Skip to main content

Fluorous Hydrosilylation

  • Chapter
  • First Online:
Fluorous Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 308))

  • 3721 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FBC:

Fluorous biphasic catalysis

FBS:

Fluorous biphasic system

DMF:

Dimethylformamide

FC-72:

Mixture of perfluorohexanes

GC:

Gas chromatography

IR:

Infra red

MALDI-TOF:

MALDI: Matrix-assisted laser desorption/ionization; TOF: time-of-flight mass spectrometer

NMR:

Nuclear magnetic resonance

PFMCH:

Perfluoromethylcyclohexane

RT:

Room temperature

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

tht:

Tetrahydrothiophene

TOF:

Turnover frequency; turnover number per unit time

TON:

Turnover number; number of moles of substrate that a mole of catalyst can convert before becoming inactivated

Tos:

Tosyl

TXRF:

Total reflection X-ray fluorescence

xantphos:

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

References

  1. Marciniec B (1992) Comprehensive handbook on hydrosilylation. Pergamon, Oxford, UK

    Google Scholar 

  2. Marciniec B (2009) Hydrosilylation: a comprehensive review on recent advances. Springer, Berlin

    Book  Google Scholar 

  3. Roy AK (2008) A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv Organomet Chem 55:1–54

    Article  CAS  Google Scholar 

  4. Brook MA (2000) Silicon in organic, organometallic and polymer chemistry. Wiley, New York

    Google Scholar 

  5. Lewis LN (2000) From sand to silicones: an overview of the chemistry of silicones. In: Clarkson SJ, Fitgerald JJ, Owen MJ, Smith SD (eds) Silicones and silicone-modified materials. Oxford University Press and the American Chemical Society, Washington, DC, pp 11–19

    Chapter  Google Scholar 

  6. Arena CG (2009) Recent progress in the asymmetric hydrosilylation of ketones and imines. Mini-Rev Org Chem 6:159–167

    Article  CAS  Google Scholar 

  7. Morris RH (2009) Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem Soc Rev 38:2282–2291

    Article  CAS  Google Scholar 

  8. Bao F, Kanno KI, Takahashi T (2008) Early transition metal catalyzed hydrosilylation reaction. Trends Org Chem 12:1–17

    CAS  Google Scholar 

  9. Munslow IJ (2008) Alkyne reductions. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 363–385

    Chapter  Google Scholar 

  10. Riant O (2008) Hydrosilylation of imines. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 321–337

    Chapter  Google Scholar 

  11. Rendler S, Oestreich M (2008) Diverse modes of silane activation for the hydrosilylation of carbonyl compounds. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 183–207

    Chapter  Google Scholar 

  12. Mayes PA, Perlmutter P (2008) Alkyne reduction: hydrosilylation. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 87–105

    Chapter  Google Scholar 

  13. Marciniec B (2002) Catalysis of hydrosilylation of carbon-carbon multiple bonds: recent progress. Silicon Chem 1:155–175

    Article  CAS  Google Scholar 

  14. Malacea R, Poli R, Manoury E (2010) Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes. Coord Chem Rev 254:729–752

    Article  CAS  Google Scholar 

  15. Speier JL, Hook DE (1958) Organosilicon compounds. US Patent 2,823,218

    Google Scholar 

  16. Iovel IG, Goldberg YSh, Shymanska MV, Lukevikc E (1987) Quaternary onium hexachloroplatinates: novel hydrosilylation catalysts. Organometallics 6:1410–1413

    Article  CAS  Google Scholar 

  17. Karstedt BD (1973) Platinum-siloxane complexes as hydrosilylation catalysts. US Patent 3,775,452

    Google Scholar 

  18. Chalk AJ, Harrod JF (1965) Homogeneous catalysis II. The mechanism of the hydrosilylation of olefins catalyzed by group VIII metals. J Am Chem Soc 87:16–21

