Skip to main content

Teflon AF Materials

  • Chapter
  • First Online:
Fluorous Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 308))

Abstract

The unique combination of chemical, thermal, and mechanical stability, high fractional free volume, low refractive index, low surface energy, and wide optical transparency has led to growing interest in Teflon Amorphous Fluoropolymers (AFs) for a wide spectrum of applications ranging from chemical separations and sensors to bioassay platforms. New opportunities arise from the incorporation of nanoscale materials in Teflon AFs. In this chapter, we highlight fractional free volume – the most important property of Teflon AFs – with the aim of clarifying the unique transport behavior through Teflon AF membranes. We then review state-of-the-art developments based on Teflon AF platforms by focusing on the chemistry behind the applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yampolskii Y, Pinnau I, Freeman BD (eds) (2006) Materials science of membranes for gas and vapor separation. Wiley, Chichester

    Google Scholar 

  2. Arcella V, Ghielmi A, Tommasi G (2003) High performance perfluoropolymer films and membranes. Ann NY Acad Sci 984(Advanced Membrane Technology):226

    Google Scholar 

  3. Rindfleisch F, DiNoia TP, McHugh MA (1996) Solubility of polymers and copolymers in supercritical CO2. J Phys Chem 100(38):15581

    Article  CAS  Google Scholar 

  4. Tuminello WH, Dee GT, McHugh MA (1995) Dissolving perfluoropolymers in supercritical carbon dioxide. Macromolecules 28(5):1506

    Article  CAS  Google Scholar 

  5. Yampolskii Y, Belov N, Tokarev A, Bondarenko G (2006) Sorption and transport of F- and H-containing organic vapors in amorphous perfluorinated polymers. Desalination 199(1–3):469

    Article  CAS  Google Scholar 

  6. Boswell PG, Bühlmann P (2005) Fluorous bulk membranes for potentiometric sensors with wide selectivity ranges: observation of exceptionally strong ion pair formation. J Am Chem Soc 127(25):8958

    Article  CAS  Google Scholar 

  7. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22(5):339

    Article  CAS  Google Scholar 

  8. Golemme G, Nagy JB, Fonseca A, Algieri C, Yampolskii Y (2003) 129Xe-NMR study of free volume in amorphous perfluorinated polymers: comparison with other methods. Polymer 44(17):5039

    Article  CAS  Google Scholar 

  9. Shantarovich VP, Kevdina IB, Yampolskii YP, Alentiev AY (2000) Positron annihilation lifetime study of high and low free volume glassy polymers: effects of free volume sizes on the permeability and permselectivity. Macromolecules 33(20):7453

    Article  CAS  Google Scholar 

  10. Yampolskii Y (2009) Amorphous perfluorinated membrane materials: structure, properties and application. Russ J Gen Chem 79(3):657

    Article  CAS  Google Scholar 

  11. Scheirs J (1997) Modern fluoropolymers: high performance polymers for diverse applications. Wiley, Chichester

    Google Scholar 

  12. O’Neal KL, Zhang H, Yang Y, Hong L, Lu D, Weber SG (2010) Fluorous media for extraction and transport. J Chromatogr A 1217(16):2287

    Article  Google Scholar 

  13. Polyakov AM, Starannikova LE, Yampolskii YP (2004) Amorphous Teflons AF as organophilic pervaporation materials. Separation of mixtures of chloromethanes. J Membrane Sci 238(1–2):21

    Article  CAS  Google Scholar 

  14. Dasgupta PK, Zhang G, Poruthoor SK, Caldwell S, Dong S, Liu S-Y (1998) High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection. Anal Chem 70(22):4661

    Article  CAS  Google Scholar 

  15. Gangal SV (2002) Perfluorinated polymers, tetrafluoroethylene–perfluorodioxole copolymers. Wiley, Chichester

    Google Scholar 

  16. Yang MK, French RH, Tokarsky EW (2008) Optical properties of Teflon AF amorphous fluoropolymers. J Micro Nanolithogr MEMS MOEMS 7(3):033010/1

