commun:419–421. (d) Klein JM et al (2011) A remarkably flexible and selective receptor for Ba2+ amplified from a hydrazone dynamic combinatorial library. Chem Commun 47:3371–3373Google Scholar
  47. 47.
    Giuseppone N, Lehn JM (2006) Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angew Chem Int Ed Engl 45:4619–4624CrossRefGoogle Scholar
  48. 48.
    Fujii S, Lehn JM (2009) Structural and functional evolution of a library of constitutional dynamic polymers driven by alkali metal ion recognition. Angew Chem Int Ed Engl 48:7635–7638CrossRefGoogle Scholar
  49. 49.
    Berl V et al (1999) Induced fit selection of a barbiturate receptor from a dynamic structural and conformational/configurational library. Eur J Org Chem:3089–3094Google Scholar
  50. 50.
    Sreenivasachary N, Lehn JM (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Natl Acad Sci U S A 102:5938–5943CrossRefGoogle Scholar
  51. 51.
    For systems presenting a type of supramolecular Darwinism, see: Müller A et al (2001) Generation of cluster capsules (I-h) from decomposition products of a smaller cluster (Keggin-T-d) while surviving ones get encapsulated: species with core-shell topology formed by a fundamental symmetry-driven reaction. Chem Commun:657–658Google Scholar
  52. 52.
    (a) Nelson SM (1982) Binuclear complexes of macrocyclic schiff-base ligands as hosts for small substrate molecules. Inorg Chim Acta 62:39–50. (b) Drew MGB et al (1978) Template synthesis of a bimetallic complex of a 30-membered decadentate macrocyclic ligand – crystal and molecular-structure of a lead(Ii) complex. J Chem Soc Chem Commun:415–416. For recent examples, see for instance: (c) Storm O, Lüning U (2002) How to synthesize macrocycles efficiently by using virtual combinatorial libraries. Chem Eur J 8:793–798. (d) Lüning U (2008) Macrocycles in supramolecular chemistry: from dynamic combinatorial chemistry to catalysis. Pol J Chem 82:1161–1174Google Scholar
  53. 53.
    Nitschke JR, Lehn JM (2003) Self-organization by selection: Generation of a metallosupramolecular grid architecture by selection of components in a dynamic library of ligands. Proc Natl Acad Sci USA 100:11970–11974CrossRefGoogle Scholar
  54. 54.
    Giuseppone N et al (2004) Generation of dynamic constitutional diversity and driven evolution in helical molecular strands under Lewis acid catalyzed component exchange. Angew Chem Int Ed Engl 43:4902–4906CrossRefGoogle Scholar
  55. 55.
    Nitschke JR (2007) Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc Chem Res 40:103–112CrossRefGoogle Scholar
  56. 56.
    Cao XY et al (2007) Generation of [2X2] grid metallosupramolecular architectures from preformed ditopic bis(acylhydrazone) ligands and through component self-assembly. Eur J Inorg Chem:2944–2965.Google Scholar
  57. 57.
    Giuseppone N, Lehn JM (2004) Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system. J Am Chem Soc 126:11448–11449CrossRefGoogle Scholar
  58. 58.
    Bunyapaiboonsri T et al (2001) Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. Chembiochem 2:438–444CrossRefGoogle Scholar
  59. 59.
    (a) Hochgürtel M et al (2002) Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc Natl Acad Sci USA 99:3382–3387. (b) Caraballo R et al (2010) Towards dynamic drug design: identification and optimization of beta-galactosidase inhibitors from a dynamic hemithioacetal system. Chembiochem 11:1600–1606Google Scholar
  60. 60.
    Valade A et al (2006) Target-assisted selection of galactosyltransferase binders from dynamic combinatorial libraries. An unexpected solution with restricted amounts of the enzyme. Chembiochem 7:1023–1027CrossRefGoogle Scholar
  61. 61.
    Ono T et al (2005) Dynamic polymer blends – component recombination between neat dynamic covalent polymers at room temperature. Chem Commun:1522–1524Google Scholar
  62. 62.
    Ono T et al (2007) Soft-to-hard transformation of the mechanical properties of dynamic covalent polymers through component incorporation. Chem Commun:46–48Google Scholar
  63. 63.
    Ono T et al (2007) Optodynamers: expression of color and fluorescence at the interface between two films of different dynamic polymers. Chem Commun:4360–4362.Google Scholar
  64. 64.