    Article  CAS  Google Scholar 

  19. Glasser PB, Tilley TD (2003) Catalytic hydrosilylation of alkenes by a ruthenium silylene complex. Evidence for a new hydrosilylation mechanism. J Am Chem Soc 125:13640–13641

    Article  Google Scholar 

  20. Normand AT, Cavell KJ (2008) Donor-functionalised N-heterocyclic carbene complexes of group 9 and 10 metals in catalysis: trends and directions. Eur J Inorg Chem 2781–2800

    Google Scholar 

  21. Diez-Gonzalez S, Nolan SP (2008) Copper, silver and gold complexes in hydrosilylation reactions. Acc Chem Res 41:349–358

    Article  CAS  Google Scholar 

  22. Du G, Abu-Omar MM (2008) Oxo and imido complexes of rhenium and molybdenum in catalytic reductions. Curr Org Chem 12:1185–1198

    Article  CAS  Google Scholar 

  23. Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (2006) Introduction. In: Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–23

    Google Scholar 

  24. Maciejewski H, Szubert K, Marciniec B, Pernak J (2009) Hydrosilylation of functionalised olefins catalysed by rhodium siloxide complexes in ionic liquids. Green Chem 11:1045–1051

    Article  CAS  Google Scholar 

  25. Maciejewski H, Wawrzynczak A, Dutkiewicz M, Fiedorow R (2006) Silicon waxes-synthesis via hydrosilylation in homo- and heterogeneous systems. J Mol Catal A Chem 257:141–148

    Article  CAS  Google Scholar 

  26. Hofmann N, Bauer A, Frey T, Auer M, Stanjek V, Schulz PS, Taccardi N, Wasserscheid P (2008) Liquid-liquid biphasic, platinum-catalyzed hydrosilylation of allyl chloride with trichlorosilane using ionic liquid catalyst phase in a continuous loop reactor. Adv Synth Catal 350:2599–2609

    Article  CAS  Google Scholar 

  27. Geldbach TJ, Zhao D, Castillo NC, Laurenczy G, Weyershausen B, Dyson PJ (2006) Biphasic hydrosilylation in ionic liquids: a process set for industrial implementation. J Am Chem Soc 128:9773–9780

    Article  CAS  Google Scholar 

  28. Behr A, Naendrup F, Obst D (2002) Platinum-catalyzed hydrosilylation of unsaturated fatty acids. Adv Synth Catal 344:1142–1145

    Article  CAS  Google Scholar 

  29. Horváth IT, Rábai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75

    Article  Google Scholar 

  30. Clayton JW Jr (1967) Fluorocarbon toxicity and biological action. Chem Rev 1:197–252

    CAS  Google Scholar 

  31. Gladysz JA, Curran DP, Horváth IT (2004) Handbook of fluorous chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  32. Horváth IT (2006) Fluorous catalysis. In: Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 339–403

    Google Scholar 

  33. Lantos D, Contel M, Larrea A, Szabo D, Horváth IT (2006) Fluorous-phosphine assisted recycling of gold catalysts for hydrosilylation of aldehydes. QSAR Comb Sci 25:719–722

    Article  CAS  Google Scholar 

  34. de Wolf E, Speets EA, Deelman BJ, van Koten G (2001) Recycling of rhodium-based hydrosilylation catalysts; a fluorous approach. Organometallics 20:3686–3690

    Article  Google Scholar 

  35. de Wolf E, Riccomagno E, de Pater JJM, Deelman BJ, van Koten G (2004) Parallel synthesis and study of fluorous biphasic partition coefficients of 1H,1H,2H,2H-perfluoroalkylsilyl derivatives of triphenylphosphine: a statistical approach. J Comb Chem 6:363–374

    Article  Google Scholar 

  36. Richter B, de Wolf ACA, Van Koten G, Deelman BJ (2000) Fluorous phosphines and process for their preparation. WO 0018774 and US 6458978