    Google Scholar 

  17. Finkelshtein ES, Makovetskii KL, Gringolts ML, Rogan YV, Golenko TG, Starannikova LE, Yampolskii YP, Shantarovich VP, Suzuki T (2006) Addition-type polynorbornenes with Si(CH3)3 side groups: synthesis, gas permeability, and free volume. Macromolecules 39(20):7022

    Article  CAS  Google Scholar 

  18. Yampolskii YP, Finkelshtein ES, Makovetskii KL, Bondar VI, Shantarovich VP (1996) Effects of cis-trans-configurations of the main chains of poly(trimethylsilyl norbornene) on its transport and sorption properties as well as free volume. J Appl Polym Sci 62(2):349

    Article  CAS  Google Scholar 

  19. Yampolskii YP, Soloviev SA, Gringolts ML (2004) Thermodynamics of sorption in and free volume of poly(5,6-bis(trimethylsilyl)norbornene). Polymer 45(20):6945

    Article  CAS  Google Scholar 

  20. Hofmann D, Entrialgo-Castano M, Lerbret A, Heuchel M, Yampolskii Y (2003) Molecular modeling investigation of free volume distributions in stiff chain polymers with conventional and ultrahigh free volume: comparison between molecular modeling and positron lifetime studies. Macromolecules 36(22):8528

    Article  CAS  Google Scholar 

  21. Alexander Stern S (1994) Polymers for gas separations: the next decade. J Membrane Sci 94(1):1

    Article  Google Scholar 

  22. Pinnau I, Toy LG (1996) Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. J Membrane Sci 109(1):125

    Article  CAS  Google Scholar 

  23. Freeman BD, Pinnau I (1999) Polymer membranes for gas and vapor separation. ACS Symposium Series, vol 733. American Chemical Society, Washington DC, p 1

    Google Scholar 

  24. Merkel TC, Bondar V, Nagai K, Freeman BD, Yampolskii YP (1999) Gas sorption, diffusion, and permeation in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene). Macromolecules 32(25):8427

    Article  CAS  Google Scholar 

  25. Alentiev AY, Shantarovich VP, Merkel TC, Bondar VI, Freeman BD, Yampolskii YP (2002) Gas and vapor sorption, permeation, and diffusion in glassy amorphous Teflon AF1600. Macromolecules 35(25):9513

    Article  CAS  Google Scholar 

  26. Bondar VI, Freeman BD, Yampolskii YP (1999) Sorption of gases and vapors in an amorphous glassy perfluorodioxole copolymer. Macromolecules 32(19):6163

    Article  CAS  Google Scholar 

  27. Hildebrand JH, Prausnitz JM, Scott RL (1970) Regular and related solutions. The solubility of gases, liquids, and solids. Van Nostrand Reinhold, New York

    Google Scholar 

  28. Fleming GK, Koros WJ (1986) Dilation of polymers by sorption of carbon dioxide at elevated pressures. 1. Silicone rubber and unconditioned polycarbonate. Macromolecules 19(8):2285

    Article  CAS  Google Scholar 

  29. Ferrari MC, Galizia M, De Angelis MG, Sarti GC (2010) Gas and vapor transport in mixed matrix membranes based on amorphous Teflon AF1600 and AF2400 and fumed silica. Ind Eng Chem Res 49(23):11920

    Article  CAS  Google Scholar 

  30. Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Sorption and transport in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) containing nanoscale fumed silica. Macromolecules 36(22):8406

    Article  CAS  Google Scholar 

  31. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296(5567):519

    Article  CAS  Google Scholar 

  32. Polyakov AM, Starannikova LE, Yampolskii YP (2003) Amorphous Teflons AF as organophilic pervaporation materials. Transport of individual components. J Membrane Sci 216(1–2):241

    Article  CAS  Google Scholar 

  33. Polyakov A, Bondarenko G, Tokarev A, Yampolskii Y (2006) Intermolecular interactions in target organophilic pervaporation through the films of amorphous Teflon AF2400. J Membrane Sci 277(1–2):108

    Article  CAS  Google Scholar 

  34. Jansen JC, Friess K, Drioli E (2010) Organic vapour transport in glassy perfluoropolymer membranes: a simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J Membrane Sci 367(1–2):141