    (a) Boul PJ et al (2005) Reversible diels-alder reactions for the generation of dynamic combinatorial libraries. Org Lett 7:15–18. (b) Reutenauer P et al (2009) Room temperature dynamic polymers based on diels-alder chemistry. Chem Eur J 15:1893–1900Google Scholar
  65. 65.
    Cordier P et al (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980CrossRefGoogle Scholar
  66. 66.
    Ruff Y, Lehn JM (2008) Glycodynamers: dynamic analogs of arabinofuranoside oligosaccharides. Biopolymers 89:486–496CrossRefGoogle Scholar
  67. 67.
    Ruff Y, Lehn JM (2008) Glycodynamers: fluorescent dynamic analogues of polysaccharides. Angew Chem Int Ed Engl 47:3556–3559CrossRefGoogle Scholar
  68. 68.
    Ruff Y et al (2010) Glycodynamers: dynamic polymers bearing oligosaccharides residues – generation, structure, physicochemical, component exchange, and lectin binding properties. J Am Chem Soc 132:2573–2584CrossRefGoogle Scholar
  69. 69.
    Sreenivasachary N et al (2006) DyNAs: constitutional dynamic nucleic acid analogues. Chem Eur J 12:8581–8588CrossRefGoogle Scholar
  70. 70.
    A. Hirsch, J.-M. Lehn unpublished resultsGoogle Scholar
  71. 71.
    Lu Y, Liu JW (2007) Smart wanomaterials inspired by biology: dynamic assembly of error-free manomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323Google Scholar
  72. 72.
    Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRefGoogle Scholar
  73. 73.
    (a) Levrand B et al (2006) Controlled release of volatile aldehydes and ketones by reversible hydrazone formation – “classical” profragrances are getting dynamic. Chem Commun:2965–2967. (b) Levrand B et al (2007) Controlled release of volatile aldehydes and ketones from dynamic mixtures generated by reversible hydrazone formation. Helv Chim Acta 90:2281–2314. (c) Godin G et al (2010) Reversible formation of aminals: a new strategy to control the release of bioactive volatiles from dynamic mixtures. Chem Commun 46:3125–3127Google Scholar
  74. 74.
    (a) Baxter PNW et al (1997) Generation of an equilibrating collection of circular inorganic copper(I) architectures and solid-state stabilisation of the dicopper helicate component. Chem Commun:1323–1324. (b) For a recently described case of crystallization-controlled dynamic self-assembly, see: Takahagi H, Iwasawa N (2010) Crystallization-controlled dynamic self-assembly and an on/off switch for equilibration using boronic ester formation. Chem Eur J 16:13680–13688Google Scholar
  75. 75.
    Baxter PNW et al (2000) Adaptive self-assembly: environment-induced formation and reversible switching of polynuclear metallocyclophanes. Chem Eur J 6:4140–4148CrossRefGoogle Scholar
  76. 76.
    Folmer-Andersen JF, Lehn JM (2009) Constitutional adaptation of dynamic polymers: hydrophobically driven sequence selection in dynamic covalent polyacylhydrazones. Angew Chem Int Ed Engl 48:7664–7667CrossRefGoogle Scholar
  77. 77.
    (a) Lao LL et al (2010) Evolution of a constitutional dynamic library driven by self-organisation of a helically folded molecular strand. Chem Eur J 16:4903–4910. For folding-driven processes, see also: (b) Oh K et al (2001) Folding-driven synthesis of oligomers. Nature 414:889–893. (c) Hill DJ et al (2001) A field guide to foldamers. Chem Rev 101:3893–4011Google Scholar
  78. 78.
    (a) Ulrich S et al (2009) Reversible constitutional switching between macrocycles and polymers induced by shape change in a dynamic covalent system. New J Chem 33:271–292. (b) Ulrich S, Lehn JM (2009) Adaptation to shape switching by component selection in a constitutional dynamic system. J Am Chem Soc 131:5546–5559Google Scholar
  79. 79.
    Ulrich S, Lehn JM (2009) Adaptation and optical signal generation in a constitutional dynamic network. Chem Eur J 15:5640–5645CrossRefGoogle Scholar
  80. 80.
    Goral V et al (2001) Double-level “orthogonal” dynamic combinatorial libraries on transition metal template. Proc Natl Acad Sci USA 98:1347–1352CrossRefGoogle Scholar
  81. 81.