    Google Scholar 

  37. Dinh LV, Gladysz JA (1999) Transition metal catalysis in fluorous media: extension of a new inmobilization principle to biphasic and monophasic rhodium-catalyzed hydrosilylations of ketones and enones. Tetrahedron Lett 40:8995–8998

    Article  CAS  Google Scholar 

  38. Dinh LV, Gladysz JA (2005) Monophasic and biphasic hydrosilylations of enones and ketones using a fluorous rhodium catalyst that is easily recycled under fluorous-organic liquid-liquid biphasic conditions. New J Chem 29:173–181

    Article  CAS  Google Scholar 

  39. Gladysz JA, Wende M, Rocaboy C (2003) Composition used for hydroformylation, hydroboration, oxidation, hydrogenation, hydrosilylation or phosphine-catalyzed organic reaction contains highly fluorinated catalyst or reagent with temperature-dependent solubility in solvent used. DE 10212424

    Google Scholar 

  40. van der Broeke J, Winter F, Deelman BJ, van Koten G (2002) A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett 4:3851–3854

    Article  Google Scholar 

  41. Dinh LV, Gladysz JA (2005) “Catalyst-on-a-tape”-Teflon: a new delivery and recovery method for homogeneous fluorous catalysts. Angew Chem Int Ed 44:4095–4097

    Article  CAS  Google Scholar 

  42. Gladysz JA, Dinh LV, Curran DP (2006) Methods, processes and materials for dispensing and recovering supported fluorous reaction components. US 20060094866 and US 2008281086

    Google Scholar 

  43. Gladysz JA, Tesevic V (2008) Temperature-controlled catalyst recycling: new protocols based upon temperature-dependent solubilities of fluorous compounds and solid/liquid phase separation. Top Organomet Chem 23:67–89, and refs therein

    Article  CAS  Google Scholar 

  44. Jardine FH (1981) Chlorotris(triphenylphosphine rhodium(I). Its chemical and catalytic reactions. In: Lippard SJ (ed) Progress in inorganic chemistry, vol 28. Wiley, New York, pp 117–183

    Chapter  Google Scholar 

  45. Richter B, de Wolf E, van Koten G, Deelman BJ (2000) Synthesis and properties of a novel family of fluorous triphenylphosphine derivatives. J Org Chem 65:3885–3893

    Article  CAS  Google Scholar 

  46. Richter B, van Koten G, Deelman BJ (1999) Fluorous biphasic hydrogenation of 1-alkenes using novel fluorous derivatives of Wilkinson’s catalyst. J Mol Catal A 145:317–321

    Article  CAS  Google Scholar 

  47. Richter B, Spek AL, van Koten G, Deelman BJ (2000) Fluorous versions of Wilkinson’s catalysts. Activity in fluorous hydrogenation of 1-alkenes and recycling by fluorous biphasic separation. J Am Chem Soc 122:3945–3951

    Article  CAS  Google Scholar 

  48. Ameduri B, Boutevin B, Nouiri M, Talbi M (1995) Synthesis and properties of fluorosilicon-containing polybutadienes by hydrosilylation of fluorinated hydrogenosilanes. Part 1. Preparation of the silylation agents. J Fluorine Chem 74:191–197, and refs therein

    Article  CAS  Google Scholar 

  49. Van den Broeke J, Lutz M, Kooijman H, Spek AL, Deelman BJ, van Koten G (2001) Increasing the lipophilic character of tetraphenylborate anions through silyl substituents. Organometallics 20:2114–2117

    Article  Google Scholar 

  50. Juliette JJJ, Horváth IT, Gladysz JA (1997) Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroboration. Angew Chem Int Ed 36:1610–1612

    Article  CAS  Google Scholar 

  51. Juliette JJJ, Rutherford D, Horváth IT, Gladysz JA (1999) Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroborations of alkenes and alkynes. J Am Chem Soc 121:2696–2704