    Google Scholar 

  35. Horváth IT (1998) Fluorous biphase chemistry. Accounts Chem Res 31(10):641

    Article  Google Scholar 

  36. Vincent J-M (2008) Noncovalent associations in fluorous fluids. J Fluor Chem 129(10):903

    Article  CAS  Google Scholar 

  37. Zhao H, Ismail K, Weber SG (2004) How fluorous is poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxide-co-tetrafluoroethylene) (Teflon AF)? J Am Chem Soc 126(41):13184

    Article  CAS  Google Scholar 

  38. Zhao H, Zhang J, Wu N, Zhang X, Crowley K, Weber SG (2005) Transport of organic solutes through amorphous Teflon AF films. J Am Chem Soc 127(43):15112

    Article  CAS  Google Scholar 

  39. Zhang H, Hong L, Weber SG (2009) Dependence of the physical properties and transport behavior of perfluorotripentylamine-doped Teflon AF films on composition. PMSE Preprints 100:358

    CAS  Google Scholar 

  40. Zhang H, Hussam A, Weber SG (2010) Properties and transport behavior of perfluorotripentylamine (FC-70)-doped amorphous Teflon AF 2400 films. J Am Chem Soc 132(50):17867

    Article  CAS  Google Scholar 

  41. Don T-M, Bell JP, Narkis M (1996) Antiplasticization behavior of polycaprolactone/polycarbonate-modified epoxies. Polym Eng Sci 36:2601

    Article  CAS  Google Scholar 

  42. Goss K-U, Bronner G (2006) What is so special about the sorption behavior of highly fluorinated compounds? J Phys Chem A 110(30):9518

    Article  CAS  Google Scholar 

  43. van Krevelen DW, Hoftijzer PJ (1948) Kinetics of gas-liquid reactions part I. General theory. Recl Trav Chim Pays Bas 67:563

    Article  Google Scholar 

  44. O’Brien M, Baxendale IR, Ley SV (2010) Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. Org Lett 12(7):1596

    Article  Google Scholar 

  45. Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV (2011) The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew Chem Int Ed Engl 50(5):1190

    Article  CAS  Google Scholar 

  46. Voraberger HS, Trettnak W, Ribitsch V (2003) Optochemical hydrogen peroxide sensor based on oxygen detection. Sens Actuators B Chem B90(1–3):324

    Article  CAS  Google Scholar 

  47. Kurauchi Y, Ogata T, Egashira N, Ohga K (1996) Fiber-optic sensor with a dye-modified chitosan/poly(vinyl alcohol) cladding for the determination of organic acids. Anal Sci 12(1):55

    Article  CAS  Google Scholar 

  48. Hughes LD, DeVol TA (2006) Characterization of a Teflon coated semiconductor detector flow cell for monitoring of pertechnetate in groundwater. J Radioanal Nucl Ch 267(2):287

    Article  CAS  Google Scholar 

  49. Waich K, Mayr T, Klimant I (2007) Microsensors for detection of ammonia at ppb-concentration levels. Meas Sci Technol 18(10):3195

    Article  CAS  Google Scholar 

  50. Thomas PC, Halter M, Tona A, Raghavan SR, Plant AL, Forry SP (2009) A noninvasive thin film sensor for monitoring oxygen tension during in vitro cell culture. Anal Chem 81(22):9239

    Article  CAS  Google Scholar 

  51. Chen B, Xiang S, Qian G (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43(8):1115

    Article  CAS  Google Scholar 

  52. Rego R, Caetano N, Mendes A (2004) Development of a new gas sensor for binary mixtures based on the permselectivity of polymeric membranes. Application to carbon dioxide/methane and carbon dioxide/helium mixtures. Anal Chim Acta 511(2):215

    Article  CAS  Google Scholar 

  53. Rego R, Caetano N, Mendes A (2005) Hydrogen/methane and hydrogen/nitrogen sensor based on the permselectivity of polymeric membranes. Sens Actuators B Chem B111–B112:150