    (a) Orrillo AG et al (2008) Covalent double level dynamic combinatorial libraries: selectively addressable exchange processes. Chem Commun:5298–5300. (b) Rodriguez-Docampo Z, Otto S (2008) Orthogonal or simultaneous use of disulfide and hydrazone exchange in dynamic covalent chemistry in aqueous solution. Chem Commun:5301–5303. (c) Sarma RJ et al (2007) Disulfides, imines, and metal coordination within a single system: Interplay between three dynamic equilibria. Chem Eur J 13:9542–9546. (d) Imine and disulfide exchange has for instance been implemented in the design of a molecular walker: Barrell MJ et al (2011) Light-driven transport of a molecular walker in either direction along a molecular track. Angew Chem Int Ed 50:285–290Google Scholar
  82. 82.
    (a) Chichak KS et al (2004) Molecular Borromean rings. Science 304:1308–1312. (b) Northrop BH et al (2006) Template-directed synthesis of mechanically interlocked molecular bundles using dynamic covalent chemistry. Org Lett 8:3899–3902. (c) For a recent case, see for instance the formation of a cryptophane cage via dynamic imine formation: Givelet C et al (2011) Templated dynamic cryptophane formation in water. Chem Commun 47:4511–4513Google Scholar
  83. 83.
    Lehn JM (2006) Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices. Chem Eur J 12:5910–5915CrossRefGoogle Scholar
  84. 84.
    Chaur MN et al (2011) Configurational and constitutional information storage: multiple dynamics in systems based on pyridyl and acyl hydrazones. Chem Eur J 17:248–258CrossRefGoogle Scholar
  85. 85.
    Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529CrossRefGoogle Scholar
  86. 86.
    (a) A related case is given by the generation of a hydrogel based on dynamically connected guanosine-quartet derivatives [50] (see also above). Amplification of the constituent that yields the most stable gel leads to the agonistic amplification of the “image” constituent, as free entity, not part of the network of the gel but present in the sol phase. In this case, self-organisation-driven CDC has two remarkable effects: it selects for the best gelator(s) and generates free constituent(s) that may undergo further chemistry in a sort of “phase selection” process; (b) for complex interactions and behaviour in a biological system, see for instance: Chuang JS et al (2010) Cooperation and Hamilton’s rule in a simple synthetic microbial system. Mol Syst Biol 6Google Scholar
  87. 87.
    (a) Stankiewicz J, Eckardt LH (2006) Chembiogenesis 2005 and systems chemistry workshop. Angew Chem Int Ed 45:342–344. (b) Kindermann M et al (2005) Systems chemistry: kinetic and computational analysis of a nearly exponential organic replicator. Angew Chem Int Ed 44:6750–6755. (c) Hunta RAR, Otto S (2011) Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem Commun 47:847–858. (d) Corbett PT et al (2007) Systems chemistry: pattern formation in random dynamic combinatorial libraries. Angew Chem Int Ed 46:8858–8861. (e) For the integration of replication based strategies in dynamic covalent systems, see: del Amo V, Philp D (2010) Integrating replication-based selection strategies in dynamic covalent systems. Chem Eur J 16:13304–13318. (f) For the behaviour of biological networks, see for instance: Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917. (g) Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338Google Scholar
  88. 88.
    Serrano MA et al (2009) Extracting the multiscale backbone of complex weighted networks. Proc Natl Acad Sci USA 106:6483–6488CrossRefGoogle Scholar
  89. 89.
    Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRefGoogle Scholar
  90. 90.
    Pattern formation in DCLs of metal-dye complexes provides a basis for sensing processes: Severin K (2010) Pattern-based sensing with simple metal-dye complexes. Curr Opin Chem Biol 14:737–742Google Scholar
  91. 91.
    Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–764CrossRefGoogle Scholar
  92. 92.
    Ridderinkhof KR, van den Wildenberg WPM (2005) Neuroscience – adaptive coding. Science 307:1059–1060CrossRefGoogle Scholar
  93. 93.
    Self-organization in time may be considered to involve the generation of oriented (motor) motion by motional selection from random Brownian motion, see: (a) Kay ER et al (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72–191 and references therein; (b) see [83] and references thereinGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 2011

Authors and Affiliations

  1. 1.Institut de Science et d’Ingénierie SupramoléculairesUniversité de StrasbourgStrasbourgFrance

Personalised recommendations