    Article  CAS  Google Scholar 

  52. Rutherford D, Juliette JJJ, Rocaboy C, Horváth IT, Gladysz JA (1998) Transition metal catalysis in fluorous media: application of a new immobilization principle to rhodium-catalyzed hydrogenation of alkenes. Catal Today 42:381–388

    Article  CAS  Google Scholar 

  53. Wende M, Meier R, Gladysz JA (2001) Fluorous catalysis without fluorous solvent: a friendlier catalyst recovery/recycling protocol based upon thermomorphic properties and liquid/solid phase separation. J Am Chem Soc 123:11490–11491

    Article  CAS  Google Scholar 

  54. Wende M, Gladysz JA (2003) Fluorous catalysis under homogeneous conditions without fluorous solvents: a “greener” catalyst recycling protocol based upon temperature-dependent solubilities and liquid/solid phase separation. J Am Chem Soc 125:5861–5872

    Article  CAS  Google Scholar 

  55. Ishihara K, Kondo S, Yamamoto H (2011) 3,5-Bis(perfluorodecyl)phenylboronic acid as an easily recyclable direct amide condensation catalyst. Synlett 1371–1374

    Google Scholar 

  56. Ishihara K, Hasegawa A, Yamamoto Y (2002) A fluorous super Bronsted acid catalyst: application to fluorous catalysis without fluorous solvents. Synlett 1299–1301

    Google Scholar 

  57. Mikami K, Mikami Y, Matsuzawa Y, Matsumoto Y, Nishidiko J, Yamamoto F, Nakajima H (2002) Lanthanide catalysts with tris(perfluorooctanesulfonyl)methide and bis(perfluorooctanesulfonyl)amide ponytails: recyclable Lewis acid catalysts in fluorous phases or as solids. Tetrahedron 58:4015–4021

    Article  CAS  Google Scholar 

  58. Otera J (2004) Toward ideal (trans)esterification by use of fluorous distannoxane catalysts. Acc Chem Res 37:288–296, and refs therein

    Article  CAS  Google Scholar 

  59. Maayan G, Fish R, Neumann R (2003) Polyfluorinated quaternary ammonium salts of polyoxometalate anions: fluorous biphasic oxidation catalysis with and without fluorous solvents. Org Lett 41:3547–3550

    Article  Google Scholar 

  60. Gladysz JA (2009) Catalysis involving fluorous phases: fundamentals and directions for greener methodologies. In: Anastas PT, Crabtree RH (eds) Handbook of green chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 17–38

    Google Scholar 

  61. Gladysz JA (2008) Thermomorphic cyclopalladated compounds. In: Dupont J, Pfeffer M (eds) Palladacycles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 341–360

    Chapter  Google Scholar 

  62. Bergbreiter DE (2009) Thermomorphic catalysts. In: Benaglia M (ed) Recoverable and recyclable catalysts. Wiley, Chichester, UK, pp 117–154

    Chapter  Google Scholar 

  63. Zhang W (2009) Green chemistry aspects of fluorous techniques – opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920

    Article  CAS  Google Scholar 

  64. Candeias NR, Branco LC, Gois PMP, Alfonso CAM (2009) More sustainable approaches for the synthesis of N-based heterocycles. Chem Rev 109:2703–2802

    Article  CAS  Google Scholar 

  65. Contel M, Villuendas PR, Fernandez-Gallardo J, Alonso PJ, Vincent JM, Fish RH (2005) Fluorocarbon soluble copper(II) carboxylate complexes with nonfluoroponytailed nitrogen ligands as precatalysys for the oxidation of alkenols and alcohols under fluorous biphasic or thermomorphic modes: structural and mechanistic aspects. Inorg Chem 44:9771–9778

    Article  CAS  Google Scholar 

  66. Audic N, Dyer PW, Hope EG, Stuart AM, Suhard S (2010) Insoluble perfluoroalkylated polymers: new solid supports for supported fluorous phase catalysis. Adv Synth Catal 352:2241–2250