    Article  Google Scholar 

  54. Waterbury RD, Yao W, Byrne RH (1997) Long pathlength absorbance spectroscopy: trace analysis of Fe(II) using a 4.5 m liquid core waveguide. Anal Chim Acta 357(1–2):99

    Article  CAS  Google Scholar 

  55. Dasgupta PK, Zhang G, Li J, Boring CB, Jambunathan S, Al-Horr R (1999) Luminescence detection with a liquid core waveguide. Anal Chem 71(7):1400

    Article  CAS  Google Scholar 

  56. Wang Z, Wang Y, Cai W-J, Liu S-Y (2002) A long pathlength spectrophotometric pCO2 sensor using a gas-permeable liquid-core waveguide. Talanta 57(1):69

    CAS  Google Scholar 

  57. Lu Z, Dai M, Xu K, Chen J, Liao Y (2008) A high precision, fast response, and low power consumption in situ optical fiber chemical pCO2 sensor. Talanta 76(2):353

    Article  CAS  Google Scholar 

  58. Murphy B, McLoughlin P (2003) Determination of Chlorinated hydrocarbon species in aqueous solution using Teflon coated ATR Waveguide/FTIR spectroscopy. Int J Environ Anal Chem 83(7–8):653

    Article  CAS  Google Scholar 

  59. Du W-B, Fang Q, He Q-H, Fang Z-L (2005) High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal Chem 77(5):1330

    Article  CAS  Google Scholar 

  60. Osterfeld M, Franke H, Brandenburg A (1994) Compensation of temperature drift in leaky-mode spectra for sensor applications. Appl Phys A Solids Surfaces A58(3):215

    Article  CAS  Google Scholar 

  61. Podgorsek RP, Franke H, Caron S, Galarneau P (1998) Dynamic and polychromatic SPR-leaky mode spectroscopy with Teflon AF films on silver for chemo-sensing. In: Applications of photonic technology 3. SPIE-International Society for Optical Engineering, vol 3491, p 777

    Google Scholar 

  62. Podgorsek RP, Sterkenburgh T, Wolters J, Ehrenreich T, Nischwitz S, Franke H (1997) Optical gas sensing by evaluating ATR leaky mode spectra. Sens Actuators B Chem 39(1–3):349

    Article  Google Scholar 

  63. Podgorsek RP, Franke H (2002) Selective optical detection of aromatic vapors. Appl Opt 41(4):601

    Article  CAS  Google Scholar 

  64. Osterfeld M, Franke H, Feger C (1993) Optical gas detection using metal film enhanced leaky mode spectroscopy. Appl Phys Lett 62(19):2310

    Article  CAS  Google Scholar 

  65. Kebabian PL, Freedman A (2006) Fluoropolymer-based capacitive carbon dioxide sensor. Meas Sci Technol 17(4):703

    Article  CAS  Google Scholar 

  66. Cha W, Meyerhoff ME (2006) Enhancing the selectivity of amperometric nitric oxide sensor over ammonia and nitrite by modifying gas-permeable membrane with Teflon AF. Chem Analityczna 51(6):949

    CAS  Google Scholar 

  67. Cha W, Meyerhoff ME (2006) S-Nitrosothiol detection via amperometric nitric oxide sensor with surface modified hydrogel layer containing immobilized organoselenium catalyst. Langmuir 22(25):10830

    Article  CAS  Google Scholar 

  68. Bidault F, Kucernak A (2011) Cathode development for alkaline fuel cells based on a porous silver membrane. J Power Sources 196(11):4950

    Article  CAS  Google Scholar 

  69. O’Neal KL, Geib S, Weber SG (2007) Extraction of pyridines into fluorous solvents based on hydrogen bond complex formation with carboxylic acid receptors. Anal Chem 79(8):3117

    Article  Google Scholar 

  70. O’Neal KL, Weber SG (2008) Molecular and ionic hydrogen bond formation in fluorous solvents. J Phys Chem B 113(1):149

    Article  Google Scholar 

  71. O’Neal KL, Weber SG (2009) Extraction and metalation of porphyrins in fluorous liquids with carboxylic acids and metal salts. J Phys Chem B 113(21):7449

    Article  Google Scholar 

  72. Lai C-Z, Koseoglu SS, Lugert EC, Boswell PG, Rabai J, Lodge TP, Bühlmann P (2009) Fluorous polymeric membranes for ionophore-based ion-selective potentiometry: how inert is Teflon AF? J Am Chem Soc 131(4):1598

    Article  CAS  Google Scholar 

  73. Han D, Steckl AJ (2009) Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25(16):9454

    Article  CAS  Google Scholar 

  74. Shiu J-Y, Whang W-T, Chen P (2008) Superhydrophobic coatings for microdevices. J Adhes Sci Technol 22(15):1883

    Article  CAS  Google Scholar 

  75. Ling XY, Phang IY, Vancso GJ, Huskens J, Reinhoudt DN (2009) Stable and transparent superhydrophobic nanoparticle films. Langmuir 25(5):3260

    Article  CAS  Google Scholar 

  76. Thieme M, Blank C, Pereira de Oliveira A, Worch H, Frenzel R, Hohne S, Simon F, Pryce Lewis HG, White AJ (2009) Superhydrophobic Aluminum Surfaces: Preparation Routes, Properties and Artificial Weathering Impact, in Contact Angle, Wettability and Adhesion, Vol. 6. Leiden, Koninklijke Brill NV: 251–267

    Google Scholar 

  77. Wu J, Xia J, Lei W, B-p W (2010) A one-step method to fabricate lotus leaves-like ZnO film. Mater Lett 65(3):477

    Article  Google Scholar 

  78. Muthiah P, Hsu S-H, Sigmund W (2010) Coaxially electrospun PVDF-Teflon AF and Teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties. Langmuir 26(15):12483

    Article  CAS  Google Scholar 

  79. Scheffler R, Bell NS, Sigmund W (2010) Electrospun Teflon AF fibers for superhydrophobic membranes. J Mater Res 25(8):1595

    Article  CAS  Google Scholar 

  80. Shi LT, Jiang CG, Ma GJ, Wu CW (2010) Electric field assisted manipulation of microdroplets on a superhydrophobic surface. Biomicrofluidics 4(4):041101

    Article  CAS  Google Scholar 

  81. Shastry A, Case MJ, Böhringer KF (2006) Directing droplets using microstructured surfaces. Langmuir 22(14):6161

    Article  CAS  Google Scholar 

  82. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725

    Article  CAS  Google Scholar 

  83. Dubois P, Marchand G, Fouillet Y, Berthier J, Douki T, Hassine F, Gmouh S, Vaultier M (2006) Ionic liquid droplet as e-microreactor. Anal Chem 78(14):4909

    Article  CAS  Google Scholar 

  84. Wheeler AR, Moon H, Bird CA, Ogorzalek Loo RR, Kim C-J, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77(2):534

    Article  CAS  Google Scholar 

  85. Ko K-S, Jaipuri FA, Pohl NL (2005) Fluorous-based carbohydrate microarrays. J Am Chem Soc 127(38):13162

    Article  CAS  Google Scholar 

  86. Collet BYM, Nagashima T, Yu MS, Pohl NLB (2009) Fluorous-based peptide microarrays for protease screening. J Fluor Chem 130(11):1042

    Article  CAS  Google Scholar 

  87. Vegas AJ, Bradner JE, Tang W, McPherson OM, Greenberg EF, Koehler AN, Schreiber SL (2007) Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors. Angew Chem Int Ed Engl 46(42):7960

    Article  CAS  Google Scholar 

  88. Yang H, Luk VN, Abelgawad M, Barbulovic-Nad I, Wheeler AR (2009) A world-to-chip interface for digital microfluidics. Anal Chem 81(3):1061

    Article  CAS  Google Scholar 

  89. Chen D, Du W, Liu Y, Liu W, Kuznetsov A, Mendez FE, Philipson LH, Ismagilov RF (2008) The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc Natl Acad Sci USA 105(44):16843

    Article  CAS  Google Scholar 

  90. Skeggs LT, Hochstrasser H (1964) Clin Chem 10:918

    CAS  Google Scholar 

  91. Song H, Li H-W, Munson MS, Ha TGV, Ismagilov RF (2006) On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 78(14):4839