    Article  CAS  Google Scholar 

  67. Ablan CD, Hallet JP, West KN, Jones RS, Eckert CA, Liotta CA, Jessop PG (2003) Use and recovery of a homogeneous catalyst with carbon dioxide as a solubility switch. Chem Commun 2972–2973

    Google Scholar 

  68. Eckert CA, Jessop PG, Liotta CL (2002) Methods for solubilizing and recovering fluorinated compounds. WO 02096550

    Google Scholar 

  69. King AG (2006) Research advances: caught on tape: catalyst recovery; secondary structure switch; DNA-based chiral catalysts. J Chem Ed 83:10–14

    Article  Google Scholar 

  70. Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals: characterized intermediates. Angew Chem Int Ed 49:5232–5241

    Article  CAS  Google Scholar 

  71. Ito H, Yajima T, Tateiwa J, Hosomi A (2000) First gold complex-catalyzed selective hydrosilylation of organic compounds. Chem Commun 981–982

    Google Scholar 

  72. Vlád G, Richter FU, Horváth IT (2004) Modular synthesis of fluorous trialkylphosphines. Org Lett 6:4559–4561

    Article  Google Scholar 

  73. Laguna A (1999) Gold compounds of phosphorus and the heavy group V elements. In: Schmidbaur H (ed) Gold, progress in chemistry, biochemistry and technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 348–428

    Google Scholar 

  74. Canales F, Gimeno MC, Laguna A, Villacampa MD (1996) Aurophilicity at sulfur centers. Synthesis of the polyaurated species [S(AuPR3)n](n-2)+ (n = 2–6). Inorg Chim Acta 244:95–103

    Article  CAS  Google Scholar 

  75. Crooks M, Zhao M, Sun L, Chenik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190, and refs therein

    Article  CAS  Google Scholar 

  76. Moreno-Mañas M, Pleixat R, Villaroya S (2002) Palladium nanoparticles stabilized by polyfluorinated chains. Chem Commun 60–61

    Google Scholar 

  77. Moreno-Mañas M, Pleixat R, Villaroya S (2001) Fluorous phase soluble palladium nanoparticles as recoverable catalysts for Suzuki cross-coupling and Heck reactions. Organometallics 20:4524–4528

    Article  Google Scholar 

  78. Lantos D, Contel M, Sanz S, Bodor A, Horváth IT (2007) Homogeneous gold-catalyzed hydrosilylation of aldehydes. J Organomet Chem 692:1799–1805

    Article  CAS  Google Scholar 

  79. Ito H, Takagi K, Miyahara T, Sawamura M (2005) Gold(I)-phosphine catalyst for the highly chemoselective dehydrogenative silylation of alcohols. Org Lett 7:3001–3004

    Article  CAS  Google Scholar 

  80. Ito H, Saito T, Miyahara T, Zhong C, Sawamura M (2009) Gold(I) hydride intermediate in catalysis: dehydrogenative alcohol silylation catalyzed by gold(I) complex. Organometallics 28:4829–4840

    Article  CAS  Google Scholar 

  81. Gimeno MC, Laguna A (1997) Three- and four-coordinate gold(I) complexes. Chem Rev 97:511–522

    Article  CAS  Google Scholar 

  82. Fackler JP Jr, van Zyl WE, Prihoda BA (1999) Gold chalcogen chemistry. In: Schmidbaur H (ed) Gold, progress in chemistry, biochemistry and technology. Wiley, Chichester, pp 795–840

    Google Scholar 

  83. Wile BM, McDonald R, Ferguson MJ, Stradiotto M (2007) Au(I) complexes supported by donor-functionalized indene ligands: synthesis, characterization, and catalytic behavior in aldehyde hydrosilylation. Organometallics 26:1069–1076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Contel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carreira, M., Contel, M. (2011). Fluorous Hydrosilylation. In: Horváth, I. (eds) Fluorous Chemistry. Topics in Current Chemistry, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_239

Download citation

Publish with us

Policies and ethics