    Article  CAS  Google Scholar 

  92. Kreutz JE, Shukhaev A, Du W, Druskin S, Daugulis O, Ismagilov RF (2010) Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J Am Chem Soc 132(9):3128

    Article  CAS  Google Scholar 

  93. Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci USA 103(51):19243

    Article  CAS  Google Scholar 

  94. Miller DC, Webster TJ, Haberstroh KM (2004) Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design. Expert Rev Med Devices 1(2):259

    Article  CAS  Google Scholar 

  95. Kruss S, Wolfram T, Martin R, Neubauer S, Kessler H, Spatz JP (2010) Stimulation of cell adhesion at nanostructured Teflon interfaces. Adv Mater 22(48):5499

    Article  CAS  Google Scholar 

  96. Ballermann BJ (1998) Adding endothelium to artificial vascular grafts. News Physiol Sci 13(3):154

    Google Scholar 

  97. Anamelechi CC, Clermont EC, Novak MT, Reichert WM (2009) Dynamic seeding of perfusing human umbilical vein endothelial cells (HUVECs) onto dual-function cell adhesion ligands: Arg-Gly-Asp (RGD)-streptavidin and biotinylated fibronectin. Langmuir 25(10):5725

    Article  CAS  Google Scholar 

  98. Shiu J, Kuo CW, Whang W, Chen P (2010) Addressable cell microarrays via switchable superhydrophobic surfaces. J Adhes Sci Technol 24:1023

    Article  CAS  Google Scholar 

  99. Shiu J-Y, Chen P (2007) Addressable protein patterning via switchable superhydrophobic microarrays. Adv Funct Mater 17(15):2680

    Article  CAS  Google Scholar 

  100. Beyene HT, Chakravadhanula VSK, Hanisch C, Elbahri M, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F (2010) Preparation and plasmonic properties of polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition. J Mater Res 45(21):5865

    CAS  Google Scholar 

  101. Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 17(14):3499

    Article  CAS  Google Scholar 

  102. Biswas A, Eilers H, Hidden F Jr, Aktas OC, Kiran CVS (2006) Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF matrix. Appl Phys Lett 88(1):013103/1

    Google Scholar 

  103. Biswas A, Aktas OC, Kanzow J, Saeed U, Strunskus T, Zaporojtchenko V, Faupel F (2004) Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater Lett 58(9):1530

    Article  CAS  Google Scholar 

  104. Biswas A, Bayer IS, Marken B, Pounds TD, Norton MG (2007) Networks of ultra-fine Ag nanocrystals in a Teflon AF matrix by vapor phase e-beam-assisted deposition. Nanotechnology 18(30):305602/1

    Google Scholar 

  105. Biswas A, Marton Z, Kanzow J, Kruse J, Zaporojtchenko V, Faupel F, Strunskus T (2003) Controlled generation of Ni nanoparticles in the capping layers of Teflon AF by vapor-phase tandem evaporation. Nano Lett 3(1):69

    Article  CAS  Google Scholar 

  106. Evanoff DD Jr, Zimmerman P, Chumanov G (2005) Synthesis of metal-Teflon AF nanocomposites by solution-phase methods. Adv Mater 17(15):1905

    Article  CAS  Google Scholar 

  107. Hasell T, Yoda S, Howdle SM, Brown PD (2005) Microstructural characterisation of silver/polymer nanocomposites prepared using supercritical carbon dioxide. J Phys Conf Ser 26:276

    Article  CAS  Google Scholar 

  108. Biswas A, Bayer IS, Biris AS (2010) Nanocomposite route to ultra-sensitive surface enhanced Raman scattering substrates. In: Functional materials and nanostructures for chemical and biochemical sensing. Materials research society symposium proceedings, vol 1253. Warrendale, p K10

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the NSF (CHE 0957038) and NIH (P50 GM067082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, H., Weber, S.G. (2011). Teflon AF Materials. In: Horváth, I. (eds) Fluorous Chemistry. Topics in Current Chemistry, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_249

Download citation

Publish with us

Policies and ethics